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Preface

This book is the result of a series of lectures on linear algebra and the geometry of
multidimensional spaces given in the 1950s through 1970s by Igor R. Shafarevich
at the Faculty of Mechanics and Mathematics of Moscow State University.

Notes for some of these lectures were preserved in the faculty library, and these
were used in preparing this book. We have also included some topics that were
discussed in student seminars at the time. All the material included in this book is
the result of joint work of both authors.

We employ in this book some results on the algebra of polynomials that are
usually taught in a standard course in algebra (most of which are to be found in
Chaps. 2 through 5 of this book). We have used only a few such results, without
proof: the possibility of dividing one polynomial by another with remainder; the
theorem that a polynomial with complex coefficients has a complex root; that every
polynomial with real coefficients can be factored into a product of irreducible first-
and second-degree factors; and the theorem that the number of roots of a polynomial
that is not identically zero is at most the degree of the polynomial.

To provide a visual basis for this course, it was preceded by an introductory
course in analytic geometry, to which we shall occasionally refer. In addition, some
topics and examples are included in this book that are not really part of a course in
linear algebra and geometry but are provided for illustration of various topics. Such
items are marked with an asterisk and may be omitted if desired.

For the convenience of the reader, we present here the system of notation used
in this book. For vector spaces we use sans serif letters: L,M,N, . . . ; for vectors,
we use boldface italics: x,y,z, . . . ; for linear transformations, we use calligraphic
letters: A,B,C, . . . ; and for the corresponding matrices, we use uppercase italic
letters: A,B,C, . . . .
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Preliminaries

In this book we shall use a number of concepts from set theory. These ideas appear
in most mathematics courses, and so they will be familiar to some readers. However,
we shall recall them here for convenience.

Sets and Mappings

A set is a collection of arbitrarily chosen objects defined by certain precisely speci-
fied properties (for example, the set of all real numbers, the set of all positive num-
bers, the set of solutions of a given equation, the set of points that form a given
geometric figure, the set of wolves or trees in a given forest). If a set consists of
a finite number of elements, then it is said to be finite, and if not, it is said to be
infinite. We shall employ standard notation for certain important sets, denoting the
set of natural numbers by N, the set of integers by Z, the set of rational numbers by
Q, the set of real numbers by R, and the set of complex numbers by C. The set of
natural numbers not exceeding a given natural number n, that is, the set consisting
of 1,2, . . . , n, will be denoted by Nn. The objects that make up a set are called its
elements or sometimes points. If x is an element of the set M , then we shall write
x ∈ M . If we need to specify that x in not an element of M , then we shall write
x /∈ M .

A set S consisting of certain elements of the set M (that is, every element of the
set S is also an element of the set M) is called a subset of M . We write S ⊂ M .
For example, Nn ⊂ N for arbitrary n, and likewise, we have N ⊂ Z, Z ⊂ Q, Q⊂ R,
and R ⊂ C. A subset of M consisting of elements xα ∈ M (where the index α runs
over a given finite or infinite set) will be denoted by {xα}. It is convenient to include
among the subsets of a set M the set that contains no elements at all. We call this
set the empty set and denote it by ∅.

Let M and N be two arbitrary sets. The collection of all elements that belong si-
multaneously to both M and N is called the intersection of M and N and is denoted
by M ∩ N . If we have M ∩ N = ∅, then we say that the sets M and N are disjoint.

xi



xii Preliminaries

The collection of elements belonging to either M or N (or to both) is called the
union of M and N and is denoted by M ∪N . Finally, the set of elements that belong
to M but do not belong to N is called the complement of N in M and is denoted by
M \ N .

We say that a set M has an equivalence relation defined on it if for every pair of
elements x and y of M , either the elements x and y are equivalent (in which case
we write x ∼ y) or they are inequivalent (x �∼ y), and if in addition, the following
conditions are satisfied:

1. Every element of M is equivalent to itself: x ∼ x (reflexivity).
2. If x ∼ y, then y ∼ x (symmetry).
3. If x ∼ y and y ∼ z, then x ∼ z (transitivity).

If an equivalence relation is defined on a set M , then M can be represented as the
union of a (finite or infinite) collection of sets Mα called equivalence classes with
the following properties:

(a) Every element x ∈ M is contained in one and only one equivalence class Mα .
In other words, the sets Mα are disjoint, and their union (finite or infinite) is the
entire set M .

(b) Elements x and y are equivalent (x ∼ y) if and only if they belong to the same
subset Mα .

Clearly, the converse holds as well: if we are given a representation of a set M

as the union of subsets Mα satisfying property (a), then setting x ∼ y if (and only
if) these elements belong to the same subset Mα , we obtain an equivalence relation
on M .

From the above reasoning, it is clear that the equivalence thus defined is com-
pletely abstract; there is no indication as to precisely how it is decided whether two
elements x and y are equivalent. It is necessary only that conditions 1 through 3
above be satisfied. Therefore, on a particular set M one can define a wide variety of
equivalence relations.

Let us consider a few examples. Let the set M be the natural numbers, that is,
M = N. Then on this set it is possible to define an equivalence relation defined by
the condition that x ∼ y if x and y have the same remainder on division by a given
natural number n. It is clear that conditions 1 through 3 above are satisfied, and
N can be represented as the union of n classes (in the case n = 1, all the natural
numbers are equivalent to each other and so there is only one class; if n = 2, there
are two classes, namely the even numbers and the odd numbers; and so on). Now let
M be the set of points in the plane or in space. We can define an equivalence relation
by the rule that x ∼ y if the points x and y are the same distance from a given fixed
point O . Then the equivalence classes are all circles (in the case of the plane) or
spheres (in space) with center at O . If, on the other hand, we wanted to consider
two points equivalent if the distance between them is some given number, then we
would not have an equivalence relation, since transitivity would not be satisfied.

In this book, we shall encounter several types of equivalence relations (for exam-
ple, on the set of square matrices).
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A mapping from a set M into a set N is a rule that assigns to every element
of the set M a particular element of N . For example, if M is the set of all bears
currently alive on Earth and N is the set of positive numbers, then assigning to each
bear its weight (for example in kilograms) constitutes a mapping from M to N . We
shall call such mappings of a set M into N functions on M with values in N . We
shall usually denote such an assignment by one of the letters f,g, . . . or F,G, . . . .
Mappings from a set M into a set N are indicated with an arrow and are written thus:
f : M → N . An element y ∈ N assigned to an element x ∈ M is called the value of
the function f at the point x. This is written using an arrow with a tail, f : x 	→ y,
or the equality y = f (x). Later on, we shall frequently display mappings between
sets in the form of a diagram:

M
f−−−−→ N.

If the sets M and N coincide, then f : M → M is called a mapping of M into
itself. A mapping of a set into itself that assigns to each element x that same element
x is called an identity mapping. It will be denoted by the letter e, or if it is important
to specify the underlying set M , by eM . Thus in our notation, we have eM : M → M

and eM(x) = x for every x ∈ M .
A mapping f : M → N is called an injection or an injective mapping if different

elements of the set M are assigned different elements of the set N , that is, it is
injective if f (x1) = f (x2) always implies x1 = x2.

If S is a subset of N and f : M → N is a mapping, then the collection of all
elements x ∈ M such that f (x) ∈ S is called the preimage or inverse image of S

and is denoted by f −1(S). In particular, if S consists of a single element y ∈ N ,
then f −1(S) is called the preimage or inverse image of the element y and is writ-
ten f −1(y). Using this terminology, we may say that a mapping f : M → N is
an injection if and only if for every element y ∈ N , its inverse image f −1(y) con-
sists of at most a single element. The words “at most” imply that certain elements
y ∈ N may have an empty preimage. For example, let M = N = R and suppose
the mapping f assigns to each real number x the value f (x) = arctanx. Then f is
injective, since the inverse image f −1(y) consists of a single element if |y| < π

2 and
is the empty set if |y| ≥ π

2 .
If S is a subset of M and f : M → N is a mapping, then the collection of all

elements y ∈ N such that y = f (x) for some x ∈ S is called the image of the subset
S and is denoted by f (S). In particular, the subset S could be the entire set M , in
which case f (M) is called the image of the mapping f . We note that the image of
f does not have to consist of the entire set N . For example, if M = N = R and
f is the squaring operation (raising to the second power), then f (M) is the set of
nonnegative real numbers and does not coincide with the set R.

If again S is a subset of M and f : M → N a mapping, then applying the map-
ping only to elements of the set S defines a mapping f : S → N , called the restric-
tion of the mapping f to S. In other words, the restriction mapping is defined by
taking f (x) for each x ∈ S as before and simply ignoring all x /∈ S. Conversely, if
we start off with a mapping f : S → N defined only on the subset S, and then some-
how define f (x) for the remaining elements x ∈ M \ S, then we obtain a mapping
f : M → N , called an extension of f to M .
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A mapping f : M → N is bijective or a bijection if it is injective and the image
f (M) is the entire set N , that is, f (M) = N . Equivalently, a mapping is a bijection
if for each element y ∈ N , there exists precisely one element x ∈ M such that y =
f (x).1 In this case, it is possible to define a mapping from N into M that assigns to
each element y ∈ N the unique element x ∈ M such that f (x) = y. Such a mapping
is called the inverse of f and is denoted by f −1 : N → M . Now suppose we are
given sets M,N,L and mappings f : M → N and g : N → L, which we display in
the following diagram:

M
f−−−−→ N

g−−−−→ L. (1)

Then application of f followed by g defines a mapping from M to L by the obvious
rule: first apply the mapping f : M → N , which assigns to each element x ∈ M an
element y ∈ N , and then apply the mapping g : N → L that takes an element y to
some element z ∈ L. We thus obtain a mapping from M to L called the composition
of the mappings f and g, written g ◦ f or simply gf . Using this notation, the
composition mapping is defined by the formula

(g ◦ f )(x) = g
(
f (x)

)
(2)

for an arbitrary x ∈ M . We note that in equation (2), the letters f and g that denote
the two mappings appear in the reverse order to that in the diagram (1). As we shall
see later, such an arrangement has a number of advantages.

As an example of the composition of mappings we offer the obvious equalities

eN ◦ f = f, f ◦ eM = f,

valid for any mapping f : M → N , and likewise the equalities

f ◦ f −1 = eN, f −1 ◦ f = eM,

which are valid for any bijective mapping f : M → N .
The composition of mappings has an important property. Suppose that in addition

to the mapping shown in diagram (1), we have as well a mapping h : L → K , where
K is an arbitrary set. Then we have

h ◦ (g ◦ f ) = (h ◦ g) ◦ f. (3)

The truth of this claim follows at once from the definitions. First of all, it is apparent
that both sides of equation (3) contain a mapping from M to K . Thus we need to
show that when applied to any element x ∈ M , both sides give the same element of
the set K . According to definition (2), for the left-hand side of (3), we obtain

h ◦ (g ◦ f )(x) = h
(
(g ◦ f )(x)

)
, (g ◦ f )(x) = g

(
f (x)

)
.

1Translator’s note: The term one-to-one is also used in this context. However, its use can be con-
fusing: an injection is sometimes called a one-to-one mapping, while a bijection is sometimes
called a one-to-one correspondence. In this book, we shall strive to stick to the terms injective and
bijective.
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Substituting the second equation into the first, we finally obtain h◦(g◦f )(x) =
h(g(f (x))). Analogous reasoning shows that we obtain precisely the same expres-
sion for the right-hand side of equation (3).

The property expressed by formula (3) is called associativity. Associativity plays
an important role, both in this course and in other branches of mathematics. There-
fore, we shall pause here to consider this concept in more detail. For the sake of
generality, we shall consider a set M of arbitrary objects (they can be numbers,
matrices, mappings, and so on) on which is defined the operation of multiplication
associating two elements a ∈ M and b ∈ M with some element ab ∈ M , which we
call the product, such that it possesses the associative property:

(ab)c = a(bc). (4)

The point of condition (4) is that without it, we can calculate the product of ele-
ments a1, . . . , am for m > 2 only if the sequence of multiplications is indicated by
parentheses, indicating which pairs of adjacent elements we are allowed to multiply.
For example, with m = 3, we have two possible arrangements of the parentheses:
(a1a2)a3 and a1(a2a3). For m = 4 we have five variants:

(
(a1a2)a3

)
a4,

(
a1(a2a3)

)
a4, (a1a2)(a3a4),

a1
(
(a2a3)a4

)
, a1

(
a2(a3a4)

)
,

and so on. It turns out that if for three factors (m = 3), the product does not depend
on how the parentheses are ordered (that is, the associative property is satisfied),
then it will be independent of the arrangement of parentheses with any number of
factors.

This assertion is easily proved by induction on m. Indeed, let us suppose that
it is true for all products of m or fewer elements, and let us consider products
of m + 1 elements a1, . . . , am, am+1 for all possible arrangements of parenthe-
ses. It is easily seen that in this case, there are two possible alternatives: ei-
ther there is no parenthesis between elements am and am+1, or else there is one.
Since by the induction hypothesis, the assertion is correct for a1, . . . , am, then in
the first case we obtain the product (a1 · · ·am−1)(amam+1), while in the second
case, we have (a1 · · ·am)am+1 = ((a1 · · ·am−1)am)am+1. Introducing the notation
a = a1 · · ·am−1, b = am, and c = am+1, we obtain the products a(bc) and (ab)c,
the equality of which follows from property (4).

In the special case a1 = · · · = am = a, the product a1 · · ·am is denoted by am and
is called the mth power of the element a.

There is another important concept connected to the composition of mappings.
Let R be a given set. We shall denote by F(M,R) the collection of all map-

pings M → R, and analogously, by F(N,R) the collection of all mappings N → R.
Then with every mapping f : M → N is associated the particular mapping f ∗ :
F(N,R) → F(M,R), called the dual to f and defined as follows: For every map-
ping ϕ ∈ F(N,R) it assigns the mapping f ∗(ϕ) ∈ F(M,R) according to the formula

f ∗(ϕ) = ϕ ◦ f. (5)
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Formula (5) indicates that for an arbitrary element x ∈ M , we have the equality
f ∗(ϕ)(x) = ϕ ◦ f (x), which can also be expressed by the following diagram:

M
f ∗(ϕ)

f R

N

ϕ

Here we become acquainted with the following general mathematical fact: Func-
tions are written in reverse order in comparison with the order of the sets on which
they are defined. This phenomenon will appear in our book, as well as in other
courses in relationship to more complex objects (such as differential forms).

The dual mapping f ∗ possesses the following important property: If we have
mappings of sets, as depicted in diagram (1), then

(g ◦ f )∗ = f ∗ ◦ g∗. (6)

Indeed, we obtain the dual mappings

F(L,R)
g∗

−−−−→ F(N,R)
f ∗

−−−−→ F(M,R).

By definition, for g ◦ f : M → L, the dual mapping (g ◦ f )∗ is a mapping from
g ◦F(L,R) into F(M,R). As can be seen from (2), f ∗ ◦g∗ is also a mapping of the
same sets. It remains for us to show that (g ◦ f )∗ and f ∗ ◦ g∗ take every element
ψ ∈ F(L,R) to one and the same element of the set F(M,R). By (5), we have

(g ◦ f )∗(ψ) = ψ ◦ (g ◦ f ).

Analogously, taking into account (2), we obtain the relationship

f ∗ ◦ g∗(ψ) = f ∗(g∗(ψ)
) = f ∗(ψ ◦ g) = (ψ ◦ g) ◦ f.

Thus for a proof of equality (6), it suffices to verify associativity: ψ ◦ (g ◦ f ) =
(ψ ◦ g) ◦ f .

Up to now, we have considered mappings (functions) of a single argument. The
definition of functions of several arguments is reduced to this notion with the help
of the operation of product of sets.

Let M1, . . . ,Mn be arbitrary sets. Consider the ordered collection (x1, . . . , xn),
where xi is an arbitrary element of the set Mi . The word “ordered” indicates that
in such collections, the order of the sequence of elements xi is taken into account.
For example, in the case n = 2 and M1 = M2, the pairs (x1, x2) and (x2, x1) are
considered to be different if x1 �= x2. A set consisting of all ordered collections
(x1, . . . , xn) is called the product of the sets M1, . . . ,Mn and is denoted by M1 ×
· · · × Mn.

In the special case M1 = · · · = Mn = M , the product M1 × · · · × Mn is denoted
by Mn and is called the nth power of the set M .

Now we can define a function of an arbitrary number of arguments, each of which
assumes values from “its own” set. Let M1, . . . ,Mn be arbitrary sets, and let us
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define M = M1 × · · · × Mn. By definition, the mapping f : M → N assigns to
each element x ∈ M a certain element y ∈ N , that is, it assigns to n elements x1 ∈
M1, . . . , xn ∈ Mn, taken in the assigned order, the element y = f (x1, . . . , xn) of the
set N . This is a function of n arguments xi , each of which takes values from “its
own” set Mi .

Some Topological Notions

Up to now, we have been speaking about sets of arbitrary form, not assuming that
they possess any additional properties. Generally, that will not suffice. For example,
let us assume that we wish to compare two geometric figures, in particular, to deter-
mine the extent to which they are or are not “alike.” Let us consider the two figures
to be sets whose elements are points in a plane or in space. If we wish to limit our-
selves to the concepts introduced above, then it is natural to consider “alike” those
sets between which there exists a bijection. However, toward the end of the nine-
teenth century, Georg Cantor demonstrated that there exists a bijection between the
points of a line segment and those of the interior of a square.2 At the same time,
Richard Dedekind conjectured that our intuitive idea of “alikeness” of figures is
connected with the possibility of establishing between them a continuous bijection.
But for that, it is necessary to define what it means for a mapping to be continuous.

The branch of mathematics in which one studies continuous mappings of abstract
sets and considers objects with a precision only up to bijective continuous mappings
is called topology. Using the words of Hermann Weyl, we may say that in this book,
“the mountain range of topology will loom on the horizon.” More precisely, we
shall introduce some topological notions only now and then, and then only the sim-
plest ones. We shall formulate them now, but we shall appeal to them seldom, and
only to indicate a connection between the objects that we are considering with other
branches of mathematics to which the reader may be introduced in more detail in
other courses or textbooks. Such instances can be read or passed over as desired;
they will not be used in the remainder of the book. To define a continuous mapping
f : M → N it is necessary first to define the notion of convergence on the sets M

and N . In some cases, we will define convergence on sets (for example, in spaces
of vectors, spaces of matrices, or projective spaces), based on the notion of conver-
gence in R and C, which is assumed to be familiar to the reader from a course in
calculus. In other cases, we shall make use of the notion of metric.

A set M is called a metric space if there exists a function r : M2 → R assign-
ing to every pair of points x, y ∈ M a number r(x, y) that satisfies the following
conditions:

1. r(x, y) > 0 for x �= y, and r(x, x) = 0, for every x, y ∈ M .

2This result so surprised him, that as Cantor wrote in a letter, he believed for a long time that it was
incorrect.
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2. r(x, y) = r(y, x) for every x, y ∈ M .
3. For any three points x, y, z ∈ M one has the inequality

r(x, z) ≤ r(x, y) + r(y, z). (7)

Such a function r(x, y) is called a metric or distance on M , and the properties
enumerated in its definition constitute an axiomatization of the usual properties of
distance known from courses in elementary or analytic geometry.

For example, the set R of all real numbers (and also any subset of it) becomes
a metric space if for every pair of numbers x and y we introduce the function
r(x, y) = |x − y| or r(x, y) = √|x − y|.

For an arbitrary metric space there is automatically defined the notion of conver-
gence of points in the space: a sequence of points xk converges to the point x as
k → ∞ (notation: xk → x) if r(xk, x) → 0 as k → ∞. The point x in this case is
called the limit of the sequence xk .

Let X ⊂ M be some subset of M , and M a metric space with the metric r(x, y),
that is, a mapping r : M2 →R satisfying the three properties given above. It is clear
that the restriction of r(x, y) to the subset X2 ⊂ M2 also satisfies those properties,
and hence it defines a metric on X. We say that X is a metric space with the metric
induced by the metric of the enclosing space M or that X ⊂ M is a metric subspace.

The subset X is said to be closed in M if it contains the limit point of every
convergent sequence in X, and it is said to be bounded if there exist a point x ∈ X

and a number c > 0 such that r(x, y) ≤ c for all y ∈ X.
Let M and N be sets on each of which is defined the notion of convergence (for

example, M and N could be metric spaces). A mapping f : M → N is said to be
continuous at the point x ∈ M if for every convergent sequence xk → x of points
in the set M , one has f (xk) → f (x). If the mapping f : M → N is continuous at
every point x ∈ M , then we say that it is continuous on the set M or simply that it is
continuous.

The mapping f : M → N is called a homeomorphism if it is injective with an
injective inverse mapping f −1 : N → M , both of which are continuous.3 The sets
M and N are said to be homeomorphic or topologically equivalent if there exists
a homeomorphism f : M → N . It is easily seen that the property among sets of
being homeomorphic (for a given fixed definition of convergence) is an equivalence
relation.

Given two infinite sets M and N on which no metrics have initially been defined,
if we then supply them with metrics using first one definition and then another, we
will obtain differing notions of homeomorphism f : M → N , and it can turn out
that in one type of metric, M and N are homeomorphic, while in another type they
are not. For example, on arbitrary sets M and N let us define what is called the
discrete metric, defined by the relations r(x, y) = 1 for all x �= y and r(x, x) = 0
for all x. It is clear that with such a definition, all the properties of a metric are

3We wish to emphasize that this last condition is essential: from the continuity of f one may not
conclude the continuity of f −1.
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Fig. 1 Homeomorphic and nonhomeomorphic curves (the symbol ∼ means that the figures are
homeomorphic, while �∼ means that they are not)

satisfied, but the notion of homeomorphism f : M → N becomes empty: it simply
coincides with the notion of bijection. For indeed, in the discrete metric, a sequence
xk converges to x if beginning with some index k, all the points xk are equal to x.
As follows from the definition of continuous mapping given above, this means that
every mapping f : M → N is continuous.

For example, according to a theorem of Cantor, a line segment and a square are
homeomorphic under the discrete metric, but if we consider them, for example, as
metric spaces in the plane on which distance is defined as in a course in elementary
geometry (let us say using the system of Cartesian coordinates), then the two sets
are no longer homeomorphic.

This shows that the discrete metric fails to reflect some important properties of
distance with which we are familiar from courses in geometry, one of which is that
for an arbitrarily small number ε > 0, there exist two distinct points x and y for
which r(x, y) < ε. Therefore, if we are to formulate our intuitive idea of “geomet-
ric similarity” of two sets M and N , it is necessary to consider them not with an
arbitrary metric, but with a metric that reflects these geometric notions.

We are not going to go more deeply into this question, since for our purposes that
is unnecessary. In this book, when we “compare” sets M and N , where at least one
of them (say N ) is a geometric figure in the plane (or in space), then distance will be
determined in the usual way, with the metric on N induced by the metric in the plane
(or in the space) in which it lies. It remains for us to define the metric (or notion of
convergence) on the set M in such a way that M and N are homeomorphic. That is
how we shall make precise the idea of comparison.

If the figures M and N are metric subspaces of the plane or space with distance
defined as in elementary geometry, then there exists for them a very graphic inter-
pretation of the concept of topological equivalence. Imagine that figures M and N

are made out of rubber. Then their being homeomorphic means that we can deform
M into N without tearing and without gluing together any points. This last condi-
tion (“without tearing and without gluing together any points”) is what makes the
notion of homeomorphism much stronger than simply a bijective mapping of sets.

For example, an arbitrary continuous closed curve without self-intersection (for
example, a triangle or square) is homeomorphic to a circle. On the other hand, a con-
tinuous closed curve with self-intersection (say a figure eight) is not homeomorphic
to a circle (see Fig. 1).

In Fig. 2 we have likewise depicted examples of homeomorphic and nonhomeo-
morphic figures, this time in three-dimensional space.

We conclude by introducing a few additional simple topological concepts that
will be used in this book.
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Fig. 2 Homeomorphic and nonhomeomorphic surfaces

A path in a metric space M is a continuous mapping f : I → M , where I is
an interval of the real line. Without any loss of generality, we may assume that
I = [0,1]. In this case, the points f (0) and f (1) are called the beginning and end
of the path. Two points x, y ∈ M are said to be continuously deformable into each
other if there is a path in which x is the beginning and y is the end. Such a path
is called a deformation of x into y, and we shall notate the fact that x and y are
deformable into one another by x ∼ y.

The property for elements of a space M to be continuously deformable into one
another is an equivalence relation on M , since properties 1 through 3 that define such
a relation are satisfied. Indeed, the reflexive property is obvious. To prove symmetry,
it suffices to observe that if f (t) is a deformation of x into y, then f (1 − t) is a
deformation of y into x. Now let us verify transitivity. Let x ∼ y and y ∼ z, f (t)

a deformation of x into y, and g(t) a deformation of y into z. Then the mapping
h : I → M determined by the equality h(t) = f (2t) for t ∈ [0, 1

2 ] and the equality
h(t) = g(2t − 1) for t ∈ [ 1

2 ,1] is continuous, and for this mapping, the equalities
h(0) = f (0) = x, h(1) = g(1) = z are satisfied. Thus h(t) gives the continuous
deformation of the point x to z, and therefore we have x ∼ z.

If every pair of elements of a metric space M can be deformed one into the other
(that is, the relationship ∼ defines a single equivalence class), then the space M is
said to be path-connected. If that is not the case, then for each element x ∈ M we
consider the equivalence class Mx consisting of all elements y ∈ M such that x ∼ y.
By the definition of equivalence class, the metric space Mx will be path-connected.
It is called the path-connected component of the space M containing the point x.
Thus the equivalence relation defined by a continuous deformation decomposes M

into path-connected components.
In a number of important cases, the number of components is finite, and we

obtain the representation M = M1 ∪ · · · ∪ Mk , where Mi ∩ Mj = ∅ for i �= j and
each Mi is path-connected. It is easily seen that such a representation is unique. The
sets Mi are called the path-connected components of the space M .

For example, a hyperboloid of one sheet, a sphere, and a cone are each path-
connected, but a hyperboloid of two sheets is not: it has two path-connected com-
ponents. The set of real numbers defined by the condition 0 < |x| < 1 has two
path-connected components (one containing positive numbers; the other, negative
numbers), while the set of complex numbers defined by the same condition is path-
connected. The properties preserved by homeomorphisms are called topological
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properties. Thus, for example, the property of path-connectedness is topological,
as is the number of path-connected components.

Let M and N be metric spaces (let us denote their respective metrics by r and r ′).
A mapping f : M → N is called an isometry if it is bijective and preserves distances
between points, that is,

r(x1, x2) = r ′(f (x1), f (x2)
)

(8)

for every pair of points x1, x2 ∈ M . From the relationship (8), it follows automati-
cally that an isometry is an embedding. Indeed, if there existed points x1 �= x2 in the
set M for which the equation f (x1) = f (x2) were satisfied, then from condition 1
in the definition of a metric space, the left-hand side of (8) would be different from
zero, while the right-hand side would be equal to zero. Therefore, the requirement
of a bijective mapping is here reduced to the condition that the image of f (M)

coincide with all of the set N .
Metric spaces M and N are called isometric or metrically equivalent if there ex-

ists an isometry f : M → N . It is easy to see that an isometry is a homeomorphism
and generalizes the notion of the motion of a rigid body in space, whereby we can-
not arbitrarily deform the sets M and N into one another as if they were made of
rubber (without tearing and gluing). We can only treat them as if they were rigid
or made of flexible, but not compressible or stretchable, materials (for example, an
isometry of a piece of paper is obtained by bending it or rolling it up).

In the plane or in space with distance determined by the familiar methods of el-
ementary geometry, examples of isometries are parallel translations, rotations, and
symmetry transformations. Thus, for example, two triangles in the plane are iso-
metric if and only if they are “equal” (that is, congruent in the sense defined in
courses in school geometry, namely equality of sides and angles), and two ellipses
are isometric if and only if they have equal major and minor axes.

In conclusion, we observe that in the definition of homeomorphism, path-
connectedness, and path-connected component, the notion of metric played only
an auxiliary role. We used it to define the notion of convergence of a sequence of
points, so that we could speak of continuity of a mapping and thereby introduce
concepts that depend on this notion. It is convergence that is the basic topological
notion. It can be defined by various metrics, and it can also be defined in another
way, as is usually done in topology.



Chapter 1
Linear Equations

1.1 Linear Equations and Functions

In this chapter, we will be studying systems of equations of degree one. We shall
let the number of equations and number of unknowns be arbitrary. We begin by
choosing suitable notation. Since the number of unknowns can be arbitrarily large,
it will not suffice to use the twenty-six letters of the alphabet: x, y, . . . , z, and so on.
Therefore, we shall use a single letter to designate all the unknowns and distinguish
among them with an index, or subscript: x1, x2, . . . , xn, where n is the number of un-
knowns. The coefficients of our equations will be notated using the same principle,
and a single equation of the first degree will be written thus:

a1x1 + a2x2 + · · · + anxn = b. (1.1)

A first-degree equation is also called a linear equation.
We shall use the same principle to distinguish among the various equations. But

since we have already used one index for designating the coefficients of the un-
knowns, we introduce a second index. We shall denote the coefficient of xk in the
ith equation by aik . To the right side of the ith equation we attach the symbol bi .
Therefore, the ith equation is written

ai1x1 + ai2x2 + · · · + ainxn = bi, (1.2)

and a system of m equations in n unknowns will look like this:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
am1x1 + am2x2 + · · · + amnxn = bm.

(1.3)

The numbers b1, . . . , bm are called the constant terms or just constants of the system
(1.3). It will sometimes be convenient to focus our attention on the coefficients of
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the unknowns in system (1.3), and then we shall use the following tableau:
⎛

⎜⎜⎜
⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎞

⎟⎟⎟
⎠

, (1.4)

with m rows and n columns. Such a rectangular array of numbers is called an m×n

matrix or a matrix of type (m,n), and the numbers aij are called the elements of
the matrix. If m = n, then the matrix is an n × n square matrix. In this case, the
elements a11, a22, . . . , ann, each located in a row and column with the same index,
form the matrix’s main diagonal.

The matrix (1.4), whose elements are the coefficients of the unknowns of system
(1.3), is called the matrix associated with the system. Along with the matrix (1.4), it
is frequently necessary to consider the matrix that includes the constant terms:

⎛

⎜⎜⎜
⎝

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm

⎞

⎟⎟⎟
⎠

. (1.5)

This matrix has one column more than matrix (1.4), and thus it is an m × (n + 1)

matrix. Matrix (1.5) is called the augmented matrix of the system (1.3).
Let us consider in greater detail the left-hand side of equation (1.1). Here we

are usually talking about trying to find specific values of the unknowns x1, . . . , xn

that satisfy the relationship (1.1). But it is also possible to consider the expression
a1x1 + a2x2 + · · · + anxn from another point of view. We can substitute arbitrary
numbers

x1 = c1, x2 = c2, . . . , xn = cn, (1.6)

for the unknowns x1, x2, . . . , xn in the expression, each time obtaining as a result a
certain number

a1c1 + a2c2 + · · · + ancn. (1.7)

From this point of view, we are dealing with a certain type of function. In the given
situation, the initial element to which we are associating something is the set of
values (1.6), which is determined simply by the set of numbers (c1, c2, . . . , cn). We
shall call such a set of numbers a row of length n. It is the same as a 1 × n matrix.
We associate the expression (1.7), which is a number, with the row (c1, c2, . . . , cn).
Then employing the notation of page xiii, we obtain a function on the set M with
values in N , where M is the set of all rows of length n, and N is the set of all
numbers.

Definition 1.1 A function F on the set of all rows of length n with values in the set
of all numbers is said to be linear if there exist numbers a1, a2, . . . , an such that F

associates to each row (c1, c2, . . . , cn) the number (1.7).
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We shall proceed to denote a row by a single boldface italic letter, such as c,
and shall associate with it a number, F(c), via the linear function F . Thus if c =
(c1, c2, . . . , cn), then F(c) = a1c1 + a2c2 + · · · + ancn.

In the case n = 1, a linear function coincides with the well-known concept of
direct proportionality, which will be familiar to the reader from secondary-school
mathematics. Thus the notion of linear function is a natural generalization of direct
proportionality. To emphasize this analogy, we shall define some operations on rows
of length n in analogy to arithmetic operations on numbers.

Definition 1.2 Let c and d be rows of a fixed length n, that is,

c = (c1, c2, . . . , cn), d = (d1, d2, . . . , dn).

Their sum is the row (c1 + d1, c2 + d2, . . . , cn + dn), denoted by c + d . The product
of row c and the number p is the row (pc1,pc2, . . . , pcn), denoted by pc.

Theorem 1.3 A function F on the set of rows of length n is linear if and only if it
possesses the following properties:

F(c + d) = F(c) + F(d), (1.8)

F(pc) = pF(c), (1.9)

for all rows c,d and all numbers p.

Proof Properties (1.8) and (1.9) are the direct analogue of the well-known condi-
tions for direct proportionality.

The proof of properties (1.8) and (1.9) is completely obvious. Let the linear
function F associate to each row c = (c1, c2, . . . , cn) the number (1.7). By the
above definition, the sum of rows c = (c1, . . . , cn) and d = (d1, . . . , dn) is the row
c + d = (c1 + d1, . . . , cn + dn), and it follows that

F(c + d) = a1(c1 + d1) + · · · + an(cn + dn)

= (a1c1 + a1d1) + · · · + (ancn + andn)

= (a1c1 + · · · + ancn) + (a1d1 + · · · + andn)

= F(c) + F(d),

which is equation (1.8). In exactly the same way, we obtain

F(pc) = a1(pc1) + · · · + an(pcn) = p(a1c1 + · · · + ancn) = pF(c).

Let us now prove the reverse assertion: any function F on the set of rows of length
n with numerical values satisfying properties (1.8) and (1.9) is linear. To show this,
let us consider the row ei in which every entry except the ith is equal to zero, while
the ith is equal to 1, that is, ei = (0, . . . ,1, . . . ,0), where the 1 is in the ith place.
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Let us set F(ei ) = ai and let us prove that for an arbitrary row c = (c1, . . . , cn), the
following equality is satisfied: F(c) = a1c1 + · · · + ancn. From that we will be able
to conclude that the function F is linear.

For this, let us convince ourselves that c = c1e1 + · · · + cnen. This is almost
obvious: let us consider what number is located at the ith place in the row c1e1 +
· · · + cnen. In any row ek with k �= i, there is a 0 in the ith place, and therefore, the
same is true for ckek , which means that in the row ciei , the element ci is located at
the ith place. As a result, in the complete sum c1e1 + · · · + cnen, there is ci at the
ith place. This is true for arbitrary i, which implies that the sum under consideration
coincides with the row c.

Now let us consider F(c). Using properties (1.8) and (1.9) n times, we obtain

F(c) = F(c1e1) + F(c2e2 + · · · + cnen) = c1F(e1) + F(c2e2 + · · · + cnen)

= a1c1 + F(c2e2 + · · · + cnen) = a1c1 + a2c2 + F(c3e3 + · · · + cnen)

= · · · = a1c1 + a2c2 + · · · + ancn,

as asserted. �

We shall soon convince ourselves of the usefulness of these properties of a linear
function. Let us define the operations on linear functions that we shall be meeting
in the sequel.

Definition 1.4 Let F and G be two linear functions on the set of rows of length N .
Their sum is the function F + G, on the same set, defined by the equality (F +
G)(c) = F(c) + G(c) for every row c. The product of the linear function F and the
number p is the function pF , defined by the relation (pF)(c) = p · F(c).

Using Theorem 1.3, we obtain that both F + G and pF are linear functions.
We return now to the system of linear equations (1.3). Clearly, it can be written

in the form
⎧
⎪⎨

⎪⎩

F1(x) = b1,

· · ·
Fm(x) = bm,

(1.10)

where F1(x), . . . ,Fm(x) are linear functions defined by the relationships

Fi(x) = ai1x1 + ai2x2 + · · · + ainxn.

A row c is called a solution of the system (1.10) if on substituting x by c, all the
equations are transformed into identities, that is, F1(c) = b1, . . . , Fm(c) = bm.

Pay attention to the word “if”! Not every system of equations has a solution. For
example, the system

{
x1 + x2 + · · · + x100 = 0,

x1 + x2 + · · · + x100 = 1,



1.1 Linear Equations and Functions 5

Fig. 1.1 The intersection of
two lines

of two equations in one hundred unknowns clearly cannot have any solution.

Definition 1.5 A system possessing at least one solution is said to be consistent,
while a system with no solutions is called inconsistent. If a system is consistent
and has only one solution, then it is said to be definite, and if it has more than one
solution, it is indefinite.

A definite system is also called uniquely determined, since it has precisely one
solution.

Definite systems of equations are encountered frequently, for instance when from
external considerations it is clear that there is only one solution. For example, sup-
pose we wish to find the unique point lying on the lines defined by the equations
x = y and x + y = 1; see Fig. 1.1. It is clear that these lines are not parallel and
therefore have exactly one point of intersection. This means that the system consist-
ing of the equations of these two lines is definite. It is easy to find its unique solution
by a simple calculation. To do so, one may substitute the condition y = x into the
second equation. This yields 2x = 1, that is, x = 1/2, and since y = x, we have also
y = 1/2.

The reader has almost certainly encountered indefinite systems in secondary
school, for example, the system

{
x − 2y = 1,

3x − 6y = 3.
(1.11)

It is obvious that the second equation is obtained by multiplying the first equation
by 3. Therefore, the system is satisfied by all x and y that satisfy the first equation.
From the first equation, we obtain 2y = x − 1, or equivalently, y = (x − 1)/2. We
can now choose an arbitrary value for x and obtain the corresponding value y =
(x − 1)/2. Our system thus has infinitely many solutions and is therefore indefinite.

We have now seen examples of the following types of systems of equations:

(a) having no solutions (inconsistent),
(b) having a unique solution (consistent and definite),
(c) having infinitely many solutions (for example, system (1.11)).

Let us show that these three cases are the only possibilities.
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Theorem 1.6 If a system of linear equations is consistent and indefinite, then it has
infinitely many solutions.

Proof By the hypothesis of the theorem, we have a system of linear equations that
is consistent and that contains more than one solution. This means that it has at
least two distinct solutions: c and d . We shall now construct an infinite number of
solutions.

To do so, we consider, for an arbitrary number p, the row r = pc+ (1−p)d . We
shall show first of all that the row r is also a solution. We suppose our system to be
written in the form (1.10). Then we must show that Fi(r) = bi for all i = 1, . . . ,m.
Using properties (1.8) and (1.9), we obtain

Fi(r) = Fi

(
pc + (1 − p)d

) = pFi(c) + (1 − p)Fi(d) = pbi + (1 − p)bi = bi,

since c and d are solutions of the system of equations (1.10), that is, Fi(c) =
Fi(d) = bi for all i = 1, . . . ,m.

It remains to verify that for different numbers p we obtain different solutions.
Then we will have shown that we have infinitely many of them. Let us suppose that
two different numbers p and p′ yield the same solution pc+ (1−p)d = p′c+ (1−
p′)d . We observe that we can operate on rows just as on numbers in that we can
move terms from one side of the equation to the other and remove a common factor
from the terms inside parentheses. This is justified because we defined operations
on rows in terms of operations on the numbers that constitute them. As a result, we
obtain the relation (p − p′)c = (p − p′)d . Since by assumption, p �= p′, we can
cancel the factor p − p′. On doing so, we obtain c = d , but by hypothesis, c and d

were distinct solutions. From this contradiction, we conclude that every choice of p

yields a distinct solution. �

1.2 Gaussian Elimination

Our goal now is to demonstrate a method of determining to which of the three types
mentioned in the previous section a given system of linear equations belongs, that is,
whether it is consistent, and if so, whether it is definite. If it is consistent and definite,
then we would like to find its unique solution, and if it is consistent and indefinite,
then we want to write down its solutions in some useful form. There exists a simple
method that is effective in each concrete situation. It is called Gaussian elimination,
or Gauss’s method, and we now present it. We are going to be dealing here with
proof by induction. That is, beginning with the simplest case, with m = 1 equations,
we then move on to the case m = 2, and so on, so that in considering the general
case of a system of m linear equations, we shall assume that we have proved the
result for systems with fewer than m equations.

The method of Gaussian elimination is based on the idea of replacing the given
system of linear equations with another system having the same solutions. Let us
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consider along with system (1.10) another system of linear equations in the same
number of unknowns:

⎧
⎪⎨

⎪⎩

G1(x) = f1,

· · ·
Gl(x) = fl,

(1.12)

where G1(x), . . . ,Gl(x) are some other linear functions in n unknowns. The system
(1.12) is said to be equivalent to system (1.10) if both systems have exactly the same
solutions, that is, any solution of system (1.10) is also a solution of system (1.12),
and vice versa.

The idea behind Gaussian elimination is to use certain elementary row operations
on the system that replace a system with an equivalent but simpler system for which
the answers to the questions about solutions posed above are obvious.

Definition 1.7 An elementary row operation of type I on system (1.3) or (1.10)
consists in the transposition of two rows. So that there will be no uncertainty about
what we mean, let us be precise: under this row operation, all the equations of the
system other then the ith and the kth are left unchanged, while the ith and kth
exchange places.

Thus the number of elementary row operations of type I is equal to the number
of pairs i, k, i �= k, that is, the number of combinations of m things taken 2 at a time.

Definition 1.8 An elementary row operation of type II consists in the replacement
of the given system by another in which all equations except the ith remain as be-
fore, and to the ith equation is added c times the kth equation. As a result, the ith
equation in system (1.3) takes the form

(ai1 + cak1)x1 + (ai2 + cak2)x2 + · · · + (ain + cakn)xn = bi + cbk. (1.13)

An elementary row operation of type II depends on the choice of the indices i

and k and the number c, and so there are infinitely many row operations of this type.

Theorem 1.9 Application of an elementary row operation of type I or II results in
a system that is equivalent to the original one.

Proof The assertion is completely obvious in the case of an elementary row oper-
ation of type I: whatever solutions a system may have cannot depend on the nu-
meration of its equations (that is, on the ordering of the system (1.3) or (1.10)). We
could even not number the equations at all, but write each of them, for example, on
a separate piece of paper.

In the case of an elementary row operation of type II, the assertion is also fairly
obvious. Any solution c = (c1, . . . , cn) of the first system after the substitution satis-
fies all the equations obtained under this elementary row operation except possibly
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the ith, simply because they are identical to the equations of the original system.
It remains to settle the question for the ith equation. Since c was a solution of the
original system, we have the following equalities:

{
ai1c1 + ai2c2 + · · · + aincn = bi,

ak1c1 + ak2c2 + · · · + akncn = bk.

After adding c times the second of these equations to the first, we obtain equality
(1.13) for x1 = c1, . . . , xn = cn. This means that c satisfies the ith equation of the
new system; that is, c is a solution.

It remains to prove the reverse assertion, that any solution of the system obtained
by a row operation of type II is a solution of the original system. To this end, we
observe that adding −c times the kth equation to equation (1.13) yields the ith
equation of the original system. That is, the original system is obtained from the
new system by an elementary row operation of type II using the factor −c. Thus,
the previous line of argument shows that any solution of the new system obtained by
an elementary row operation of type II is also a solution of the original system. �

Let us now consider Gauss’s elimination method. As our first operation, let us
perform on system (1.3) an elementary row operation of type I by transposing the
first equation and any other in which x1 appears with a coefficient different from 0.
If the first equation possesses this property, then no such transposition is necessary.
Now, it can happen that x1 appears in all the equations with coefficient 0 (that is, x1

does not appear at all in the equations). In that case, we can change the numbering
of the unknowns and designate by x1 some unknown that appears in some equation
with nonzero coefficient. After this completely elementary transformation, we will
have obtained that a11 �= 0. For completeness, we should examine the extreme case
in which all unknowns appear in all equations with zero coefficients. But in that
case, the situation is trivial: all the equations take the form 0 = bi . If all the bi are 0,
then we have the identities 0 = 0, which are satisfied for all values assigned to xi ,
that is, the system is consistent and indeterminate. But if a single bi is not equal to
zero, then that ith equation is not satisfied for any values of the unknowns, and the
system is inconsistent.

Now let us perform a sequence of elementary row operations of type II, adding
to the second, third, and so on up to the mth equation the first equation multiplied
respectively by some numbers c2, c3, . . . , cm in order to make the coefficient of x1

in each of these equations equal to zero. It is clear that to do this, we must set
c2 = −a21a

−1
11 , c3 = −a31a

−1
11 , . . . , cm = −am1a

−1
11 , which is possible because we

have ensured by hypothesis that a11 �= 0. As a result, the unknown x1 appears in
none of the equations except the first. We have thereby obtained a system that can
be written in the following form:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a11x1 + · · · · · · · · · · · · + a1nxn = b1,

a′
22x2 + · · · + a′

2nxn = b′
2,

· · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · ·
a′
m2x2 + · · · + a′

mnxn = b′
m.

(1.14)

Since system (1.14) was obtained from the original system (1.3) by elementary row
operations, it follows from Theorem 1.3 that the two systems are equivalent, that
is, the solution of an arbitrary system (1.3) has been reduced to the solution of the
simpler system (1.14). That is precisely the idea behind the method of Gaussian
elimination. It in fact reduces the problem to the solution of a system of m − 1
equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a′
22x2 + · · · + a′

2nxn = b′
2,

· · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · ·
a′
m2x2 + · · · + a′

mnxn = b′
m.

(1.15)

Now if system (1.15) is inconsistent, then clearly, the larger system (1.14) is also
inconsistent. If system (1.15) is consistent and we know the solution, then we can
obtain all solutions of system (1.14). Namely, if x2 = c2, . . . , xn = cn is any solution
of system (1.15), then we have only to substitute these values into the first equation
of the system (1.14). As a result, the first equation of system (1.14) takes the form

a11x1 + a12c2 + · · · + a1ncn = b1, (1.16)

and we have one linear equation for the remaining unknown x1, which can be solved
by the well-known formula

x1 = a−1
11 (b1 − a12c2 − · · · − a1ncn),

which can be accomplished because a11 �= 0. This reasoning is applicable in partic-
ular to the case m = 1 (if we compare Gauss’s method with the method of proof by
induction, then this gives us the base case of the induction).

Thus the method of Gaussian elimination reduces the study of an arbitrary system
of m equations in n unknowns to that of a system of m − 1 equations in n − 1
unknowns. We shall illustrate this after proving several general theorems about such
systems.

Theorem 1.10 If the number of unknowns in a system of equations is greater than
the number of equations, then the system is either inconsistent or indefinite.

In other words, by Theorem 1.6, we know that the number of solutions of an
arbitrary system of linear equations is 0, 1, or infinity. If the number of unknowns
in a system is greater than the number of equations, then Theorem 1.8 asserts that
the only possible number of solutions is 0 or infinity.
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Proof of Theorem 1.10 We shall prove the theorem by induction on the number m

of equations in the system. Let us begin by considering the case m = 1, in which
case we have a single equation:

a1x1 + a2x2 + · · · + anxn = b1. (1.17)

We have n > 1 by hypothesis, and if even one ai is nonzero, then we can number
the unknowns in such a way that a1 �= 0. We then have the case of equation (1.16).
We saw that in this case, the system was consistent and indefinite.

But there remains one case to consider, that in which ai = 0 for all i = 1, . . . , n.
If in this case b1 �= 0, then clearly we have an inconsistent “system” (consisting of
a single inconsistent equation). If, however, b1 = 0, then a solution consists of an
arbitrary sequence of numbers x1 = c1, x2 = c2, . . . , xn = cn, that is, the “system”
(consisting of the equation 0 = 0) is indefinite.

Now let us consider the case of m > 1 equations. We employ the method of
Gaussian elimination. That is, after writing down our system in the form (1.3), we
transform it into the equivalent system (1.14). The number of unknowns in the sys-
tem (1.15) is n − 1, and therefore larger than the number of equations m − 1, since
by the hypothesis of the theorem, n > m. This means that the hypothesis of the
theorem is satisfied for system (1.15), and by induction, we may conclude that the
theorem is valid for this system. If system (1.15) is inconsistent, then all the more
so is the larger system (1.14). If it is indefinite, that is, has more than one solution,
then in the initial system there will be more than one solution; that is, system (1.3)
will be indefinite. �

Let us now focus attention on an important special case of Theorem 1.10. A sys-
tem of linear equations is said to be homogeneous if all the constant terms are equal
to zero, that is, in (1.3), we have b1 = · · · = bm = 0. A homogeneous system is al-
ways consistent: it has the obvious solution x1 = · · · = xn = 0. Such a solution is
called a null solution. We obtain the following corollary to Theorem 1.10.

Corollary 1.11 If in a homogeneous system, the number of unknowns is greater
than the number of equations, then the system has a solution that is different from
the null solution.

If we denote (as we have been doing) the number of unknowns by n and the
number of equations by m, then we have considered the case n > m. Theorem 1.10
asserts that for n > m, a system of linear equations cannot have a unique solution.
Now we shall move on to consider the case n = m. We have the following rather
surprising result.

Theorem 1.12 If in a system of linear equations, the number of unknowns is equal
to the number of equations, then the property of having a unique solution depends
only on the values of the coefficients and not on the values of the constant terms.

Proof The result is easily obtained by Gaussian elimination. Let the system be writ-
ten in the form (1.3), with n = m. Let us deal separately with the case that all the co-



1.2 Gaussian Elimination 11

efficients aik are zero (in all equations), in which case the system cannot be uniquely
determined regardless of the constants bi . Indeed, if even a single bi is not equal to
zero, then the ith equation gives an inconsistent equation; and if all the bi are zero,
then every choice of values for the xi gives a solution. That is, the system is indefi-
nite.

Let us prove Theorem 1.12 by induction on the number of equations (m = n). We
have already considered the case in which all the coefficients aik are equal to zero.
We may therefore assume that among the coefficients aik , some are nonzero and
the system can be written in the equivalent form (1.14). But the solutions to (1.14)
are completely determined by system (1.15). In system (1.15), again the number of
equations is equal to the number of unknowns (both equal to m − 1). Therefore,
reasoning by induction, we may assume that the theorem has been proved for this
system. However, we have seen that consistency or definiteness of system (1.14)
was the same as that for system (1.15). In conclusion, it remains to observe that the
coefficients a′

ik of system (1.15) are obtained from the coefficients of system (1.3)
by the formulas

a′
2k = a2k − a21

a11
a1k, a′

3k = a3k − a31

a11
a1k, . . . , a′

mk = amk − am1

a11
a1k.

Thus the question of a unique solution is determined by the coefficients of the orig-
inal system (1.3). �

Theorem 1.12 can be reformulated as follows: if the number of equations is equal
to the number of unknowns and the system has a unique solution for certain values
of the constant terms bi , then it has a unique solution for all possible values of the
constant terms. In particular, as a choice of these “certain” values we may take all
the constants to be zero. Then we obtain a system with the same coefficients for the
unknowns as in system (1.3), but now the system is homogeneous. Such a system is
called the homogeneous system associated with system (1.3). We see, then, that if
the number of equations is equal to the number of unknowns, then the system has
a unique solution if and only if its associated system has a unique solution. Since
a homogeneous system always has the null solution, its having a unique solution is
equivalent to the absence of nonnull solutions, and we obtain the following result.

Corollary 1.13 If in a system of linear equations, the number of equations is equal
to the number of unknowns, then it has a unique solution if and only if its associated
homogeneous system has no solutions other than the null solution.

This result is unexpected, since from the absence of a solution different from the
null solution, it derives the existence and uniqueness of the solution to a different
system (with different constant terms). In functional analysis, this result is called
the Fredholm alternative.1

1More precisely, the Fredholm alternative comprises several assertions, one of which is analogous
to the one established above.



12 1 Linear Equations

In order to focus on the theory behind the Gaussian method, we emphasized its
“inductive” character: it reduces the study of a system of linear equations to an
analogous system, but with fewer equations and unknowns. It is understood that in
concrete examples, we must repeat the process, using this latter system and contin-
uing until the process stops (that is, until it can no longer be applied). Now let us
make clear for ourselves the form that the resulting system will take.

When we transform system (1.3) into the equivalent system (1.14), it can happen
that not all the unknowns x2, . . . , xn enter into the corresponding system (1.15), that
is, some of the unknowns may have zero coefficients in all the equations. Moreover,
it was not easy to surmise this from the original system (1.3). Let us denote by k

the first index of the unknown that appears with coefficients different from zero in at
least one equation of system (1.15). It is clear that k > 1. We can now apply the same
operations to this system. As a result, we obtain the following equivalent system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11x1 + · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · + a1nxn = b1,

a′
2kxk + · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · + a′

2nxn = b′
2,

a′′
3lxl + · · · · · · · · · · · · · · · · · · + a′′

3nxn = b′′
3 ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
a′′
mlxl + · · · · · · · · · · · · · · · · · + a′′

mnxn = b′′
m.

Here we have already chosen l > k such that in the system obtained by removing
the first two equations, the unknown xl appears with a coefficient different from
zero in at least one equation. In this case we will have a11 �= 0, a′

2k �= 0, a′
3l �= 0, and

l > k > 1.
We shall repeat this process as long as possible. When shall we be forced to stop?

We stop after having applied the elementary operations up to the point (let us say
the r th equation in which xs is the first unknown with nonzero coefficient) at which
we have reduced to zero all the coefficients of all subsequent unknowns in all the
remaining equations, that is, from the (s + 1)st to the nth. The system then has the
following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11x1 + · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · + a1nxn = b1,

a2kxk + · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · + a2nxn = b2,

a3lxl + · · · · · · · · · · · · · · · · · · · · · · · · + a3nxn = b3,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

arsxs + · · · · · · · · · + arnxn = br ,

0 = br+1,

· · · · ·
0 = bm.

(1.18)

Here 1 < k < l < · · · < s.
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It can happen that r = m, and therefore, there will be no equations of the form
0 = bi in system (1.18). But if r < m, then it can happen that br+1 = 0, . . . , bm = 0,
and it can finally be the case that one of the numbers br+1, . . . , bm is different from
zero.

Definition 1.14 System (1.18) is said to be in (row) echelon form. The same termi-
nology is applied to the matrix of such a system.

Theorem 1.15 Every system of linear equations is equivalent to a system in echelon
form (1.18).

Proof Since we transformed the initial system into the form (1.18) using a sequence
of elementary row operations, it follows from Theorem 1.9 that system (1.18) is
equivalent to the initial system. �

Since any system of the form (1.3) is equivalent to system (1.18) in echelon
form, questions about consistency and definiteness of systems can be answered by
studying systems in echelon form.

Let us begin with the question of consistency. It is clear that if system (1.18)
contains equations 0 = bk with bk �= 0, then such a system is inconsistent, since the
equality 0 = bk cannot be satisfied by any values of the unknowns. Let us show that
if there are no such equations in system (1.18), then the system is consistent. Thus
we now assume that in system (1.18), the last m − r equations have been converted
into the identities 0 ≡ 0.

Let us call the unknowns x1, xk, xl, . . . , xs that begin the first, second, third, . . . ,
r th equations of system (1.18) principal, and the rest of the unknowns (if there are
any) we shall call free. Since every equation in system (1.3) begins with its own
principal unknown, the number of principal unknowns is equal to r . We recall that
we have assumed br+1 = · · · = bm = 0.

Let us assign arbitrary values to the free unknowns and substitute them in the
equations of system (1.18). Since the r th equation contains only one principal un-
known xs , and that with the coefficient ars , which is different from zero, we obtain
for xs one equation in one unknown, which has a unique solution. Substituting this
solution for xs into the equation above it, we obtain for that equation’s principal
unknown again one equation in one unknown, which also has a unique solution.
Continuing in this way, moving from bottom to top in system (1.18), we see that the
values of the principal unknowns are determined uniquely for an arbitrary assign-
ment of the free unknowns. We have thus proved the following theorem.

Theorem 1.16 For a system of linear equations to be consistent, it is necessary and
sufficient, after it has been brought into echelon form, that there be no equations of
the form 0 = bk with bk �= 0. If this condition is satisfied, then it is possible to assign
arbitrary values to the free unknowns, while the values of the principal unknowns—
for each given set of values for the free unknowns—are determined uniquely from
the system.
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Let us now explain when a system will be definite on the assumption that the
condition of consistency that we have been investigating is satisfied. This question
is easily answered on the basis of Theorem 1.16. Indeed, if there are free unknowns
in system (1.18), then the system is certainly not definite, since we may give an arbi-
trary assignment to each of the free unknowns, and by Theorem 1.16, the assignment
of principal unknowns is then determined by the system. On the other hand, if there
are no free unknowns, then all the unknowns are principal. By Theorem 1.16, they
are uniquely determined by the system, which means that the system is definite.
Consequently, a necessary and sufficient condition for definiteness is that there be
no free unknowns in system (1.18). This, in turn, is equivalent to all unknowns in the
system being principal. But that, clearly, is equivalent to the equality r = n, since r

is the number of principal unknowns and n is the total number of unknowns. Thus
we have proved the following assertion.

Theorem 1.17 For a consistent system (1.3) to be definite, it is necessary and suffi-
cient that for system (1.18), after it has been brought into echelon form, we have the
equality r = n.

Remark 1.18 Any system of n equations in n unknowns (that is, with m = n)
brought into echelon form can be written in the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 + · · · · · · · · · · · · · · · · · · · · · + a1nxn = b1,

a22x2 + · · · · · · · · · · · · · · · · · · · · · + a2nxn = b2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·

annxn = bn

(1.19)

(however, not every system of the form (1.19) is in echelon form, since some of the
aii can be zero). Indeed, the form (1.19) indicates that in the system, the kth equation
does not depend on the unknowns xi for i < k, and this condition is automatically
satisfied for a system in echelon form.

A system in the form (1.19) is said to be in upper triangular form. The same
terminology is applied to the matrix of system (1.19).

From this observation, we can state Theorem 1.15 in a different form for the
case m = n. The condition r = n means that all the unknowns x1, x2, . . . , xn are
principal, and that means that in system (1.19), the coefficients satisfy a11 �= 0, . . . ,
ann �= 0. This proves the following corollary.

Corollary 1.19 System (1.3) in the case m = n is consistent and determinate if and
only if after being brought into echelon form, we obtain the upper triangular system
(1.19) with coefficients a11 �= 0, a22 �= 0, . . . , ann �= 0.

We see that this condition is independent of the constant terms, and we thereby
obtain another proof of Theorem 1.12 (though it is based on the same idea of the
method of Gaussian elimination).
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Fig. 1.2 Graph of a
polynomial passing through a
given set of points

1.3 Examples*

We shall now give some examples of applications of the Gaussian method and with
its aid obtain some new results for the investigation of concrete problems.

Example 1.20 The expression

f = a0 + a1x + a2x
2 + · · · + anx

n,

where the ai are certain numbers, is called a polynomial in the unknown x. If
an �= 0, then the number n is called the degree of the polynomial f . If we re-
place the unknown x by some numerical value x = c, we obtain the number
a0 + a1c + a2c

2 + · · · + anc
n, which is called the value of the polynomial at x = c;

it is denoted by f (c).
The following type of problem is frequently encountered: We are given two col-

lections of numbers c1, . . . , cr and k1, . . . , kr such that c1, . . . , cr are distinct. Is it
possible to find a polynomial f such that f (ci) = ki for i = 1, . . . , r? The pro-
cess of constructing such a polynomial is called interpolation. This type of problem
is encountered when values of a certain variable are measured experimentally (for
example, temperature) at different moments of time c1, . . . , cr . If such an interpo-
lation is possible, then the polynomial thus obtained provides a single formula for
temperature that coincides with the experimentally measured values.

We can provide a more graphic depiction of the problem of interpolation by
stating that we are seeking a polynomial f (x) of degree n such that the graph of
the function y = f (x) passes through the given points (ci, ki) in the Cartesian plane
for i = 1, . . . , r (see Fig. 1.2).

Let us write down the conditions of the problem explicitly:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a0 + a1c1 + · · · + anc
n
1 = k1,

a0 + a1c2 + · · · + anc
n
2 = k2,

· · · · · · · · · · · · · · · · · · · · · · · · ·
a0 + a1cr + · · · + anc

n
r = kr .

(1.20)

For the desired polynomial f we obtain relationship (1.20), which is a system of lin-
ear equations. The numbers a0, . . . , an are the unknowns. The number of unknowns
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is n + 1 (the numeration begins here not with the usual a1, but with a0). The num-
bers 1 and ck

i are the coefficients of the unknowns, and k1, . . . , kr are the constant
terms.

If r = n + 1, then we are in the situation of Theorem 1.12 and its corollary.
Therefore, for r = n+1, the interpolation problem has a solution, and a unique one,
if and only if the associated system (1.20) has only the null solution. This associated
system can be written in the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (c1) = 0,

f (c2) = 0,

· · ·
f (cr) = 0.

(1.21)

A number c for which f (c) = 0 is called a root of the polynomial f . A simple
theorem of algebra (a corollary of what is known as Bézout’s theorem) states that
a polynomial cannot have more distinct roots than its degree (except in the case
that all the ai are equal to zero, in which case the degree is undefined). This means
(if the numbers ci are distinct, which is a natural assumption) that for r = n + 1,
equations (1.21) can be satisfied only if all the ai are zero. We obtain that under these
conditions, system (1.20) (that is, the interpolation problem) has a solution, and the
solution is unique. We note that it is not particularly difficult to obtain an explicit
formula for the coefficients of the polynomial f . This will be done in Sects. 2.4
and 2.5.

The following example is somewhat more difficult.

Example 1.21 Many questions in physics (such as the distribution of heat in a solid
body if a known temperature is maintained on its surface, or the distribution of elec-
tric charge on a body if a known charge distribution is maintained on its surface, and
so on) lead to a single differential equation, called the Laplace equation. It is a partial
differential equation, which we do not need to describe here. It suffices to mention
one consequence, called the mean value property, according to which the value of
the unknown quantity (satisfying the Laplace equation) is equal at every point to
the arithmetic mean of its values at “nearby” points. We need not make precise here
just what we mean by “nearby points” (suffice it to say that there are infinitely many
of them, and this property is defined in terms of the integral). We will, however,
present a method for an approximate solution of the Laplace equation. Solely for
the purpose of simplifying the presentation, we shall consider the two-dimensional
case instead of the three-dimensional situation described above. That is, instead of
a three-dimensional body and its surface, we shall examine a two-dimensional fig-
ure and its boundary; see Fig. 1.3(a). To construct an approximate solution in the
plane, we form a lattice of identical small squares (the smaller the squares, the bet-
ter the approximation), and the contour of the figure will be replaced by the closest
approximation to it consisting of sides of the small squares; see Fig. 1.3(b).
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Fig. 1.3 Constructing an
approximate solution to the
Laplace equation

Fig. 1.4 The “nearby
vertices” to a are the points
b, c, d, e

We examine the values of the unknown quantity (temperature, charge, etc.) only
at the vertices of the small squares. Now the concept of “nearby points” acquires
an unambiguous meaning: each vertex of a square of the lattice has exactly four
nearby points, namely the “nearby” vertices. For example, in Fig. 1.4, the point a

has nearby vertices b, c, d, e.
We consider as given some quantities xa for all the vertices a of the squares inter-

secting the boundary (the thick straight lines in Fig. 1.3(b)), and we seek such values
for the vertices of the squares located inside this contour. Now an approximate ana-
logue of the mean value property for the point a of Fig. 1.4 is the relationship

xa = xb + xc + xd + xe

4
. (1.22)

There are thus as many unknowns as there are vertices inside the contour, and to
each such vertex there corresponds an equation of type (1.22). This means that we
have a system of linear equations in which the number of equations is equal to the
number of unknowns. If one of the vertices b, c, d, e is located on the contour, then
the corresponding quantity, one of xb, xc, xd, xe , must be assigned, and equation
(1.22) in this case is inhomogeneous. An assertion from the theory of linear equa-
tions that we shall prove is that regardless of how we assign values on the boundary
of the figure, the associated system of linear equations always has a unique solution.

We clearly find ourselves in the situation of Corollary 1.13, and so it suffices to
verify that the homogeneous system associated with ours has only the null solution.
The associated homogeneous system corresponds to the case in which all the values
on the boundary of the figure are equal to zero. Let us suppose that it has a solution
x1, . . . , xN (where N is the number of equations) that is not the null solution. If
among the numbers xi there is at least one that is positive, then let us denote by xa

the largest such number. Then equation (1.22) (in which any of xb, xc, xd, xe will
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Fig. 1.5 Simple contour for
an approximate solution of
the Laplace equation

Fig. 1.6 Electrical network

equal zero if the associated point b, c, d, e lies on the contour) can be satisfied only
if xb = xc = xd = xe = xa , since the arithmetic mean does not exceed the maximum
of the numbers.

We can reason analogously for the point b, and we find that the value of each
nearby point is equal to xa . By continuing to move to the right, we shall eventually
reach a point p on the contour, for which we obtain xp = xa > 0. But that contradicts
the assumption that the value of xp for the point p on the contour is equal to zero.
For example, for the simple contour of Fig. 1.5, we obtain the equalities xb = xa ,
xc = xb = xa , xd = xa , xe = xa , xp = xa , the last of which is impossible, since
xa > 0, xp = 0. If all the numbers xi in our solution are nonpositive but not all
equal to zero, then we can repeat the above argument with xa taken as the smallest
of them (the largest of the numbers in absolute value).

The above arguments can be applied to proving the existence of a solution to the
Laplace equation (by passage to the limit).2

Example 1.22 This example concerns electrical networks. Such a network (see
Fig. 1.6) consists of conductors, each of which we shall consider to be uniform,
connected together at points called nodes. At one point in the network, a direct cur-

2Such a proof was given by Lyusternik, and both the proof and the argument we have given here
are taken from I.G. Petrovsky’s book Lectures on Partial Differential Equations, Dover Books on
Mathematics, 1992.
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Fig. 1.7 Decomposable
network

rent i enters, while at another point, current j exits. A uniform current flows due to
the homogeneity of each conductor.

We shall designate the conductors by the Greek letters α,β, γ, . . . , and the
strength of the current in conductor α by iα . Knowing the current i, we would like
to find the currents iα, iβ, iγ , . . . for all the conductors in the network α,β, γ, . . . ,
and the current j . We shall denote the nodes of the network by a, b, c, . . . .

We need to make one additional refinement here. Since the current in a conductor
flows in a particular direction, it makes sense to indicate the direction with a sign.
This choice is arbitrary for each conductor, and we designate the direction by an
arrow. The nodes joined by a conductor are called its beginning and end, and the
arrow points from the beginning of the conductor to the end. The beginning of the
conductor α will be denoted by α′, and the end will be denoted by α′′. The current
iα will be considered positive if it flows in the direction of the arrow, and will be
considered negative otherwise. We shall say that the current iα flows out of node
a (flows into node a) if there is a conductor α with beginning (end) node a. For
example, in Fig. 1.6, the current iα flows out of a and flows into b; thus according
to our notation, α′ = a and α′′ = b.

We shall assume further that the network in question satisfies the following nat-
ural condition: Two arbitrary nodes a and b can be connected by some set of nodes
c1, . . . , cn in such a way that each of the pairs a, c1; c1, c2; . . . ; cn−1, cn; cn, b are
connected by a conductor. We shall call this property of the network connectedness.
A network not satisfying this condition can be decomposed into a number of subnet-
works each of whose nodes are not connected to any nodes of any other subnetwork
(Fig. 1.7). We may then consider each subnetwork individually.

A collection of nodes a1, . . . , an connecting conductors α1, . . . , αn such that con-
ductor α1 connects node a1 and a2, conductor α2 connects nodes a2 and a3, . . . ,
conductor αn−1 connects nodes an−1 and an, and conductor αn connects nodes an

and a1 is called a closed circuit. For example, in Fig. 1.6, it is possible to select as
a closed circuit nodes a, b, c, d,h and conductors α,β, γ, ξ, η, or else, for example,
nodes e, g,h, d and conductors μ,ϑ, ξ, δ. The distribution of current in the closed
circuit is determined by two well-known laws of physics: Kirchhoff’s laws.

Kirchhoff’s first law applies to each node of a network and asserts that the sum
of the currents flowing into a node is equal to the sum of the currents flowing out it.
More precisely, the sum of the currents in the conductors that have node a at their
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end is equal to the sum of the currents in the conductors for which node a is the
beginning. This can be expressed by the following formula:

∑

α′=a

iα −
∑

β ′′=a

iβ = 0 (1.23)

for every node a. For example, in Fig. 1.6, for the node e we obtain the equation

iε − iδ − iλ − iμ = 0.

Kirchhoff’s second law applies to an arbitrary closed circuit consisting of con-
ductors in a network. Namely, if the conductors αl form a circuit C, then with a
direction of such a circuit having been assigned, the law is expressed by the equa-
tion

∑

αl∈C

±pαl
iαl

= 0, (1.24)

where pαl
is the resistance of the conductor αl (which is always a positive num-

ber, since the conductors are homogeneous), and where the plus sign is taken if the
selected direction of the conductor (indicated by an arrow) coincides with the direc-
tion of the current in the circuit, and the minus sign is taken if it is opposite to the
direction of the current. For example, for the closed circuit C with nodes e, g,h, d

as shown in Fig. 1.6 and with the indicated direction of the circuit, Kirchhoff’s law
gives the equation

−pμiμ + pϑiϑ − pξ iξ + pδiδ = 0. (1.25)

We thereby obtain a system of linear equations in which the unknowns are
iα, iβ, iγ , . . . and j . Such a system of equations is encountered in a number of prob-
lems, such as the allocation of loads in a transport network and the distribution of
water is a system of conduits.

Our goal is now to show that the system of equations thus obtained (for the given
network and currents i) has a unique solution.

First, we observe that the outflowing current j is equal to i. This is obvious from
physical considerations, but we must derive it from the equations of Kirchhoff’s
law. To this end, let us collect all equations (1.23) for Kirchhoff’s first law for all
nodes a of our network. How often do we encounter conductor α in the obtained
equation? We encounter it once when we examine the equation corresponding to the
node a = α′, and another time for a = α′′. Furthermore, the current iα enters into
the two equations with opposite signs, which means that they cancel. All that will
remain in the resulting equation is the current i (for the point into which the current
flows) and −j (for the point where the current flows out). This yields the equation
i − j = 0, that is, i = j .

Now let us note that not all the equations (1.24) corresponding to Kirchhoff’s
second law are independent. We shall call a closed circuit α1, . . . , αn a cell if ev-
ery pair of its nodes is connected only by a conductor from among α1, . . . , αn and
by no others. Every closed circuit can be decomposed into a number of cells. For
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Fig. 1.8 Circuits for the
proof of Euler’s theorem

example, in Fig. 1.6, the circuit C with nodes e, g,h, d and conductors μ,ϑ, ξ, δ

can be decomposed into two cells: one with nodes e, g,h and conductors μ,ϑ,λ,
and the other with nodes e,h, d and conductors λ, ξ, δ. In this case, equation (1.24)
corresponding to the circuit is the sum of the equations corresponding to the individ-
ual cells (with a proper choice of directions for the circuits). For example, equation
(1.25) for the circuit C with nodes e, g,h, d is the sum of equations

−pμiμ + pϑiϑ + pλiλ = 0, −pλiλ − pξ iξ + pδiδ = 0,

corresponding to the cells with nodes e, g,h and e,h, d .
Thus, we can restrict our attention to equations of the cells of the network. Let us

prove, then, that in the entire system of equations (1.23) and (1.24) corresponding
to Kirchhoff’s first and second laws, the number of equations will be equal to the
number of unknowns. We shall denote by Ncell, Ncond, and Nnode the numbers of
cells, conductors, and nodes of the network. The number of unknowns iα and j is
equal to Ncond + 1. Each cell and each node contributes one equation. This means
that the number of equations is equal to Ncell + Nnode, and we need to prove the
equality

Ncell + Nnode = Ncond + 1. (1.26)

This is a familiar equality. It comes from topology and is known as Euler’s theorem.
It is very easy to prove, as we shall now demonstrate.

Let us make the important observation that our network is located in the plane:
the conductors do not have to be straight line segments, but they are required to
be nonintersecting curves in the plane. We shall use induction on the number of
cells. Let us delete the “outer” side of one of the “external” cells (for example, side
(b, c, d) in Fig. 1.8(a)). In this case, the number of cells Ncell is reduced by 1.

If in the “deleted” side there were k conductors, then the number Ncond will de-
crease by k, while the number Nnode will decrease by k − 1. Altogether, the number
Ncell − Ncond + Nnode − 1 does not change. In this process, the property of con-
nectedness is not destroyed. Indeed, any two nodes of the initial network can be
connected by the sequence of nodes c1, . . . , cn. If even part of this sequence con-
sisted of vertices of the “deleted” sides of our cell, then we could replace them with
the sequence of nodes of its “nondeleted” sides.
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Fig. 1.9 Closed circuit
containing nodes x and t

This process reduces the proof to the case Ncell = 0, that is, to a network that
does not contain a closed circuit. We now must prove that for such a network,
Nnode − Ncond = 1. We now use induction on the number Ncond. Let us remove
any “external” conductor at least one end of which is not the end of another con-
ductor (for example, the conductor α in Fig. 1.8(b)). Then both numbers Ncond and
Nnode are reduced by 1, and the number Ncond −Nnode remains unchanged. We may
easily convince ourselves that in this case, the property of connectedness is again
preserved. As a result, we arrive at the case Ncond = 0 but Nnode > 0. Since the net-
work must be connected, we have Nnode = 1, and it is clear that we have the equality
Nnode − Ncond = 1.

We now note an important property of networks satisfying relationship (1.24)
that emerges from Kirchhoff’s second law (for given currents iα). With each node a

one can associate a number ra such that for an arbitrary conductor α beginning at a

and ending at b, the following equation is satisfied:

pαiα = ra − rb. (1.27)

To determine these numbers rα , we shall choose some node x and assign to it the
number rx arbitrarily. Then for each node y connected to x by some conductor α,
we set ry = rx − pαiα if x is at the beginning of α and y at the end, and ry =
rx + pαiα in the opposite case. Then in exactly the same way, we determine the
number rz for each node connected by a conductor to one of the examined nodes
x, y, etc. In view of the connectedness condition, we will eventually reach every
node t of our network, to which we will have assigned, say, the number rt . But it
is still necessary to show that this number rt is independent of the path by which
we arrive from x to t (that is, which point we chose as y, then as z, and so on). To
accomplish this, it suffices to note that a pair of distinct paths linking nodes x and
t forms a closed circuit (Fig. 1.9), and the relationship that we require follows from
Kirchhoff’s second law (equations (1.24)).

It is now easy to show that the system of linear equations (1.23) obtained from
Kirchhoff’s first law for all nodes and from Kirchhoff’s second law (1.24) for all
cells has a unique solution. To do so, it suffices, as we know, to show that the asso-
ciated homogeneous system has only the null solution. This homogeneous system
is obtained for i = j = 0.

Of course, “physically,” it is completely obvious that if we put no current into the
network, then there will be no current in its conductors, but we must prove that this
follows in particular from Kirchhoff’s laws.



1.3 Examples* 23

To this end, consider the sum
∑

α pαi2
α , where the sum is over all conductors

of our network. Let us break the term pαi2
α into two factors: pαi2

α = (pαiα) · iα .
We replace the first factor by ra − rb on the basis of relation (1.27), where a is
the beginning and b the end of conductor α. We obtain the sum

∑
α(ra − rb)iα ,

and we collect the terms in which the first factor ra or −rb is associated with a
particular node c. Then we can pull the number rc outside the parentheses, and
inside will remain the sum

∑
α′=c iα −∑

β ′′=c iβ , which is equal to zero on account

of Kirchhoff’s first law (1.23). We finally obtain that
∑

α pαi2
α = 0, and since the

resistance pα is positive, all the currents iα must be equal to zero.
To conclude, we remark that networks appearing in mathematics are called

graphs, and “conductors” become the edges of the graph. In the case that every
edge of a graph is assigned a direction (provided with arrows, for example), the
graph is then said to be directed. This theorem holds not for arbitrary graphs, but
only for those, like the networks that we have considered in this example, that can
be drawn in the plane without intersections of edges (for which we omit a precise
definition). Such graphs are called planar.



Chapter 2
Matrices and Determinants

2.1 Determinants of Orders 2 and 3

We begin by considering a system of two equations in two unknowns:

{
a11x1 + a12x2 = b1,

a21x1 + a22x2 = b2.

In order to determine x1, we attempt to eliminate x2 from the system. To accomplish
this, it suffices to multiply the first equation by a22 and add to it the second equation
multiplied by −a12. We obtain

(a11a22 − a21a12)x1 = b1a22 − b2a12.

We consider the case in which a11a22 − a21a12 �= 0. Then we obtain

x1 = b1a22 − b2a12

a11a22 − a21a12
. (2.1)

Analogously, to find the value x2, we multiply the second equation by a11 and add
to it the first multiplied by −a21. With the same assumption (a11a22 − a21a12 �= 0),
we obtain

x2 = b2a11 − b1a21

a11a22 − a21a12
. (2.2)

The expression a11a22 − a12a21 appearing in the denominator of formulas (2.1)
and (2.2) is called the determinant of the matrix

( a11 a12
a21 a22

)
(it is called a determinant

of order 2, or a 2 × 2 determinant) and is denoted by
∣∣ a11 a12
a21 a22

∣∣. Therefore, we have
by definition,

∣∣∣∣
a11 a12
a21 a22

∣∣∣∣ = a11a22 − a21a12. (2.3)

I.R. Shafarevich, A.O. Remizov, Linear Algebra and Geometry,
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Fig. 2.1 Calculating (a) the
area of a triangle and (b) the
volume of a tetrahedron

We see that in the numerators of formulas (2.1) and (2.2) there also appears an
expression of the form (2.3). Using the notation we have introduced, we can rewrite
these formulas in the following form:

x1 =
∣
∣ b1 a12
b2 a22

∣
∣

∣∣ a11 a12
a21 a22

∣∣ , x2 =
∣
∣ a11 b1
a21 b2

∣
∣

∣∣ a11 a12
a21 a22

∣∣ . (2.4)

The expression (2.3) is useful for more than a symmetric way of writing solutions
of two equations in two unknowns. It is encountered in a great number of situations,
and therefore has a special name and notation. For example, consider two points A

and B in the plane with respective coordinates (x1, y1) and (x2, y2); see Fig. 2.1(a).
It is not difficult to see that the area of triangle OAB is equal to (x1y2 −y1x2)/2. For
example, we could subtract from the area of triangle OBD the area of the rectangle
ACDE and the areas of triangles ABC and OAE. We thereby obtain

�OAB = 1

2

∣∣∣∣
x1 y1
x2 y2

∣∣∣∣ .

Having in hand formulas for solutions of systems of two equations in two un-
knowns, we can solve some other systems. Consider, for example, the following
homogeneous system of linear equations in three unknowns:

{
a11x1 + a12x2 + a13x3 = 0,

a21x1 + a22x2 + a23x3 = 0.
(2.5)

We are interested in nonnull solutions of this system, that is, solutions in which at
least one xi is not equal to zero. Suppose, for example, that x3 �= 0. Dividing both
sides by −x3 and setting −x1/x3 = y1, −x2/x3 = y2, we can write system (2.5) in
the form

{
a11y1 + a12y2 = a13,

a21y1 + a22y2 = a23,
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which is in a form we have considered. If
∣∣ a11 a12
a21 a22

∣∣ �= 0, then formula (2.4) gives the
expressions

y1 = −x1

x3
=

∣∣ a13 a12
a23 a22

∣∣
∣∣ a11 a12
a21 a22

∣∣ , y2 = −x2

x3
=

∣∣ a11 a13
a21 a23

∣∣
∣∣ a11 a12
a21 a22

∣∣ .

Unsurprisingly, we determined from system (2.5) not x1, x2, x3, but only their
mutual relationships: from such a homogeneous system, it easily follows that if
(c1, c2, c3) is a solution and p is an arbitrary number, then (pc1,pc2,pc3) is also a
solution. Therefore, we can set

x1 = −
∣∣∣∣
a13 a12
a23 a22

∣∣∣∣ , x2 = −
∣∣∣∣
a11 a13
a21 a23

∣∣∣∣ , x3 =
∣∣∣∣
a11 a12
a21 a22

∣∣∣∣ (2.6)

and say that an arbitrary solution is obtained from this one by multiplying all the xi

by p. In order to give our solution a somewhat more symmetric form, we observe
that we always have

∣∣∣∣
a b

c d

∣∣∣∣ = −
∣∣∣∣
b a

d c

∣∣∣∣ .

This is easily checked with the help of formula (2.3). Therefore, (2.6) can be written
in the form

x1 =
∣∣∣∣
a12 a13
a22 a23

∣∣∣∣ , x2 = −
∣∣∣∣
a11 a13
a21 a23

∣∣∣∣ , x3 =
∣∣∣∣
a11 a12
a21 a22

∣∣∣∣ . (2.7)

Formulas (2.7) give values for x1, x2, x3 if we cross out in turn the first, second, and
third columns and then take the obtained second-order determinants with alternating
signs. We recall that these formulas were obtained on the assumption that

∣∣∣
∣
a11 a12
a21 a22

∣∣∣
∣ �= 0.

It is easy to check that the assertion we have proved is valid if at least one of the three
determinants appearing in (2.7) is not equal to zero. If all three determinants are
zero, then, of course, formula (2.7) again gives a solution, namely the null solution,
but now we can no longer assert that all solutions are obtained by multiplying by a
number (indeed, this is not true).

Let us now consider the case of a system of three equations in three unknowns:

⎧
⎪⎨

⎪⎩

a11x1 + a12x2 + a13x3 = b1,

a21x1 + a22x2 + a23x3 = b2,

a31x1 + a32x2 + a33x3 = b3.

We again would like to eliminate x2 and x3 from the system in order to obtain a
value for x1. To this end, we multiply the first equation by c1, the second by c2,
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and the third by c3 and add them. We shall therefore choose c1, c2, and c3 such that
in the system obtained, the terms with x2 and x3 become equal to zero. Setting the
associated coefficients to zero, we obtain for c1, c2, and c3 the following system of
equations:

{
a12c1 + a22c2 + a32c3 = 0,

a13c1 + a23c2 + a33c3 = 0.

This system is of the same type as (2.5). Therefore, we can use the formula (2.6)
that we derived and take

c1 =
∣∣∣∣
a22 a32
a23 a33

∣∣∣∣ , c2 = −
∣∣∣∣
a12 a32
a13 a33

∣∣∣∣ , c3 =
∣∣∣∣
a12 a22
a13 a23

∣∣∣∣ .

As a result, we obtain for x1 the equation

(
a11

∣∣∣∣
a22 a32
a23 a33

∣∣∣∣− a21

∣∣∣∣
a12 a32
a13 a33

∣∣∣∣+ a31

∣∣∣∣
a12 a13
a22 a23

∣∣∣∣

)
x1

= b1

∣∣
∣∣
a22 a23
a32 a33

∣∣
∣∣− b2

∣∣
∣∣
a12 a32
a13 a33

∣∣
∣∣+ b3

∣∣
∣∣
a12 a13
a22 a23

∣∣
∣∣ . (2.8)

The coefficient of x1 in (2.8) is called the determinant of the matrix

⎛

⎝
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞

⎠

and is denoted by
∣∣
∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣
∣∣∣∣
.

Therefore, by definition,

∣
∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣
∣∣∣∣∣
= a11

∣∣∣∣
a22 a23
a32 a33

∣∣∣∣− a21

∣∣∣∣
a12 a13
a32 a33

∣∣∣∣+ a31

∣∣∣∣
a12 a13
a22 a23

∣∣∣∣ . (2.9)

It is clear that the right-hand side of equation (2.8) is obtained from the coefficient
of x1 by substituting ai1 for bi , i = 1,2,3. Therefore, equality (2.8) can be written
in the form

∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
x1 =

∣∣∣∣∣∣

b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣
.
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We shall assume that the coefficient of x1, that is, the determinant (2.9), is different
from zero. Then we have

x1 =

∣∣
∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣
∣∣

∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣

. (2.10)

We can easily carry out the same calculations for x2 and x3. We obtain then the
formulas

x2 =

∣∣∣∣
a11 b1 a13
a21 b2 a23
a31 b3 a33

∣∣∣∣
∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣

, x3 =

∣∣∣∣
a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣
∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣

.

Just as second-order determinants express area, third-order determinants enter
into a number of formulas for volume. For example, the volume of a tetrahedron
with vertices at the points O (the coordinate origin) and A,B,C with coordinates
(x1, y1, z1), (x2, y2, z2), (x3, y3, z3) (see Fig. 2.1(b)), is equal to

1

6

∣∣∣
∣∣∣

x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣
∣∣∣
.

This shows that the notion of determinant that we have introduced is encountered
in a number of branches of mathematics. We now return to the problem of solving
systems of n linear equations in n unknowns.

It is clear that we can apply the same line of reasoning to a system consisting of
four equations in four unknowns. To do so, we need to derive formulas analogous to
(2.7) for the solution of a homogeneous system of three equations in four unknowns
based on formula (2.9). Then to eliminate x2, x3, x4 in a system of four equations in
four unknowns, we multiply the equations by the coefficients c1, c2, c3, c4 and add.
The coefficients c1, c2, c3, c4 will satisfy a homogeneous system of three equations,
which we are able to solve. This will give us uniquely solvable linear equations in
the unknowns x1, . . . , x4 (as in the previous cases with two and three variables, the
idea is the same for any number of unknowns). We call the coefficient of the un-
knowns a fourth-order determinant. Solving the linear equations thus obtained, we
arrive at formulas expressing the values of the unknowns x1, . . . , x4, analogous to
formula (2.10). Thus it is possible to obtain solutions to systems with an arbitrarily
large number of equations and with the same number of unknowns.

To derive a formula for the solution of n equations in n unknowns, we have to
introduce the notion of the determinant of the n × n square matrix

⎛

⎜⎜⎜
⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎞

⎟⎟⎟
⎠

, (2.11)



30 2 Matrices and Determinants

that is, a determinant of order n.
Our previous analysis suggests that we define the n×n determinant by induction:

For n = 1, we consider the determinant of the matrix (a11) to be equal to the number
a11, and assuming that the determinant of order n − 1 has been defined, we proceed
to define the determinant of order n.

Formulas (2.3) and (2.9) suggest how this should be done. In both formulas,
the determinant of order n (that is, two or three) was expressed in the form of an
algebraic sum of elements of the first column of matrix (2.11) (that is, of elements
a11, a21, . . . , an1) multiplied by determinants of order n − 1. The determinant of
order n−1 by which a given element of the first column was multiplied was obtained
by deleting from the original matrix the first column and the row in which the given
element was located. Then the n products were added with alternating signs.

We shall give a general definition of an n × n determinant in the following sec-
tion. The sole purpose of the discussion above was to make such a definition intel-
ligible. The formulas introduced in this section will not be used again in this book.
Indeed, they will be corollaries of formulas that we shall derive for determinants of
arbitrary order.

2.2 Determinants of Arbitrary Order

A determinant of the square n × n matrix

A =

⎛

⎜⎜⎜
⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎞

⎟⎟⎟
⎠

is a number associated with the given matrix. It is defined inductively on the num-
ber n. For n = 1, the determinant of the matrix (a11) is simply the number a11.
Suppose that we know how to compute the determinant of an arbitrary matrix of
order (n − 1). We then define the determinant of a square matrix A as the product

|A| = a11D1 − a21D2 + a31D3 − a41D4 + · · · + (−1)n+1an1Dn, (2.12)

where Dk is the determinant of order (n−1) obtained from the matrix A by deleting
the first column and the kth row. (The reader should verify that for n = 2 and n = 3
we obtain the same formulas for determinants of order 2 and 3 presented in the
previous section.)

Let us now introduce some useful notation and terminology. The determinant of
the matrix A is denoted by

∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣

,
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or simply by |A|, for short. If we delete the ith row and the j th column of the
matrix A and preserve the ordering of the remaining elements, then we end up with
a matrix of order (n − 1). Its determinant is denoted by Mij and is called a minor
of the matrix A, or more precisely, the minor associated with the element aij . With
this notation, (2.12) can be written in the form

|A| = a11M11 − a21M21 + a31M31 − · · · + (−1)n+1an1Mn1. (2.13)

This formula can be expressed in words thus: The determinant of an n × n matrix is
equal to the sum of the elements of the first column each multiplied by its associated
minor, where the sum is taken with alternating signs, beginning with plus.

Example 2.1 Suppose a particular square matrix A of order n has the property that
all of its elements in the first column are equal to zero except for the element in the
first row. That is,

A =

⎛

⎜⎜⎜
⎝

a11 a12 · · · a1n

0 a22 · · · a2n

...
...

. . .
...

0 an2 · · · ann

⎞

⎟⎟⎟
⎠

.

Then in (2.13), all the terms except the first are equal to zero. Then formula (2.13)
gives the equality

|A| = a11
∣∣A′∣∣, (2.14)

where the matrix

A′ =
⎛

⎜
⎝

a22 · · · a2n

...
. . .

...

an2 · · · ann

⎞

⎟
⎠

is of order n − 1.

There is a useful generalization of (2.14) that we shall now prove.

Theorem 2.2 We have the following formula for the determinant of a square matrix
A of order n + m for which every element in the intersection of the first n columns
and last m rows is zero:

|A| =

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣

a11 · · · a1n a1n+1 · · · a1n+m

...
. . .

...
...

. . .
...

an1 · · · ann ann+1 · · · ann+m

0 · · · 0 b11 · · · b1m

...
. . .

...
...

. . .
...

0 · · · 0 bm1 · · · bmm

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣
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=

∣
∣∣∣∣∣∣

a11 · · · a1n

...
. . .

...

an1 · · · ann

∣
∣∣∣∣∣∣
·

∣
∣∣∣∣∣∣

b11 · · · b1m

...
. . .

...

bm1 · · · bmm

∣
∣∣∣∣∣∣
. (2.15)

Proof We again make use of the definition of a determinant, namely formula (2.13),
now of order n + m, and we again employ induction on n. In our case, the last m

terms of (2.13) are equal to zero, and so we obtain

|A| = a11M11 − a21M21 + a31M31 − · · · + (−1)n+1an1Mn1. (2.16)

It is now clear that Mi1 is a determinant of the same type as A, but of order n −
1 + m. Therefore, by the induction hypothesis, we can apply the theorem to this
determinant, obtaining

|Mi1| = Mi1 ·

∣∣∣
∣∣∣∣

b11 · · · b1m

...
. . .

...

bm1 · · · bmm

∣∣∣
∣∣∣∣
, (2.17)

where Mi1 has the same meaning as in (2.13) for the determinant |A|. Substituting
expressions (2.17) into (2.16) and using (2.13) for |A|, we obtain relation (2.15).
The theorem is proved. �

Remark 2.3 One may well ask why in our definition the first column played a spe-
cial role and what sort of expressions we might obtain were we to formulate the
definition in terms not of the first column, but of the second, third, . . . , column. As
we shall see, the expression obtained will differ from the determinant by at most a
sign.

Now let us consider some of the basic properties of determinants. Later on, we
shall see that in the theory of determinants, just as in the theory of systems of linear
equations, an important role is played by elementary row operations. Let us note
that elementary operations like those of type I and type II can be applied to the rows
of a matrix whether or not it is the matrix of a system of equations. Theorem 1.15
shows that an arbitrary matrix can be transformed into echelon and triangular form.

Therefore, it will be useful to figure out how elementary operations on the rows of
a matrix affect the matrix’s determinant. In connection with this, we shall introduce
some special notation for the rows of a matrix A: We shall denote by ai the ith row
of A, i = 1, . . . , n. Thus

ai = (ai1, ai2, . . . , ain).

We shall prove several important properties of determinants. We shall prove Proper-
ties 2.4, 2.6, and 2.7 below by induction on the order n of the determinant. For n = 1
(or for Property 2.6, for n = 2), these properties are obvious, and we shall omit a
proof. We can therefore assume in the proof that the properties have been proved for
determinants of order n − 1.
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By definition (2.13), a determinant is a function that assigns to the matrix A a
certain number |A|. We shall now assume that all the rows of the matrix A except
for one, let us say the ith, are fixed, and we shall explain how the determinant
depends on the elements of the ith row ai .

Property 2.4 The determinant of a matrix is a linear function of the elements of an
arbitrary row of the matrix.

Proof Let us suppose that we wish to prove this property for the ith row of matrix A.
We shall use formula (2.13) and show that every term in it is a linear function of the
elements of the ith row. For this, it suffices to choose numbers d1j , d2j , . . . , dnj such
that

±aj1Mj1 = d1j ai1 + d2j ai2 + · · · + dnj ain

for all j = 1,2, . . . , n (see the definition of linear function on p. 2). We begin with
the term ±ai1Mi1. Since the minor Mi1 does not depend on the elements of the ith
row—the ith row is ignored in the calculation—it is simply a constant as a function
of the ith row. Let us set d1i = ±Mi1 and d2i = d3i = · · · = dni = 0. Then the first
term is represented in the required form, and indeed is a linear function of the ith
row of the matrix A. For the term ±aj1Mj1, for j �= i, the element aj1 does not
appear in the ith row, but all the elements of the ith row of matrix A other than ai1
appear in some row of the minor Mj1. Therefore, by the induction hypothesis, Mj1
is a linear function of these elements, that is,

Mj1 = d ′
2j ai2 + · · · + d ′

nj ain

for some numbers d ′
2j , . . . , d

′
nj . Setting d2j = aj1d

′
2j , . . . , dnj = aj1d

′
nj , and

d1j = 0, we convince ourselves that aj1Mj1 is a linear function of the ith row of
matrix A, but this means that such is also the case for the function ±aj1Mj1. There-
fore, |A| is the sum of linear functions of the elements of the ith row, and it follows
that |A| is itself a linear function (see p. 4). �

Corollary 2.5 If we apply Theorem 1.3 to a determinant as a function of its ith
row,1 then we obtain the following:

1. Multiplication of each of the elements of the ith row of a matrix A by the number
p multiplies the determinant |A| by the same number.

2. If all elements of the ith row of matrix A are of the form aij = bj + cj , then its
determinant |A| is equal to the sum of the determinants of two matrices, in each
of which all the elements other than the elements in the ith row are the same as
in the original, and in the ith row of the first determinant, instead of the elements

1We are being a bit sloppy with language here. We have defined the determinant as a function that
assigns a number to a matrix, so when we speak of the “rows of a determinant,” this is shorthand
for the rows of the underlying matrix.



34 2 Matrices and Determinants

aij , one has the numbers bj , while in the ith row of the other one, the numbers
are cj .

Property 2.6 The transposition of two rows of a determinant changes its sign.

Proof We again begin with formula (2.13). Let us assume that we have interchanged
the positions of rows j and j + 1. We first consider the term ai1Mi1, where i �= j

and i �= j + 1. Then interchanging the j th and (j + 1)st rows does not affect the
elements ai1. As for the minor Mi1, it contains the elements of both the j th and
(j + 1)st rows of the original matrix (other than the first element of each row),
where they again fill two neighboring rows. Therefore, by the induction hypothesis,
the minor Mi1 changes sign when the rows are transposed. Thus every term ai1Mi1
with i �= j and i �= j + 1 changes sign with a transposition of the j th and (j + 1)st
rows. The remaining terms have the form

(−1)j+1aj1Mj1 + (−1)j+2aj+11Mj+11

= (−1)j+1(aj1Mj1 − aj+11Mj+11). (2.18)

With a transposition of the j th and (j + 1)st rows, it is easily seen that the terms
aj1Mj1 and aj+11Mj+11 exchange places, which means that the entire expression
(2.18) changes sign. This proves Property 2.6. �

In what follows, a prominent role will be played by the square matrices

E =

⎛

⎜⎜⎜
⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎞

⎟⎟⎟
⎠

, (2.19)

all of whose elements on the main diagonal are equal to 1 and all of whose nondi-
agonal elements are equal to zero. Such a matrix E is called an identity matrix. Of
course, for every natural number n there exists an identity matrix of order n, and
when we wish to emphasize the order of the identity matrix under consideration, we
shall write En.

Property 2.7 The determinant of the identity matrix En, for all n ≥ 1, is equal to 1.

Proof In formula (2.13), ai1 = 0 if i �= 1, and a11 = 1. Therefore, |E| = M11. The
determinant M11 has the same structure as |E|, but its order is n − 1. By the induc-
tion hypothesis, we may assume that M11 = 1, which means that |E| = 1. �

In proving Properties 2.4, 2.6, and 2.7, it was necessary to use definition (2.13).
Now we shall prove a series of properties of the determinant that can be formally
derived from these first three properties.
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Property 2.8 If all the elements of a row of a matrix are equal to 0, then the deter-
minant of the matrix is equal to 0.

Proof Let ai1 = ai2 = · · · = ain = 0. We may set aik = pbik , where p = 0, bik �= 0,
k = 1, . . . , n, and apply the first assertion of Corollary 2.5. We obtain that |A| =
p|A′|, where |A′| is some other determinant and the number p is equal to zero. We
conclude that |A| = 0. �

Property 2.9 If we transpose any two (not necessarily adjacent) rows of a determi-
nant, then the determinant changes sign.

Proof Let us transpose the ith and j th rows, where i < j . The same result can be
achieved by successively transposing adjacent rows. Namely, we begin by transpos-
ing the ith and (i + 1)st rows, then the (i + 1)st and (i + 2)nd, and so on until
the ith row has been moved adjacent to the j th row, that is, into the (j − 1)st
position. At this point, we have carried out j − i − 1 transpositions of adjacent
rows. Then we transpose the (j − 1)st and j th rows, thereby increasing the num-
ber of transpositions to j − i. We then transpose the j th row with its succes-
sive neighbors so that it occupies the ith position. In the end, we will have ex-
changed the positions of the ith and j th rows, with all other rows occupying their
original positions. In carrying out this process, we have transposed adjacent rows
(i − j − 1) + 1 + (i − j − 1) = 2(i − j − 1) + 1 times. This is an odd number.
Therefore, by Property 2.6, which asserts that interchanging two rows of a matrix
results in a change of sign in the determinant, the result of all transpositions in this
process is a change in the determinant’s sign. �

Property 2.9 can also be stated thus: An elementary operation of type I on the
rows of a determinant changes its sign.

Property 2.10 If two rows of a matrix A are equal, then the determinant |A| is equal
to zero.

Proof Let us transpose the two equal rows of A. Then obviously, the determinant
|A| does not change. But by Property 2.9, the determinant changes sign. But then
we have |A| = −|A|, that is, 2|A| = 0, from which we may conclude that |A| = 0. �

Property 2.11 If an elementary operation of type II is performed on a determinant,
it is unchanged.

Proof Suppose that after adding c times the j th row of A to the ith row, we have
the determinant A′. Its ith row is the sum of two rows, and by the second assertion
of Corollary 2.5, we have the equality |A′| = D1 + D2, where D1 = |A|. As for
the determinant D2, it differs from |A| in that in the ith row, it has c times the
j th row. The factor c can be taken outside the determinant by the first assertion
of Corollary 2.5. Then we have a determinant whose ith and j th rows are equal.
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But by Property 2.10, such a determinant is equal to zero. Hence D2 = 0, and so
|A′| = |A|. �

We remark that the properties proven above give us a very simple method for
computing a determinant of order n. We have only to apply elementary operations
to bring the matrix A into upper triangular form:

A =

⎛

⎜⎜⎜
⎝

a11 a12 · · · a1n

0 a22 · · · a2n

...
...

. . .
...

0 0 · · · ann

⎞

⎟⎟⎟
⎠

.

Let us suppose that in the process of doing this, we have completed t elementary
operations of type I and some number of operations of type II. Since operations
of type II do not change the determinant, and an operation of type I multiplies the
determinant by −1, we have |A| = (−1)t |A|. We shall now show that

|A| = a11a22 · · ·ann. (2.20)

Then

|A| = (−1)t a11a22 · · ·ann. (2.21)

This is a formula for calculating |A|.
We shall prove formula (2.20) by induction on n. Since in the matrix A, all ele-

ments of the first column except a11 are equal to zero, it follows by formula (2.14)
that we have the equality

|A| = a11
∣∣A

′∣∣, (2.22)

in which the determinant

∣∣A
′∣∣ =

∣
∣∣∣∣∣∣∣∣

a22 a23 · · · a2n

0 a33 · · · a3n

...
...

. . .
...

0 0 · · · ann

∣
∣∣∣∣∣∣∣∣

has a structure analogous to that of the determinant |A|. By the induction hypothesis,
we obtain the equality |A′| = a22a33 · · ·ann. Substituting this expression into (2.22)
yields the formula (2.20) for |A|.

The properties of determinants that we have proved allow us to conclude an im-
portant theorem on linear equations.

Theorem 2.12 A system of n equations in n unknowns has a unique solution if and
only if the determinant of the matrix of the system is different from zero.
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Proof We bring the system into triangular form:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 + · · · · · · · · · · · · · · · · · · · · · + a1nxn = b1,

a22x2 + · · · · · · · · · · · · · · · · · · · · · + a2nxn = b2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·

annxn = bn.

By Corollary 1.19, the system has a unique solution if and only if

a11 �= 0, a22 �= 0, . . . , ann �= 0. (2.23)

On the other hand, the determinant of the matrix of the system is the product
a11a22 · · ·ann, and it follows that it is different from zero if and only if (2.23) is
satisfied. �

Corollary 2.13 A homogeneous system of n equations in n unknowns has a nonzero
solution if and only if the determinant of the matrix of the system is equal to zero.

This result is an obvious consequence of the theorem, since a homogeneous sys-
tem of equations always has at least one solution, namely the null solution.

Definition 2.14 A square matrix whose determinant is nonzero is said to be non-
singular. Conversely, a matrix whose determinant is equal to zero is singular.

In Sect. 2.1, we interpreted the determinant of order two as the area of a triangle
in the plane, while a 3 × 3 determinant was viewed as the volume of a tetrahedron
in three-dimensional space (with suitable coefficients). Clearly, the area of a trian-
gle reduces to zero only if it degenerates into a line segment, and the volume of a
tetrahedron is zero only if the tetrahedron degenerates into a planar figure.

Such examples give an idea of the geometric sense of the singularity of a matrix.
The notion of singularity will become clearer in Sect. 2.10, when we introduce the
notion of inverse matrix, and most importantly, in subsequent chapters when we
consider linear transformations of vector spaces.

2.3 Properties that Characterize Determinants

In the preceding section we said that the determinant is a function that assigns to a
square matrix a number, and we proved two important properties of the determinant:

1. The determinant is a linear function of the elements in each row.
2. Transposing two rows of a determinant changes its sign.

We shall now show that the determinant is in fact completely characterized by these
properties, as formulated in the following theorem.
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Theorem 2.15 Let F(A) be a function that assigns to a square matrix A of order n

a certain number. If this function satisfies properties 1 and 2 above, then there exists
a number k such that

F(A) = k|A|. (2.24)

In this case, the number k is equal to F(E), where E is the identity matrix.

Proof First of all, we observe that from properties 1 and 2 it follows that the function
F(A) is unchanged if we apply to the matrix A an elementary operation of type II,
and that it changes sign if we apply an elementary operation of type I. This proves
that from properties 1 and 2 above, we have the corresponding properties of the
determinant (Properties 2.9 and 2.11 of Sect. 2.2).

Let us now bring matrix A into echelon form using elementary operations. We
write the matrix thus obtained in the form

A =

⎛

⎜⎜⎜
⎝

a11 a12 · · · an

0 a22 · · · a2n

...
...

. . .
...

0 0 · · · ann

⎞

⎟⎟⎟
⎠

, (2.25)

whereby we do not, however, assert that a11 �= 0, . . . , ann �= 0. Such a form can
always be obtained, since for a square matrix in echelon form, all elements aij ,
i > j , that is, those below the main diagonal, are equal to zero. Let us assume that
in the transition from A to A, we have performed t elementary operations of type I,
while all the other operations were of type II. Since under an elementary operation
of type II neither F(A) nor |A| is changed, and under elementary operations of
type I, both expressions change sign, it follows that

|A| = (−1)t |A|, F (A) = (−1)tF (A). (2.26)

In order to prove formula (2.24) in the general case, it now suffices to prove it for
matrices A of the form (2.25), that is, to establish the equality F(A) = k|A|, which,
in turn, clearly follows from the relationships

|A| = a11a22 · · ·ann, F (A) = F(E) · a11a22 · · ·ann. (2.27)

We observe that the first of these equalities is precisely the equality (2.20) from
the previous section. Moreover, it is a consequence of the second equality, since
the determinant |A|, as we have shown, is also a function of type F(A), possessing
properties 1 and 2. And therefore, having proved the second equality in (2.27) for an
arbitrary function F(A) possessing the given properties, we shall prove this again
for the determinant.
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It thus remains only to prove the second equality of (2.27). In view of property 1,
we can take out from F(A) the factor ann:

F(A) = ann · F

⎛

⎜⎜⎜
⎝

⎛

⎜⎜⎜
⎝

a11 a12 · · · a1n

0 a22 · · · a2n

...
...

. . .
...

0 0 · · · 1

⎞

⎟⎟⎟
⎠

⎞

⎟⎟⎟
⎠

.

Let us now add to rows 1,2, . . . , n − 1 the last row multiplied by the numbers
−a1n,−a2n, . . . ,−an−1n respectively. In this case, all elements, except the elements
of the last column, are unchanged, and all the elements of the last column become
equal to zero, with the exception of the nth, which remains equal to 1. Then let us
apply analogous transformations to the matrix of smaller size with elements located
in the first n− 1 rows and columns, and so on. Each time, the number aii is factored
out of F , and the argument is repeated. After doing this n times, we obtain

F(A) = ann · · ·a11 · F

⎛

⎜⎜⎜
⎝

⎛

⎜⎜⎜
⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎞

⎟⎟⎟
⎠

⎞

⎟⎟⎟
⎠

,

which is the second equality of (2.27). �

2.4 Expansion of a Determinant Along Its Columns

On the basis of Theorem 2.15, we can answer a question that arose earlier, in
Sect. 2.2: does the first column play a special role in (2.12) and (2.13) for a de-
terminant of order n? To answer this question, let us form an expression analogous
to (2.13), but taking instead of the first column, the j th column. In other words, let
us consider the function

F(A) = a1jM1j − a2jM2j + · · · + (−1)n+1anjMnj . (2.28)

It is clear that this function assigns to every matrix A of order n a specific number.
Let us verify that it satisfies conditions 1 and 2 of the previous section. To this end,
we have simply to examine the proofs of the properties from Sect. 2.2 and convince
ourselves that we never used the fact that it was precisely the elements of the first
column that were multiplied by their respective minors. In other words, the proofs
of these properties apply word for word to the function F(A). By Theorem 2.15,
we have F(A) = k|A|, and we have only to determine the number k in the formula
k = F(E).

For the matrix E, all the elements aij are equal to zero whenever i �= j , and
the elements ajj are equal to 1. Therefore, formula (2.28) reduces to the equality
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F(a) = ±Mjj . Since in formula (2.28) the signs alternate, the term ajjMjj appears
with the sign (−1)j+1. Clearly, Mjj is the determinant of the identity matrix E of
order n− 1, and therefore, Mjj = 1. As a result, we obtain that k = (−1)j+1, which
means that

a1jM1j − a2jM2j + · · · + (−1)n+1anjMnj = (−1)j+1|A|.

We now move the coefficient (−1)j+1 to the left-hand side:

|A| = (−1)j+1a1jM1j + (−1)j+2a2jM2j + · · · + (−1)j+nanjMnj . (2.29)

We see that the element aij is multiplied by the expression (−1)i+jMij , which is
called its cofactor and denoted by Aij . We have therefore obtained the following
result.

Theorem 2.16 The determinant of a matrix A is equal to the sum of the elements
from any of its columns each multiplied by its associated cofactor:

|A| = a1jA1j + a2jA2j + · · · + anjAnj . (2.30)

In this statement, each column plays an identical role to that played by any other
column. For the first column, it becomes the formula that defines the determinant.
Formulas (2.29) and (2.30) are called the expansion of the determinant along the
j th column.

As an application of Theorem 2.16, we can obtain a whole series of new proper-
ties of determinants.

Theorem 2.17 Properties 2.4, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11 and all their corollaries
hold not only for the rows of a determinant, but for the columns as well.

Proof If follows from formula (2.30) that the determinant is a linear function of the
elements of the j th column, j = 1, . . . , n. Consequently, Property 2.4 holds for the
columns.

We shall prove Property 2.6 by induction on the order n of the determinant. For
n = 1, the assertion is empty. For n = 2, it can be checked using formula (2.3). Now
let n > 2, and let us assume that we have transposed columns numbered k and k +1.
We make use of formula (2.30) for j �= k, k + 1. Then both the kth and the (k + 1)st
columns enter into every minor Mij (i = 1, . . . , n). By the induction hypothesis, un-
der a transposition of two columns, each minor will change sign, which means that
the determinant as a whole changes sign, which proves Property 2.6 for columns. We
observe that in Property 2.7, the statement does not discuss rows or columns, and
the remaining properties follow formally from the first three. Therefore, all seven
properties and their corollaries are valid for the columns of a determinant. �
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In analogy to Theorem 2.15, from Theorem 2.17 it follows that any multilin-
ear antisymmetric function2 of the columns of a matrix must be proportional to
the determinant function of the matrix. Consequently, we have the analogue of for-
mula (2.24), where the function F(A) satisfies properties 1 and 2, reformulated for
columns. In this case, the value k, as can easily be seen, remains the same. In partic-
ular, for an arbitrary index i = 1, . . . , n, we have the formula, analogous to (2.30),

|A| = ai1Ai1 + ai2Ai2 + · · · + ainAin. (2.31)

It is called the expansion of the determinant |A| along the ith row. The formula
for the column or row expansion of a determinant has a broad generalization that
goes under the name Laplace’s theorem. It consists in the fact that one has an anal-
ogous expansion of a square matrix of order n not only along a single column (or
row), but for an arbitrary number m of columns, 1 ≤ m ≤ n − 1. For this, it is nec-
essary only to determine the cofactor not of a single element, but of the minor of
arbitrary order m. Laplace’s theorem can be proved, for example, by induction on
the number m, but we shall not do this, but rather put off its precise formulation and
proof to Sect. 10.5 (p. 379), where it will be obtained as a special case of even more
general concepts and results.

Example 2.18 In Example 1.20 (p. 15), we proved that the problem of interpolation,
that is, the search for a polynomial of degree n that passes through n + 1 given
points, has a unique solution. Theorem 2.12 shows that the determinant of the matrix
of the corresponding linear system (1.20) is different from zero. Now we can easily
calculate this determinant and once again verify this property.

The determinant of the matrix of system (1.20) for r = n + 1 has the form

|A| =

∣∣∣∣∣∣∣∣
∣∣∣∣

1 c1 c2
1 · · · cn

1

1 c2 c2
2 · · · cn

2
...

...
...

. . .
...

1 cn c2
n · · · cn

n

1 cn+1 c2
n+1 · · · cn

n+1

∣∣∣∣∣∣∣∣
∣∣∣∣

. (2.32)

It is called the Vandermonde determinant of order n + 1. We shall show that this
determinant is equal to the product of all differences ci − cj for i > j , that is, that it
can be written in the following form:

|A| =
∏

i>j

(ci − cj ). (2.33)

We shall prove (2.33) by induction on the number n. For n = 1, the result is obvious:
∣∣∣∣
1 c1
1 c2

∣∣∣∣ = c2 − c1.

2For the definition and a discussion of antisymmetric functions, see Sect. 2.6.



42 2 Matrices and Determinants

For the proof of the general case, we use the fact that the determinant does not
change under an elementary operation of type II (Property 2.11 from Sect. 2.2), and
moreover, from Theorem 2.17, this property holds for columns as well as for rows.
We will make use of this by subtracting the nth column multiplied by c1 from the
(n + 1)st, then the (n − 1)st multiplied by c1 from the nth, and so on, all the way
to the second column, from which we subtract the first multiplied by c1. By the
indicated property, the determinant does not change under these operations, but on
the other hand, it assumes the form

|A| =

∣
∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0
1 c2 − c1 c2(c2 − c1) · · · cn−1

2 (c2 − c1)
...

...
...

. . .
...

1 cn − c1 cn(cn − c1) · · · cn−1
n (cn − c1)

1 cn+1 − c1 cn+1(cn+1 − c1) · · · cn−1
n+1(cn+1 − c1)

∣
∣∣∣∣∣∣∣∣∣∣

.

Making use of Theorem 2.17, we apply to the first row of the determinant thus
obtained (consisting of a single nonzero element) the analogue of formula (2.12).
As a result, we obtain

|A| =

∣∣∣∣∣∣∣∣∣

c2 − c1 c2(c2 − c1) · · · cn−1
2 (c2 − c1)

...
...

. . .
...

cn − c1 cn(cn − c1) · · · cn−1
n (cn − c1)

cn+1 − c1 cn+1(cn+1 − c1) · · · cn−1
n+1(cn+1 − c1)

∣∣∣∣∣∣∣∣∣

.

To the last determinant let us apply Corollary 2.5 of Sect. 2.2 and remove from
each row its common factor. We obtain

|A| = |A| = (c2 − c1) · · · (cn − c1)(cn+1 − c1)

∣∣∣∣∣∣∣
∣∣

1 c2 · · · cn−1
2

...
...

. . .
...

1 cn · · · cn−1
n

1 cn+1 · · · cn−1
n+1

∣∣∣∣∣∣∣
∣∣

. (2.34)

The last determinant is a Vandermonde determinant of order n, and by the induction
hypothesis, we can assume that formula (2.33) holds for it. Putting the expression
(2.33) for a Vandermonde determinant of order n into expression (2.34), we obtain
the desired formula (2.33) for a Vandermonde determinant of order n + 1. Since
we have assumed that all the numbers c1, . . . , cn+1 are distinct, the product of the
differences ci − cj for i > j must be different from zero, and we obtain a new proof
of the result that polynomial interpolation as described has a unique solution.

2.5 Cramer’s Rule

We are now going to derive explicit formulas for the solution of a system of n

equations in n unknowns, formulas for which we have developed the theory of de-
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terminants. The matrix A of this system is a square matrix of order n, and we shall
assume that it is not singular.

Lemma 2.19 The sum of the elements aij of an arbitrary (here the j th) column of
a determinant each multiplied by the cofactor Aik corresponding to the elements of
any other column (here the kth) is equal to zero:

a1jA1k + a2jA2k + · · · + anjAnk = 0 for k �= j.

Proof We replace the kth column in our determinant |A| with its j th column. As
a result, we obtain a determinant |A′| that by Property 2.10 of Sect. 2.2, reformu-
lated for columns, is equal to zero. On the other hand, let us expand the determinant
|A′| along the kth column. Since in forming the cofactors of this column, the ele-
ments of the kth column cancel, we obtain the same cofactors Aik as in our original
determinant |A|. Therefore, we obtain

∣∣A′∣∣ = a1jA1k + a2jA2k + · · · + anjAnk = 0,

which is what we wished to show. �

Theorem 2.20 (Cramer’s rule) If the determinant of the matrix of a system of n

equations in n unknowns is different from zero, then its solution is given by

xk = Dk

D
, k = 1, . . . , n, (2.35)

where D is the determinant of the matrix of the system, and Dk is obtained from D

by replacing the kth column of the matrix with the column of constant terms.

Proof By Theorem 2.12, we know that there is a unique collection of values for
x1, . . . , xn that transforms the system

⎧
⎪⎨

⎪⎩

a11x1 + · · · + a1nxn = b1,

· · · · · · · · · · · · · · · · · · · · · · ·
an1x1 + · · · + annxn = bn

into the identity. Let us determine the unknown xk for a given k.
To do so, we shall proceed exactly as in the case of systems of two and three

equations from Sect. 2.1: we multiply the ith equation by the cofactor Aik and then
sum all the resulting equations. After this, the coefficient of xk will have the form

a1kA1k + · · · + ankAnk = D.

The coefficient of xj for j �= k will assume the form

a1jA1k + · · · + anjAnk.
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By Lemma 2.19, this number is equal to zero. Finally, for the constant term we
obtain the expression

b1A1k + · · · + bnAnk.

But it is precisely this expression that we obtain if we expand the determinant Dk

along its kth column. Therefore, we arrive at the equality

Dxk = Dk,

and since D �= 0, we have xk = Dk/D. This is formula (2.35). �

2.6 Permutations, Symmetric and Antisymmetric Functions

A careful study of the properties of determinants leads to a number of important
mathematical concepts relating to arbitrary finite sets that in fact could have been
presented earlier.

Let us recall that in Sect. 1.1 we studied linear functions as functions of rows
of length n. In Sect. 2.2 we looked at determinants as functions of square ma-
trices. If we are interested in the dependence of the determinant on the rows of
its underlying matrix, then it is possible to consider it as a function of its n rows:
|A| = F(a1,a2, . . . ,an), where for the matrix

A =

⎛

⎜⎜⎜
⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎞

⎟⎟⎟
⎠

we denote by ai its ith row:

ai = (ai1, ai2, . . . , ain).

Here we encounter the notion of a function F(a1,a2, . . . ,an) of n elements of a set
M as a rule that assigns to any n elements from M , taken in a particular order, some
element of another set N . Thus, F is a mapping from Mn to N (see p. xvii). In our
case, M is the set of all rows of fixed length n, and N is the set of all numbers.

Let us introduce some necessary notation for the sequel. Let M be a finite set
consisting of n elements a1,a2, . . . ,an.

Definition 2.21 A function on the n elements of a set M is said to be symmetric if
it is unchanged under an arbitrary rearrangement of its arguments.

After numbering the n elements of the set M with the indices 1,2, . . . , n, we can
consider that we have arranged them in order of increasing index. A permutation of
them can be considered a rearrangement in another order, which we shall write as
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follows. Let j1, j2, . . . , jn represent the same numbers 1,2, . . . , n, but perhaps listed
in a different order. In this case, we shall say that (j1, j2, . . . , jn) is a permutation
of the numbers (1,2, . . . , n). Analogously, we shall say that (aj1,aj2, . . . ,ajn) is a
permutation of the elements (a1,a2, . . . ,an).

Thus the definition of a symmetric function can be written as the equality

F(aj1,aj2 , . . . ,ajn) = F(a1,a2, . . . ,an) (2.36)

for all permutations (j1, j2, . . . , jn) of the numbers (1,2, . . . , n).
In order to determine whether one is dealing with a symmetric function, it is not

necessary to verify equality (2.36) for all permutations (j1, j2, . . . , jn), but instead
we can limit ourselves to certain permutations of the simplest form.

Definition 2.22 A permutation of two elements of the set (a1,a2, . . . ,an) is called
a transposition.

A transposition under which the ith and j th elements (that is, ai and aj ) are
transposed will be denoted by τi,j . Clearly, we may always assume that i < j .

We have the following simple fact about permutations.

Theorem 2.23 From any arrangement (i1, i2, . . . , in) of distinct natural num-
bers taking values from 1 to n, it is possible to obtain an arbitrary permutation
(j1, j2, . . . , jn) by carrying out a certain number of transpositions.

Proof We shall use induction on n. For n = 1, the assertion of the theorem is a tau-
tology: there exists only one permutation, and so it is unnecessary to introduce any
transpositions at all. In the general case (n > 1), let us suppose that j1 stands at the
kth position in the permutation (i1, i2, . . . , in), that is, j1 = ik . We will perform the
transposition τ1,k on this permutation. If j1 = i1, then it is not necessary to perform
any transposition at all. We obtain the permutation (j1, i2, . . . , i1, . . . , in), where j1
is in the first position, and i1 is in the kth position. Now we need to use transposi-
tions to obtain from the permutation (j1, i2, . . . , i1, . . . , in) the second permutation,
(j1, j2, . . . , jn), given in the statement of the theorem.

If we cancel j1 from both permutations, then what remains is a permutation of
the numbers α such that 1 ≤ α ≤ n and α �= j1. To these two permutations now
consisting of only n− 1 numbers, we can apply the induction hypothesis and obtain
the second permutation from the first. Beginning with the transposition τ1,k , we can
thus obtain from the permutation (i1, i2, . . . , in) the permutation (j1, j2, . . . , jn).
In some cases, it will not be necessary to apply a transposition (for example, if
j1 = i1). The limiting case can also be encountered in which it will not be necessary
to use any transpositions at all. It is easy to see that such occurs only for i1 = j1,
i2 = j2, . . . , in = jn. The assertion of the theorem is true in this case, but the set of
transpositions used is empty. �

This very simple argument can be illustrated as follows. Let us suppose that at a
concert, the invited guests sit down in the first row, but not in the order indicated on
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the administrator’s guest list. How can he achieve the requisite ordering? Obviously,
he may identify the guest who should be sitting in the first position and ask that
person to change seats with the person sitting in the first chair. He will then do
likewise with the guests who occupy the second, third, and so on, places, and in the
end will have achieved the required order.

It follows from Theorem 2.23 that in determining that a function is symmetric,
it suffices to verify equality (2.36) for permutations obtained from the permutation
(1,2, . . . , n) by a single transposition, that is, to check that

F(a1, . . . ,ai , . . . ,aj , . . . ,an) = F(a1, . . . ,aj , . . . ,ai , . . . ,an)

for arbitrary a1, . . . ,an, i, and j . Indeed, if this property is satisfied, then applying
various transpositions successively to the argument of the function F(a1, . . . ,an),
we will always obtain the same function, and by Theorem 2.23, we will finally
obtain the function F(aj1, . . . ,ajn).

For example, for n = 3, we have three transpositions: τ1,2, τ2,3, τ1,3. For the
function F(a1, a2, a3) = a1a2 + a1a3 + a2a3, for example, under the transposition
τ1,2, the term a1a2 remains unchanged, but the other two terms exchange places. The
same sort of thing transpires for the other transpositions. Therefore, our function is
symmetric.

We now consider a class of functions that in a certain sense are the opposite of
symmetric.

Definition 2.24 A function on n elements of a set M is said to be antisymmetric if
under a transposition of its elements it changes sign.

In other words,

F(a1, . . . ,ai , . . . ,aj , . . . ,an) = −F(a1, . . . ,aj , . . . ,ai , . . . ,an)

for any a1, . . . ,an, i, and j .
The notions of symmetric and antisymmetric function play an extremely impor-

tant role in mathematics and mathematical physics. For example, in quantum me-
chanics, the state of a certain physical quantity in a system consisting of n (generally
a very large number) elementary particles p1, . . . , pn of a single type is described
by a wave function ψ(p1, . . . , pn) that depends on these particles and assumes com-
plex values. In a certain sense, in the “general case,” a wave function is symmetric
or antisymmetric, and which of these two possibilities is realized depends only on
the type of particle: photons, electrons, and so on. If the wave function is symmet-
ric, then the particles are called bosons, and in this case, we say that the quantum-
mechanical system under consideration is subordinate to the Bose–Einstein statis-
tics. On the other hand, if the wave function is antisymmetric, then the particles
are called fermions, and we say that the system is subordinate to the Fermi–Dirac
statistics.3

3For example, photons are bosons, and the particles that make up the atom—electrons, protons,
and neutrons—are fermions.
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We shall return to a consideration of symmetric and antisymmetric functions in
the closing chapters of this book. For now, we would like to answer the following
question: How is an antisymmetric function transformed under an arbitrary permuta-
tion of the indices? In other words, we would like to express F(ai1, . . . ,ain ) in terms
of F(a1, . . . ,an) for an arbitrary permutation (i1, . . . , in) of the indices (1, . . . , n).
To answer this, we again turn to Theorem 2.23, according to which the permutation
(i1, . . . , in) can be obtained from the permutation (1, . . . , n) via a certain number
(k, let us say) of transpositions. However, the hallmark of an antisymmetric func-
tion is that it changes sign under the transposition of two of its arguments. After k

transpositions, therefore, it will have been altered by the sign (−1)k , and we obtain
the relationship

F(ai1, . . . ,ain ) = (−1)kF (a1, . . . ,an), (2.37)

where the collection of elements ai1, . . . ,ain from the set M is obtained from the
collection a1, . . . ,an by means of the permutation under consideration consisting
of k transpositions.

The relationship (2.37) has about it a certain ambiguity. Namely, the number k

indicates the number of transpositions that are executed in passing from (1, . . . , n)

to the permutation (i1, . . . , in). But such a passage can in general be accomplished
in a variety of ways, and so the required number k of transpositions can assume
a number of different values. For example, to pass from (1,2,3) to the permuta-
tion (3,2,1), we could begin with the transposition τ1,2, obtaining (2,1,3). Then
we could apply the transposition τ2,3 and arrive at the permutation (2,3,1). And
finally, again carrying out the transposition τ1,2, we would arrive at the permutation
(3,2,1). Altogether, we carried out three transpositions. On the other hand, we can
carry out a single transposition (τ1,3), which from (1,2,3) gives us immediately the
permutation (3,2,1). Nevertheless, let us note that we have not produced any incon-
sistency with (2.37), since both values of k, namely 3 and 1, are odd, and therefore
in both cases, the coefficient (−1)k has the same value.

Let us show that the parity of the number of transpositions used in passing from
one given permutation to another depends only on the permutations themselves
and not on the choice of transpositions. Let us suppose that we have an antisym-
metric function F(a1, . . . ,an) that depends on n elements of a set M and is not
identically zero. This last assumption means that there exists a set of distinct el-
ements a1, . . . ,an from the set M such that F(a1, . . . ,an) �= 0. On applying the
permutation (i1, . . . , in) to this set of elements, we obtain (ai1, . . . ,ain ), with the
values F(a1, . . . ,an) and F(ai1, . . . ,ain ) related by (2.37). If we can obtain the
permutation (i1, . . . , in) from (1, . . . , n) in two different ways, that is, using k and l

transpositions, then from formula (2.37) we have the equality (−1)k = (−1)l , since
F(a1, . . . ,an) �= 0, and therefore the numbers k and l have the same parity, that is,
either both are even or both are odd.

But there is a function known to us that possesses this property, namely the deter-
minant (as a function of the rows of a matrix)! Indeed, Property 2.9 from Sect. 2.2
asserts that the determinant is an antisymmetric function of its rows. This function
is nonzero for some a1, . . . ,an. For example, |E| = 1. In other words, to prove our
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assertion, it suffices to consider the determinant of the matrix E as an antisymmet-
ric function of its n rows ei = (0, . . . ,1, . . . ,0), where there is a 1 in the ith place
and zeros in the other places, for i = 1, . . . , n. (In the course of our argument, these
rows will be transposed, so that in fact, we shall consider determinants of matrices
more complex than E.) Thus by a rather roundabout route, using properties of the
determinant, we have obtained the following property of permutations.

Theorem 2.25 For any passage from the permutation (1, . . . , n) to the permutation
J = (j1, . . . , jn) by means of transpositions (which is always possible, thanks to
Theorem 2.23), the parity of the number of transpositions will be the same as for
any other passage between these two permutations.

Thus the set of all permutations of n items can be divided into two classes: those
that can be obtained from the permutation (1, . . . , n) by means of an even number of
transpositions and those that can be obtained with an odd number of transpositions.
Permutations of the first type are called even, and those of the second type are called
odd. If some permutation J is obtained by k transpositions, then we introduce the
notation

ε(J ) = (−1)k.

In other words, for an even permutation J , the number ε(J ) is equal to 1, and for
an odd permutation, we have ε(J ) = −1.

We have proved the consistency of the notion of even and odd permutation in a
rather roundabout way, using the properties of the determinant. In fact, it would have
sufficed for us to produce any antisymmetric function not identically zero, and we
used one that was familiar to us: the determinant as a function of its rows. We could
have invoked a simpler function. Let M be a set of numbers, and for x1, . . . , xn ∈ M ,
we set

F(x1, . . . , xn) = (x2 − x1)(x3 − x1) · · · (xn − x1) · · · (xn − xn−1)

=
∏

i>j

(xi − xj ). (2.38)

Let us verify that this function is antisymmetric. To this end, we introduce the fol-
lowing lemma.

Lemma 2.26 Any transposition can be obtained as the result of an odd number of
transpositions of adjacent elements, that is, transpositions of the form τk,k+1.

We actually proved this statement in essence in Sect. 2.2 when we derived Prop-
erty 2.9 from Property 2.6. There we did not use the term “transposition,” and in-
stead we spoke about interchanging the rows of a determinant. But that very simple
proof can be applied to the elements of any set, and therefore we shall not repeat the
argument.
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Thus it suffices to prove that the function (2.38) changes sign under the exchange
of xk and xk+1. But in this case, the factors (xi − xj ) for i �= k, k + 1, j �= k, k + 1,
on the right-hand side of the equation do not change at all. The factors (xi − xk)

and (xi − xk+1) for i > k + 1 change places, as do (xk − xj ) and (xk+1 − xj ) for
j < k + 1 also. There remains a single factor (xk+1 − xk), which changes sign. It
is also clear that the function (2.38) differs from zero for any distinct set of values
x1, . . . , xn.

We can now apply formula (2.37) to the function given by relation (2.38), by
which we proved Theorem 2.25, which means that the notion of the parity of a
permutation is well defined. We note, however, that our “simpler” method is very
close to our “roundabout” way with which we began, since formula (2.38) defines
the Vandermonde determinant of order n (see formula (2.33) in Sect. 2.4). Let us
choose the numbers xi in such a way that x1 < x2 < · · · < xn (for example, we may
set xi = i). Then on the right-hand side of relation (2.38), all factors will be positive.

Let us now write down the analogous relation for F(xi1, . . . , xin). Since the per-
mutation (i1, . . . , in) assigns the number xik to the number xk , from (2.37), we ob-
tain

F(xi1 , . . . , xin) =
∏

k>l

(xik − xil ). (2.39)

The sign of F(xi1 , . . . , xin) is determined by the number of negative factors on the
right-hand side of (2.39). Indeed, F(xi1, . . . , xin) > 0 if the number of factors is
even, while F(xi1, . . . , xin) < 0 if it is odd. Negative factors (xik − xil ) arise when-
ever xik < xil , and in view of the choice x1 < x2 < · · · < xn, this means that ik < il .
It follows that to the negative factors (xik − xil ) there correspond those pairs of
numbers k and l for which k > l and ik < il . In this case, we say that the numbers
ik and il in the permutation (i1, . . . , in) stand in reverse order, or that they form an
inversion. Thus a permutation is even or odd according to whether it contains an
even or odd number of inversions. For example, in the permutation (4,3,2,5,1),
the inversions are the pairs (4,3), (4,2), (4,1), (3,2), (3,1), (2,1), (5,1). In all,
there are seven of them, which means that F(4,3,2,5,1) < 0, and the permutation
(4,3,2,5,1) is odd.

Using these concepts, we can now formulate the following theorem.

Theorem 2.27 The determinant of a square matrix of order n is the unique function
F(a1,a2, . . . ,an) of n rows of length n that satisfies the following conditions:

(a) It is linear as a function of an arbitrary row.
(b) It is antisymmetric.
(c) F(e1, e2, . . . , en) = 1, where ei is the row with 1 in the ith place and zeros in

all other places.

This is the most “scientific,” though far from the simplest, definition of the deter-
minant.

In this section, we have not presented a single new property of the determinant,
instead discussing in detail its property of being an antisymmetric function of its
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Fig. 2.2 Path length

rows. The reason for this is that the property of antisymmetry of the determinant
is connected with a large number of questions in mathematics. For example, in
Sect. 2.1, we introduced determinants of orders 2 and 3. They have an important
geometric significance, expressing the area and volume of simple geometric figures
(Figs. 2.1(a) and (b)).

But here we encounter a paradoxical situation: Sometimes, one obtains for the
area (or volume) a negative value. It is easy to see that we obtain a positive or neg-
ative value for the area of triangle OAB (or the volume of the tetrahedron OABC)
depending on the order of the vertices A,B (or A,B,C). More precisely, the area of
triangle OAB is positive if we can obtain the ray OA from OB by rotating it clock-
wise through the triangle, while the area is negative if we obtain OA by rotating
OB counterclockwise through the triangle (in other words, the rotation is always
through an angle of measure less than π ). Thus the determinant expresses the area
of a triangle (with coefficient 1

2 ) with a given ordering of the sides, and the area
changes sign if we reverse the order. That is, it is an antisymmetric function.

In the case of volume, choosing the order of the vertices is connected to the
concept of orientation of space. The same concept appears as well in hyperspaces
of dimension n > 3, but for now, we shall not go too deeply into such questions;
we shall return to them in Sects. 4.4 and 7.3. Let us say only that this concept is
necessary for constructing the theory of volumes and the theory of integration. In
fact, the notion of orientation arises already in the case n = 1, when we consider
the length of an interval OA (where O is the origin of the line, namely the point 0,
and the point A has the coordinate x) to be the determinant x of order 1, which will
be positive precisely when A lies to the right of O . Analogously, if the point B has
coordinate y, then the length of the segment AB is equal to y − x, which will be
positive only if B lies to the right of A. Thus the length of a segment depends on
the ordering of its endpoints, and it changes sign if the endpoints exchange places
(thus length is an antisymmetric function). It is only by a similar convention that we
can say that the length of OABC is equal to the length of OC (Fig. 2.2). And if we
were to use only positive lengths, then we would end up with the length of OABC

being given by the expression |OA| + |AB| + |BA| + |AC| = |OC| + 2|AB|.

2.7 Explicit Formula for the Determinant

Formula (2.12), which we used in Sect. 2.2 to compute the determinant of order n,
expresses that determinant in terms of determinants of smaller orders. It is assumed
that this method can be applied in turn to these smaller determinants, and passing
to determinants of smaller and smaller orders, to arrive at a determinant of order 1,
which for the matrix (a11) is equal to a11. We thereby obtain an expression for the
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determinant of the matrix

A =

⎛

⎜⎜⎜
⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎞

⎟⎟⎟
⎠

in terms of its elements. This expression is rather complicated, and for deriving
the properties of determinants it is simpler to use the inductive procedure given in
Sect. 2.2. But now we are ready to discover this complicated definition. First of all,
let us prove a lemma, which appears obvious at first glance but nonetheless requires
proof (though it is very simple).

Lemma 2.28 If the linear function f (x) for a row x of length n is written in two
ways,

f (x) =
n∑

i=1

aixi, f (x) =
n∑

i=1

bixi,

then a1 = b1, a2 = b2, . . . , an = bn.

Proof Both of the equations for f (x) must hold for arbitrary x. Let us suppose in
particular that x = ei = (0, . . . ,1, . . . ,0), where 1 is located in the ith position (we
have already encountered the rows ei in the proof of Theorem 1.3). Then from the
initial supposition, we obtain that f (ei ) = ai , and from the second, that f (ei ) = bi .
Therefore, ai = bi for all i, which is what was to be proved. �

We shall consider the determinant |A| as a function of the rows a1,a2, . . . ,an of
the matrix A. As shown in Sect. 2.2, the determinant is a linear function of any row
of the matrix. A function from any number m of rows all of length n is said to be
multilinear if it is linear in each row (with the other rows held fixed).

Theorem 2.29 A multilinear function F(a1,a2, . . . ,am) can be expressed in the
form

F(a1,a2, . . . ,am) =
∑

(i1,i2,...,im)

αi1,i2,...,ima1i1a2i2 · · ·amim, (2.40)

if as usual, ai = (ai1, ai2, . . . , ain), and the sum is taken over arbitrary collections
of numbers (i1, i2, . . . , im) from the set 1,2, . . . , n, where αi1,i2,...,im are certain co-
efficients that depend only on the function F and not on the rows a1,a2, . . . ,am.

Proof The proof is by induction on the number m. For m = 1, the proof of the
theorem is obvious by the definition of a linear function. For m > 1, we shall use



52 2 Matrices and Determinants

the fact that

F(a1,a2, . . . ,am) =
n∑

i=1

ϕi(a2, . . . ,am)a1i (2.41)

for arbitrary a1, where the coefficients ϕi depend on a2, . . . ,am; that is, they are
functions of these numbers.

Let us verify that all the functions ϕi are multilinear. Let us show, for example,
linearity with respect to a2. Using the linearity of the function F(a1,a2, . . . ,am)

with respect to a2, we obtain

F
(
a1,a

′
2 + a′′

2, . . . ,am

) = F
(
a1,a

′
2, . . . ,am

)+ F
(
a1,a

′′
2, . . . ,am

)
,

or

n∑

i=1

ϕi

(
a′

2 + a′′
2, . . . ,am

)
xi =

n∑

i=1

(
ϕi

(
a′

2, . . . ,am

)+ ϕi

(
a′′

2, . . . ,am

))
xi

for xi = a1i , that is, for arbitrary xi . From this, by the lemma, we obtain

ϕi

(
a′

2 + a′′
2, . . . ,am

) = ϕi

(
a′

2, . . . ,am

)+ ϕi

(
a′′

2, . . . ,am

)
.

In precisely the same way, we can verify the second property of linear functions
in Theorem 1.3. From this theorem it is seen that the functions ϕi(a2, . . . ,am) are
linear with respect to a2, and analogously that they are multilinear. Now by the
induction hypothesis, we have for each of them the expression

ϕi(a2, . . . ,am) =
∑

(i2,...,im)

βi
i2,...,im

a2i2 · · ·amim (2.42)

(the index i in βi
i2,...,im

indicates that these constants are connected with the function
ϕi ). To complete the proof, it remains for us, changing notation, to set i = i1, to
substitute the expressions (2.42) into (2.41), and set β

i1
i2,...,im

= αi1,i2,...,im . �

Remark 2.30 The constants αi1,i2,...,im in the relationship (2.40) can be found from
the formulas

αi1,i2,...,im = F(ei1, ei2, . . . , eim), (2.43)

where ej again denotes the row (0, . . . ,1, . . . ,0), in which there is a 1 in the j th
position and zeros everywhere else.

Indeed, if we substitute a1 = ei1 , a2 = ei2 , . . . , am = eim in the relationship
(2.40), then the term a1i1a2i2 · · ·amim becomes 1, while the remaining products
a1j1a2j2 · · ·amjm are equal to 0. This proves (2.43).

Let us now apply Theorem 2.29 and (2.43) to the determinant |A| as a function
of the rows a1,a2, . . . ,an of the matrix A. Since we know that the determinant is a
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multilinear function, it must satisfy the relationship (2.40) (m = n), and the coeffi-
cients αi1,i2,...,in can be determined from formula (2.43). Consequently, αi1,i2,...,in is
equal to the determinant |Ei1,i2,...,in | of the matrix whose first row is equal to ei1 , the
second is ei2 , . . . , and the nth is ein . If any of the numbers i1, i2, . . . , in are equal,
then |Ei1,i2,...,in | = 0, in view of Property 2.10 of Sect. 2.2. It thus remains to exam-
ine the determinant |Ei1,i2,...,in | in the case that (i1, i2, . . . , in) is a permutation of
the numbers (1,2, . . . , n). But this determinant is obtained from the determinant |E|
of the identity matrix if we operate on its rows by the permutation (i1, i2, . . . , in).
Furthermore, we know that the determinant is an antisymmetric function of its rows
(see Property 2.9 in Sect. 2.2). Therefore, we can apply to it property (2.37) of anti-
symmetric functions, and we obtain

|Ei1,i2,...,in | = ε(I ) · |E|, where I = (i1, i2, . . . , in).

Since |E| = 1, we have the equalities αi1,i2,...,in = ε(I ) if the permutation I is equal
to (i1, i2, . . . , in).

As a result, we obtain an expression for the determinant of the matrix A:

|A| =
∑

I

ε(I ) · a1i1a2i2 · · ·anin, (2.44)

where the sum ranges over all permutations I = (i1, i2, . . . , in) of the numbers
(1,2, . . . , n). The expression (2.44) is called the explicit formula for the determi-
nant. It is worthwhile reformulating this in words:

The determinant of a matrix A is equal to the sum of terms each of which is the product of
n elements aij of the matrix A, taken one from each row and column. If the factors of such
a product are arranged in increasing order of the row numbers, then the term appears with a
plus or minus sign depending on whether the corresponding column numbers form an even
or odd permutation.

2.8 The Rank of a Matrix

In this section, we introduce several fundamental concepts and use them to prove
several new results about systems of linear equations.

Definition 2.31 A matrix whose ith row coincides with the ith column of a matrix
A for all i is called the transpose of the matrix A and is denoted by A∗.

It is clear that if we denote by aij the element located in the ith row and j th
column of the matrix A, and by bij the corresponding element of the matrix A∗,
then bij = aji . If the matrix A is of type (n,m), then A∗ is of type (m,n).

Theorem 2.32 The determinant of the transpose of a square matrix is equal to the
determinant of the original matrix. That is, |A∗| = |A|.
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Proof Consider the following function of a matrix A:

F(A) = ∣∣A∗∣∣.

This function exhibits properties 1 and 2 formulated in Sect. 2.3 (page 37). Indeed,
the rows of the matrix A∗ are the columns of A, and thus the assertion that the
function F(A) (that is, the determinant |A∗| as a function of the matrix A) possesses
properties 1 and 2 for the rows of the matrix A is equivalent to the assertion that the
determinant |A∗| possesses the same properties for its columns. This follows from
Theorem 2.17. Therefore, Theorem 2.15 is applicable to F(A), whence

F(A) = k|A|,

where k = F(E) = |E∗|, with E the n × n identity matrix. Clearly, E∗ = E, and
therefore, k = |E∗| = |E| = 1. It follows that F(A) = |A|, which completes the
proof of the theorem. �

Definition 2.33 A square matrix A is said to be symmetric if A = A∗, and antisym-
metric if A = −A∗.

It is clear that if aij denotes the element located in the ith row and j th column of
a matrix A, then the condition A = A∗ can be written in the form aij = aji , while
A = −A∗ can be written as aij = −aji . From this last relationship, it follows that all
elements aii on the main diagonal of an antisymmetric matrix must be equal to zero.
Furthermore, it follows from the properties of the determinant that an antisymmetric
matrix of odd order is singular. Indeed, if A is a square matrix of order n, then from
the definition of multiplication of a matrix by a number and the linearity of the
determinant in each row, we obtain the relationship |−A∗| = (−1)n|A|, from which
A = −A∗ yields |A| = (−1)n|A|, which in the case of odd n is possible only if
|A| = 0.

Symmetric and antisymmetric matrices play an important role in mathematics
and physics, and we shall encounter them in the following chapters, for example in
the study of bilinear forms.

Definition 2.34 A minor of order r of a matrix

A =

⎛

⎜⎜⎜
⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎞

⎟⎟⎟
⎠

(2.45)

is a determinant of order r obtained from the matrix (2.45) by eliminating all entries
of the matrix except for those simultaneously in r given rows and r given columns.
Here we clearly must assume that r ≤ m and r ≤ n.
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For example, the minors of order 1 are the individual elements of the matrix,
while the unique minor of order n of a square matrix of order n is the determinant
of the entire matrix.

Definition 2.35 The rank of matrix (2.45) is the maximum over the orders of its
nonzero minors.

In other words, the rank is the smallest number r such that all the minors of rank
s > r are equal to zero or there are no such minors (if r = min{m,n}).

Let us note one obvious corollary of Theorem 2.32.

Theorem 2.36 The rank of a matrix is not affected by taking the transpose.

Proof The minors of the matrix A∗ are obtained as the transposes of the minors
of matrix A (in taking the transpose, the indices of the rows and columns change
places). Therefore, the ranks of the matrices A∗ and A coincide. �

Let us recall that in presenting the method of Gaussian elimination in Sect. 1.2,
we introduced elementary row operations of types I and II on the equations of a
system. These operations changed both the coefficients of the unknowns and the
constant terms. If we now focus our attention solely on the coefficients of the un-
knowns, then we may say that we are carrying out elementary operations on the rows
of the matrix of the system. This gives us the possibility of using Gauss’s method to
determine the rank of a matrix.

A fundamental property of the rank of a matrix is expressed in the following
theorem.

Theorem 2.37 The rank of a matrix is unchanged under elementary operations on
its rows and columns.

Proof We shall carry out the proof for elementary row operations of type II (for
type I, the proof is analogous, and even simpler). After adding p times the j th row
of the matrix A to the ith row, we obtain a new matrix; call it B . We shall denote the
rank of a matrix by the operator rk and suppose that rkA = r . If among the nonzero
minors of order r of the matrix A there is at least one not containing the ith row,
then it will not be altered by the given operation, and it follows that it will be a
nonzero minor of the matrix B . Therefore, we may conclude that rkB ≥ r .

Now let us suppose that all nonzero minors of order r of the matrix A contain
the ith row. Let M be one such minor, involving rows numbered i1, . . . , ir , where
ik = i for some k, 1 ≤ k ≤ r . Let us denote by N the minor of the matrix B involv-
ing the columns with the same indices as M . If j coincides with one of the numbers
i1, . . . , ir , then this transformation of the matrix A is also an elementary transfor-
mation of the minor M , under which it is converted into N . Since the determinant
is unaffected by an elementary transformation of type II, we must have N = M ,
whence it follows that rkB ≥ r .



56 2 Matrices and Determinants

Now suppose that j does not coincide with one of the numbers i1, . . . , ir . Let
us denote by M ′ the minor of the matrix A involving the same columns as M and
rows numbered i1, . . . , ik−1, j, ik+1, . . . , ir . In other words, M ′ is obtained from M

by replacing the ik th by the j th row of the matrix A. Since the determinant is a
linear function of its rows, we therefore have the equality N = M + pM ′. But by
our assumption, M ′ = 0, since the minor M ′ does not contain the ith row of the
matrix A. Thus we obtain the equality N = M , from which it follows that rkB ≥ r .

Thus in all cases we have proved that rkB ≥ rkA. However, since the matrix A,
in turn, can be obtained from B by means of elementary operations of type II, we
have the reverse rkA ≥ rkB . From this, it clearly follows that rkA = rkB .

By similar arguments, but carried out for operations on the columns, we can
show that the rank of a matrix is unchanged under elementary column operations.
Furthermore, the assertion for the columns follows from analogous assertions about
the rows if we make use of Theorem 2.36. �

Now we are in a position to formulate answers to the questions that were resolved
earlier by Theorems 1.16 and 1.17, without reducing the system to echelon form
but instead using explicit expressions that depend on the coefficients. Bringing the
system into echelon form will be present in our proofs, but will not appear in the
final formulations.

Let us assume that by elementary operations, we have brought a system of equa-
tions into echelon form (1.18). By Theorem 2.37, both the rank of the matrix of
the system and the rank of the augmented matrix will have remained unchanged.
Clearly, the rank of the matrix of (1.18) is equal to r : a minor at the intersection of
the first r rows and the r columns numbered 1, k, . . . , s is equal to a11a2k · · ·ars ,
which implies that it is different from zero, and any other minor of greater order
must contain a row of zeros and is therefore equal to zero. Therefore, the rank of the
matrix of the initial system (1.3) is equal to r .

The rank of the augmented matrix of system (1.18) is also equal to r if all the
constants br+1 = · · · = bn are equal to zero or if there are no equations with such
numbers (m = r). However, if at least one of the numbers br+1, . . . , bn is differ-
ent from zero, then the rank of the augmented matrix will be greater than r . For
example, if br+1 �= 0, then the minor of order r + 1 involving the first r + 1 rows
of the augmented matrix and the columns numbered 1, k, . . . , s, n + 1 is equal to
a11a2k · · ·arsbr+1 and is different from zero. Thus the compatibility criterion for-
mulated in Theorem 1.16 can also be expressed in terms of the rank: the rank of
the matrix of system (1.3) must be equal to the rank of the augmented matrix of the
system. Since by Theorem 2.37, the rank of the matrix and augmented matrix of the
initial system (1.3) are equal to the ranks of the corresponding matrices of (1.18),
we obtain the compatibility condition called the Rouché–Capelli theorem.

Theorem 2.38 The system of linear equations (1.3) is consistent if and only if the
rank of the matrix of the system is equal to the rank of the augmented matrix.

The same considerations make it possible to reformulate Theorem 1.17 in the
following form.



2.8 The Rank of a Matrix 57

Theorem 2.39 If the system of linear equations (1.3) is consistent, then it is definite
(that is, it has a unique solution) if and only if the rank of the matrix of the system
is equal to the number of unknowns.

We can explain further the significance of the concept of the rank of a matrix in
the theory of linear equations by introducing a further notion, one that is important
in and of itself.

Definition 2.40 Suppose we are given m rows of a given length n: a1,a2, . . . ,am.
A row a of the same length is said to be a linear combination of a1,a2, . . . ,am if
there exist numbers p1,p2, . . . , pm such that a = p1a1 + p2a2 + · · · + pmam.

Let us mention two properties of linear combinations.

1. If a is a linear combination of the rows a1, . . . ,am, each of which, in turn, is a
linear combination of the same set of rows b1, . . . ,bk , then a is a linear combi-
nation of the rows b1, . . . ,bk .

Indeed, by the definition of a linear combination, there exist numbers qij such
that

ai = qi1b1 + qi2b2 + · · · + qikbk, i = 1, . . . ,m,

and numbers pi such that a = p1a1 + p2a2 + · · · + pmam. Substituting in the
last equality the expression for the rows ai in terms of b1, . . . ,bk , we obtain

a = p1(q11b1 + q12b2 + · · · + q1kbk)

+ p2(q21b1 + q22b2 + · · · + q2kbk) + · · ·
+ pm(qm1b1 + qm2b2 + · · · + qmkbk).

Removing parentheses and collecting like terms yields

a = (p1q11 + p2q21 + · · · + pmqm1)b1

+ (p1q12 + p2q22 + · · · + pmqm2)b2 + · · ·
+ (p1q1k + p2q2k + · · · + pmqmk)bk,

that is, the expression a as a linear combination of the rows b1, . . . ,bk .
2. When we apply elementary operations to the rows of a matrix, we obtain rows

that are linear combinations of the rows of the original matrix.
This is obvious for elementary operations both of type I and of type II.

Let us apply Gaussian elimination to a certain matrix A of rank r . Changing the
numeration of the rows and columns, we may assume that a nonzero minor of order
r is located in the first r rows and r columns of the matrix. Then by elementary
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operations on its first r rows, the matrix is put into the form

A =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

a11 a12 · · · a1r a1r+1 · · · a1n

0 a22 · · · a2r a2r+1 · · · a2n

...
...

. . .
...

...
. . .

...

0 0 · · · arr arr+1 · · · arn

ar+1 1 · · · · · · · · · ar+1n

...
...

. . .
...

...
. . .

...

am1 · · · · · · · · · amn

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎠

,

where a11 �= 0, . . . , arr �= 0. We can now subtract from the (r + 1)st row the first
row multiplied by a number such that the first element of the row thus obtained
is equal to zero, then the second row multiplied by a number such that the second
element of the row thus obtained equals zero, and so on, until we obtain the matrix

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

a11 a12 · · · a1r a1r+1 · · · a1n

0 a22 · · · a2r a2r+1 · · · a2n

...
...

. . .
...

...
. . .

...

0 0 · · · arr arr+1 · · · arn

0 0 · · · 0 ar+1r+1 · · · ar+1n

...
...

. . .
...

...
. . .

...

0 0 · · · 0 amr+1 · · · amn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.

Since the matrix A was obtained from A using a sequence of elementary operations,
its rank must be equal to r .

Let us show that the entire (r +1)st row of the matrix A consists of zeros. Indeed,
if there were an element in the row ar+1k �= 0 for some k = 1, . . . , n, then the minor

of the matrix A formed by the intersection of the first r + 1 rows and the columns
numbered 1,2, . . . , r, k would be given by

∣∣∣
∣∣∣∣∣∣∣∣

a11 a12 · · · a1r a1k

0 a22 · · · a2r a2k

...
...

. . .
...

...

0 0 · · · arr ark

0 0 · · · 0 ar+1k

∣∣∣
∣∣∣∣∣∣∣∣

= a11a22 · · ·arrar+1k �= 0,

which contradicts the established fact that the rank of A is equal to r .
This result can be formulated thus: If a1, . . . ,ar+1 are the first r + 1 rows of the

matrix A, then there exist numbers p1, . . . , pr such that

ar+1 − p1a1 − · · · − prar = 0.
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From this, it follows that ar+1 = p1a1 +· · ·+prar . That is, the row ar+1 is a linear
combination of the first r rows of the matrix A. But the matrix A was obtained as
the result of elementary operations on the first r rows of the matrix A, whence it
follows that all rows of the matrices A and A numbered greater than r coincide.
We see, therefore, that the (r + 1)st row of the matrix A is a linear combination of
the rows a1, . . . ,ar+1, each of which, in turn, is a linear combination of the first r

rows of the matrix A. Consequently, the (r + 1)st row of the matrix A is a linear
combination of its first r rows.

This line of reasoning carried out for the (r + 1)st row can be applied equally
well to any row numbered i > r . Therefore, every row of the matrix A is a linear
combination of its first r rows (note that in this case, the first r rows played a special
role, since for notational convenience, we numbered the rows and columns in such
a way that a nonzero minor was located in the first r rows and first r columns). In
the general case, we obtain the following result.

Theorem 2.41 If the rank of a matrix is equal to r , then all of its rows are linear
combinations of some r rows.

Remark 2.42 To put it more precisely, we have shown that if there exists a nonzero
minor of order equal to the rank of the matrix, then every row can be written as a
linear combination of the rows in which this minor is located.

The application of these ideas to systems of linear equations is based on the fol-
lowing obvious lemma. Here, as in a high-school course, we shall call the equation
F(x) = b a corollary of equations (1.10) if every solution c of the system (1.10) sat-
isfies the relationship F(c) = b. In other words, this means that if we assign to the
system (1.10) one additional equation F(x) = b, we obtain an equivalent system.

Lemma 2.43 If in the augmented matrix of the system (1.3), some row (say with in-
dex l) is a linear combination of k rows, with indices i1, . . . , ik , then the lth equation
of the system is a corollary of the k equations with those indices.

Proof The proof proceeds by direct verification. To simplify the presentation, let us
assume that we are talking about the first k rows of the augmented matrix. Then by
definition, there exist k numbers α1, . . . , αk such that

α1(a11, a12, . . . , a1n, b1) + α2(a21, a22, . . . , a2n, b2) + · · ·
+ αk(ak1, ak2, . . . , akn, bk)

= (al1, al2, . . . , aln, bl).

This means that for every i = 1, . . . , n, the following equations are satisfied:
{

α1a1i + α2a2i + · · · + αkaki = ali for i = 1,2, . . . , n,

α1b1 + α2b2 + · · · + αkbk = bl.
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Then if we multiply equations numbered 1,2, . . . , k in our system by the numbers
α1, . . . , αk respectively and add the products, we obtain the lth equation of the sys-
tem. That is, in the notation of (1.10), we obtain

α1F1(x) + · · · + αkFk(x) = Fl(x), α1b1 + · · · + αkbk = bl.

Substituting here x = c, we obtain that if F1(c) = b1, . . . , Fk(c) = bk , then we have
also Fl(c) = bl . That is, the lth equation is a corollary of the first k equations. �

By combining Lemma 2.43 with Theorem 2.41, we obtain the following result.

Theorem 2.44 If the rank of the matrix of system (1.3) coincides with the rank of
its augmented matrix and is equal to r , then all the equations of the system are
corollaries of some r equations of the system.

Therefore, if the rank of the matrix of the combined system (1.3) is equal to r ,
then it is equivalent to a system consisting of some r equations of system (1.3). It is
possible to select as these r equations any such that in the rows with corresponding
indices there occurs a nonzero minor of order r of the matrix of the system (1.3).

2.9 Operations on Matrices

In this section, we shall define certain operations on matrices that while simple, are
very important for the following presentation. First, we shall define these operations
purely formally. Their deeper significance will become clear in the examples pre-
sented below, and above all, in the following chapter, where matrices are connected
to geometric concepts by linear transformations of vector spaces.

First of all, let us agree that by the equality A = B for two matrices is meant
that A and B are matrices of the same type and that their elements (denoted by aij

and bij ) with like indices are equal. That is, if A and B each have m rows and n

columns, then to write A = B means that the m · n equalities aij = bij hold for all
indices i = 1, . . . ,m and j = 1, . . . , n.

Definition 2.45 Let A be an arbitrary matrix of type (m,n) with elements aij , and
let p be some number. The product of the matrix A and the number p is the matrix
B , also of type (m,n), whose elements satisfy the equations bij = paij . It is denoted
by B = pA.

Just as is done for numbers, the matrix obtained by multiplying A by the number
−1 is denoted by −A and is called the additive inverse or opposite. In the case of the
product obtained by multiplying an arbitrary matrix of type (m,n) by the number 0,
we obviously obtain a matrix of the same type, all of whose elements are zero. It is
called the null or zero matrix of type (m,n) and is denoted by 0.
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Definition 2.46 Let A and B be two matrices, each of type (m,n), with elements
denoted as usual by aij and bij . The sum of A and B is the matrix C, also of type
(m,n), whose elements cij are defined by the formula cij = aij +bij . This is written
as the equality C = A + B .

Let us emphasize that both sum and equality are defined only for matrices of the
same type.

With these definitions in hand, it is now easy to verify that just as in the case
of numbers, one has the following rules for removing parentheses: (p + q)A =
pA+qA for any two numbers p,q and matrices A, as well as p(A+B) = pA+pB

for any number p and matrices A,B of the same type. It is just as easily verified that
the addition of matrices does not depend on the order of summation, A+B = B+A,
and that the sum of three (or more) matrices does not depend on the arrangement of
parentheses, that is, (A+B)+C = A+ (B +C). Using addition and multiplication
by −1, it is possible as well to define the difference of matrices: A−B = A+ (−B).

We now define another, the most important of all, operation on matrices, called
the matrix product or matrix multiplication. Like addition, this operation is defined
not for matrices of arbitrary type, but only for those whose dimensions obey a certain
relationship.

Definition 2.47 Let A be a matrix of type (m,n), whose elements we shall denote
by aij , and let B be a matrix of type (n, k) with elements bij (we observe that here
in general, the indices i and j of the elements aij and bij run over different sets
of values). The product of matrices A and B is the matrix C of type (m, k) whose
elements cij are determined by the formula

cij = ai1b1j + ai2b2j + · · · + ainbnj . (2.46)

We write the matrix product as C = A · B or simply C = AB .

Thus the product of two rectangular matrices A and B is defined only in the case
that the number of columns of matrix A is equal to the number of rows of matrix B ,
while otherwise, the product is undefined (the reason for this will become clear in
the following chapter). The important special case n = m = k shows that the product
of two (and therefore, an arbitrary number of) square matrices of the same order is
well defined.

Let us clarify the above definition with the help of some examples.

Example 2.48 In what follows, we shall frequently encounter matrices of types
(1, n) and (n,1), that is, rows and columns of length n, often called row vectors
and column vectors. For such vectors it is convenient to introduce special notation:

α = (α1, . . . αn), [β] =
⎛

⎜
⎝

β1
...

βn

⎞

⎟
⎠ , (2.47)
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that is, α is a matrix of type (1, n), while [β] is a matrix of type (n,1). Such matrices
are clearly related by the transpose operator: [α] = α∗ and [β] = β∗. By definition,
then, the product of the matrices in (2.47) is a matrix C of type (1,1), that is, a
number c, which is equal to

c = α1β1 + · · · + αnβn. (2.48)

In the cases n = 2 and n = 3, the product (2.48) coincides with the notion of the
scalar product of vectors, well known from courses in analytic (or even elemen-
tary) geometry, if we consider α and [β] as vectors whose coordinates are written
respectively in the form of a row and the form of a column.

Using formula (2.48), we can express the product rule of matrices given by for-
mula (2.46) by saying that one multiplies the rows of matrix A by the columns of
matrix B . Put more precisely, the element cij is determined by formula (2.48) as the
product of the ith row αi of matrix A and the j th column [β]j of matrix B .

Example 2.49 Let A be a matrix of type (m,n) from formula (1.4) (p. 2), and let
[x] be a matrix of type (1, n), that is, a column vector, comprising the elements
x1, . . . , xn, written analogously to the right-hand side of (2.47). Then their product
A[x] is a matrix of type (m,1), that is, a column vector, comprising, by formula
(2.46), the elements

ai1x1 + ai2x2 + · · · + ainxn, i = 1, . . . ,m.

This shows that the system of linear equations (1.3) that we studied in Sect. 1.1 can
be written in the more abbreviated matrix form A[x] = [b], where [b] is a matrix of
type (m,1) comprising the constants of the system, b1, . . . , bm, written as a column.

Example 2.50 By linear substitution is meant the replacement of variables whereby
old variables (x1, . . . , xm) are linear functions of some new variables (y1, . . . , yn),
that is, they are expressed by the formulas

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 = a11y1 + a12y2 + · · · + a1nyn,

x2 = a21y1 + a22y2 + · · · + a2nyn,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xm = am1y1 + am2y2 + · · · + amnyn,

(2.49)

with certain coefficients aij . The matrix A = (aij ) is called the matrix of the substi-
tution (2.49). Let us consider the result of two linear substitutions. Let the variables
(y1, . . . , yn) be expressed in turn by (z1, . . . , zk) according to the formula

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y1 = b11z1 + b12z2 + · · · + b1kzk,

y2 = b21z1 + b22z2 + · · · + b2kzk,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yn = bn1z1 + bn2z2 + · · · + bnkzk,

(2.50)
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with coefficients bij . Substituting formulas (2.50) into (2.49), we obtain an expres-
sion for the variables (x1, . . . , xm) in terms of (z1, . . . , zk):

xi = ai1(b11z1 + · · · + b1kzk) + · · · + ain(bn1z1 + · · · + bnkzk)

= (ai1b11 + · · · + ainbn1)z1 + · · · + (ai1b1k + · · · + ainbnk)zk. (2.51)

As was done in the previous example, we may write linear substitutions (2.49) and
(2.50) in the matrix forms [x] = A[y] and [y] = B[z], where [x], [y], [z] are col-
umn vectors, whose elements are the corresponding variables, while A and B are
matrices of types (m,n) and (n, k) with elements aij and bij . Then, by definition
(2.46), formula (2.51) assumes the form [x] = C[z], where the matrix C is equal to
AB . In other words, successive application of two linear substitutions gives a linear
substitution whose matrix is equal to the product of the matrices of the substitutions.

Remark 2.51 All of this makes it possible to formulate a definition of matrix product
in terms of linear substitutions: the matrix product of A and B is the matrix C that
is the matrix of the substitution obtained by successive applications of two linear
substitutions with matrices A and B .

This obvious remark makes it possible to give a simple and graphic demonstra-
tion of an important property of the matrix product, called associativity.

Theorem 2.52 Let A be a matrix of type (m,n), and let B be a matrix of type (n, k),
and matrix D of type (k, l). Then

(AB)D = A(BD). (2.52)

Proof Let us first consider the special case l = 1, that is, the matrix D in (2.52)
is a k-element column vector. As we have remarked, (2.52) is in this case a sim-
ple consequence of the interpretation of the matrix product of A and B as the
result of carrying out two linear substitutions of the variables; in the notation of
Example 2.50, we have simply to substitute [z] = D and then use the equalities
[y] = B[z], [x] = A[y], and [x] = C[z].

In the general case, it suffices for the proof of equation (2.52) to observe that
the product of matrices A and B is reduced to the successive multiplication of
the rows of A by the columns of B . That is, if we write the matrix B in col-
umn form, B = (B1, . . . ,Bk), then AB can analogously be written in the form
AB = (AB1, . . . ,ABk), where each ABi is a matrix of type (m,1), that is, also
a column vector. After this, the proof of equality (2.52) in the general case is almost
self-evident. Let D consist of l columns: D = (D1, . . . ,Dl). Then on the left-hand
side of (2.52), one has the matrix

(AB)D = (
(AB)D1, . . . , (AB)Dl

)
,

and on the right-hand side, the matrix

A(BD) = A(BD1, . . . ,BDl) = (
A(BD1), . . . ,A(BDl)

)
,
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and it remains only to use the proved equality (2.52) with l = 1 for each of the
column vectors D1, . . . ,Dl . �

Let us note that we already considered the associative property in a more abstract
form (p. xv). By what was proved there, it follows that the product of any number
of factors does not depend on the arrangement of parentheses among them. Thus
the associative property makes it possible to compute the product of an arbitrary
number of matrices without indicating any arrangement of parentheses (it is nec-
essary only that each pair of associated matrices correspond as to their dimensions
so that multiplication is defined). In particular, the result of the product of an arbi-
trary square matrix by itself an arbitrary number of times is well defined. It is called
exponentiation.

Just as for numbers, the operations of addition and multiplication of matrices are
linked by the relationships

A(B + C) = AB + AC, (A + B)C = AC + BC, (2.53)

which clearly follow from the definitions. The property (2.53) connecting addition
and multiplication is called the distributive property.

We mention one important property of multiplication involving the identity ma-
trix: for an arbitrary matrix A of type (m,n) and an arbitrary matrix B of type
(n,m), the following equalities hold:

AEn = A, EnB = B.

The proofs of both equalities follow from the definition of matrix multiplication, for
example, using the rule “row times column.” We see, then, that multiplication by the
matrix E plays the same role as multiplication by 1 among ordinary numbers.

However, another familiar property of multiplication of numbers (called com-
mutativity), namely that the product of two numbers is independent of the order in
which they are multiplied, is not true for matrix multiplication. This follows at a
minimum from the fact that the product AB of a matrix A of type (n,m) and a ma-
trix B of type (l, k) is defined only if m = l. It could well be that m = l but k �= n,
and then the matrix product BA would not be defined, while the product AB was.
But even, for example, in the case n = m = k = l = 2, with

A =
(

a b

c d

)
, B =

(
p q

r s

)
,

where both products AB and BA are defined, we obtain

AB =
(

ap + br aq + bs

cp + dr cq + ds

)
, BA =

(
ap + cq bp + dq

ar + cs br + ds

)
,

and these are in general unequal matrices. Matrices A and B for which AB = BA

are called commuting matrices.
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In connection with the multiplication of matrices, notation is used that we will
introduce only in the special case that we shall actually encounter in what follows.
Assume that we are given a square matrix A of order n and a natural number p < n.
The elements of the matrix A located in the first p rows and first p columns form
a square matrix A11 of order p. The elements located in the first p rows and last
n − p columns form a rectangular matrix A12 of type (p,n − p). The elements
located in the first p columns and last n − p rows form a rectangular matrix A21 of
type (n − p,p). Finally, the elements in the last n − p rows and last n − p columns
form a rectangular matrix A22 of order n − p. This can be written as follows:

A =
(

A11 A12
A21 A22

)
. (2.54)

Formula (2.54) is called the expression of A in block form, while matrices
A11,A12,A21,A22 are the blocks of the matrix A. For example, with these con-
ventions, formula (2.15) takes the form

|A| =
∣∣∣
∣
A11 A12

0 A22

∣∣∣
∣ = |A11| · |A22|.

Clearly, one can conceive of a matrix A in block form for a larger number of matrix
blocks of various sizes. In addition to the case (2.54) shown above, we shall find
ourselves in the situation in which blocks stand on the diagonal:

A =

⎛

⎜⎜⎜
⎝

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ak

⎞

⎟⎟⎟
⎠

.

Here Ai are square matrices of orders ni , i = 1, . . . , k. Then A is a square matrix of
order n = n1 + · · · + nk . It is called a block-diagonal matrix.

It is sometimes convenient to notate matrix multiplication in block form. We shall
consider only the case of two square matrices of order n, broken into blocks of the
form (2.54) all of the same size:

A =
(

A11 A12
A21 A22

)
, B =

(
B11 B12
B21 B22

)
. (2.55)

Here A11 and B11 are square matrices of order p, A12 and B12 are matrices of type
(p,n − p), A21 and B21 are matrices of type (n − p,p), A22 and B22 are square
matrices of order n − p. Then the product C = AB is well defined and is a matrix
of order n that can be broken into the same type of blocks:

C =
(

C11 C12
C21 C22

)
.
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We claim that in this case,

C11 = A11B11 + A12B21, C12 = A11B12 + A12B22,

C21 = A21B11 + A22B21, C22 = A21B12 + A22B22.
(2.56)

In other words, the matrices (2.55) are multiplied just like matrices of order 2,
except that their elements are not numbers, but blocks, that is, they are themselves
matrices. The proof of formulas (2.56) follows at once from formulas (2.46). For
example, let C = (cij ), where 1 ≤ i, j ≤ p. In formula (2.46), the sum of the first
p terms gives the element c′

ij in the matrix A11B11, while the sum of the remaining
n − p terms gives the elements c′′

ij in the matrix A12B21. Of course, analogous
formulas hold as well (with the same proof) for the multiplication of rectangular
matrices with differing decompositions into blocks; it is necessary only that these
partitions agree among themselves in such a way that the products of all matrices
appearing in the formulas are defined. However, in what follows, only the case (2.55)
described above will be necessary.

The transpose operation is connected with multiplication by an important rela-
tionship. Let the matrix A be of type (n,m), and matrix B of type (m, k). Then

(AB)∗ = B∗A∗. (2.57)

Indeed, by the definition of matrix product (formula (2.46)), an element of the matrix
AB standing at the intersection of the j th row and ith column is equal to

aj1b1i + aj2b2i + · · · + ajmbmi, where i = 1, . . . , n, j = 1, . . . , k. (2.58)

By definition of the transpose, the expression (2.58) gives us the value of the element
of the matrix (AB)∗ standing at the intersection of the ith row and the j th column.
On the other hand, let us consider the product of matrices B∗ and A∗, using the
rule “row times column” formulated above. Then, taking into account the definition
of the transpose, we obtain that the element of the matrix B∗A∗ standing at the
intersection of the ith row and j th column is equal to the product of the ith column
of the matrix B and the j th row of the matrix A, that is, equal to

b1iaj1 + b2iaj2 + · · · + bmiajm.

This expression coincides with the formula (2.58) for the element of the matrix
(AB)∗ standing at the corresponding place, and this establishes equality (2.57).

It is possible to express, using the operation of multiplication, the elementary
transformations of matrices that we used in Sect. 1.2 in studying systems of linear
equations. Without specifying this especially, we shall continue to keep in mind that
we are always multiplying matrices whose product is well defined.

Suppose that we are given a rectangular matrix
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A =

⎛

⎜⎜⎜
⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎞

⎟⎟⎟
⎠

.

Let us consider a square matrix of order m obtained from the identity matrix of order
m by interchanging the ith and j th rows:

Tij =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0
. . .

...

1
...

j

↓
0 · · · · · · 0 0 · · · 0 1 · · · · · · 0

0 1 0
...

. . .
...

0 1 0
0 · · · · · · 1 0 · · · 0 0 · · · · · · 0

↑
i

... 1

...
. . .

0 1

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

← i

← j

An easy check shows that TijA is also obtained from A by transposing the ith and
j th rows. Therefore, we can express an elementary operation of type I on a matrix
A by multiplication on the left by a suitable matrix Tij .

Let us consider (for i �= j ) a square matrix Uij (c) of order m depending on the
number c:

Uij (c) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜
⎝

1 0
. . .

...

1
...

j

↓
0 · · · · · · 1 0 · · · 0 c · · · · · · 0

0 1 0
...

. . .
...

0 1 0
0 · · · · · · 0 0 · · · 0 1 · · · · · · 0

↑
i

... 1

...
. . .

0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟
⎠

.

← i

← j

(2.59)
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It is obtained from the identity matrix of order m by adding the j th row multiplied
by c to the ith row. An equally easy verification shows that the matrix Uij (c)A is
obtained from A by adding the j th row multiplied by the number c to the ith row.
Therefore, we can also write an elementary operation of type II in terms of matrix
multiplication. Consequently, Theorem 1.15 in matrix form can be expressed as
follows:

Theorem 2.53 An arbitrary matrix A of type (m,n) can be brought into echelon
form by multiplying on the left by the product of a number of suitable matrices Tij

and Uij (c) (in the proper order).

Let us examine the important case in which A and B are square matrices of
order n. Then their product C = AB is also a square matrix of order n.

Theorem 2.54 The determinant of the product of two square matrices of identical
orders is equal to the product of their determinants. That is, |AB| = |A| · |B|.

Proof Let us consider the determinant |AB| for a fixed matrix B as a function,
which we denote by F(A), of the rows of the matrix A. We shall prove first that
the function F(A) is multilinear. We know (by Property 2.4 from Sect. 2.2) that
the determinant |C| = F(A), considered as a function of the rows of the matrix
C = AB , is multilinear. In particular, it is a linear function of the ith row of the
matrix C, that is,

F(A) = α1ci1 + α2ci2 + · · · + αncin (2.60)

for some numbers α1, . . . , αn. Let us focus attention on the fact that according to
formula (2.46), the ith row of the matrix C = AB depends only on the ith row of
the matrix A, while the remaining rows of the matrix C, in contrast, do not depend
on this row. After substituting into formula (2.60) the expressions (2.46) for the el-
ements of the ith row and collecting like terms, we obtain an expression for F(A)

as a linear function of the ith row of the matrix A. Therefore, the function F(A) is
multilinear in the rows of A. Now let us transpose two rows of the matrix A, say
with indices i1 and i2. Formula (2.46) shows us that the lth row of the matrix C

for l �= i1, i2 does not change, but its i1th and i2th rows exchange places. Therefore,
|C| changes sign. This means that the function F(A) is antisymmetric with respect
to the rows of the matrix A. We can apply to this function Theorem 2.15, and we
then obtain that F(A) = k|A|, where k = F(E) = |EB| = |B|, since for an arbi-
trary matrix B , the relationship EB = B is satisfied. We thereby obtain the equality
F(A) = |A| · |B|, whence according to our definition, F(A) = |AB|. �

Theorem 2.54 has a beautiful generalization to rectangular matrices known as
the Cauchy–Binet identity. We shall not prove it at present, but shall give only its
formulation (a natural proof will be given in Sect. 10.5 on p. 377).

The product of two rectangular matrices B and A results in a square matrix of
order m if B is of type (m,n), and A is of type (n,m). The minors of the matrices B
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and A of the same order equal to the lesser of n and m are called associates if they
stand in the columns (of matrix B) and rows (of matrix A) with the same indices.
The Cauchy–Binet identity asserts that the determinant |BA| is equal to 0 if n < m,
and |BA| is equal to the sum of the associated minors of order m if n ≥ m. In this
case, the sum is taken over all collections of rows (of matrix A) and columns (of
matrix B) with increasing indices i1 < i2 < · · · < im.

We have a beautiful special case of the Cauchy–Binet identity when

B =
(

a1 a2 · · · an

b1 b2 · · · bn

)
, A =

⎛

⎜⎜⎜
⎝

a1 b1
a2 b2
...

...

an bn

⎞

⎟⎟⎟
⎠

.

Then

BA =
(

a2
1 + a2

2 + · · · + a2
n a1b1 + a2b2 + · · · + anbn

a1b1 + a2b2 + · · · + anbn b2
1 + b2

2 + · · · + b2
n

)
,

and the associated minors assume the form
∣
∣∣∣
ai bi

aj bj

∣
∣∣∣

for all i < j , taking values from 1 to n. The Cauchy–Binet identity gives us the
equality

(
a2

1 + a2
2 + · · · + a2

n

)(
b2

1 + b2
2 + · · · + b2

n

)− (a1b1 + a2b2 + · · · + anbn)
2

=
∑

i<j

(aibj − ajbi)
2.

In particular, we derive from it the well-known inequality
(
a2

1 + a2
2 + · · · + a2

n

)(
b2

1 + b2
2 + · · · + b2

n

) ≥ (a1b1 + a2b2 + · · · + anbn)
2.

The operations of addition and multiplication of matrices make it possible to
define polynomials in matrices. In this we shall of course assume that we are always
speaking about square matrices of a certain fixed order. We shall first define the
operation of exponentiation, namely raising a matrix to the nth power. By definition,
An for n > 0 is the result of multiplying the matrix A by itself n times, while for
n = 0, the result will be the identity matrix E.

Definition 2.55 Let f (x) = α0 + α1x + · · · + αkx
k be a polynomial with numeric

coefficients. Then a matrix polynomial f for a matrix A is the matrix

f (A) = α0E + α1A + · · · + αkA
k.

Let us establish some simple properties of matrix polynomials.
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Lemma 2.56 If f (x) + g(x) = u(x) and f (x)g(x) = v(x), then for an arbitrary
square matrix A we have

f (A) + g(A) = u(A), (2.61)

f (A)g(A) = v(A). (2.62)

Proof Let f (x) = ∑n
i=0 αix

i and g(x) = ∑m
j=0 βjx

j . Then u(x) = ∑
r γrx

r and
v(x) = ∑

s δsx
s , where the coefficients γr and δs can be written in the form

γr = αr + βr, δs =
s∑

i=0

αiβs−i ,

where αr = 0 if r > n, and βr = 0 if r > m. The equality (2.61) is now perfectly
obvious. For the proof of (2.62), we observe that

f (A)g(A) =
n∑

i=1

αiA
i ·

n∑

j=1

βjA
j =

∑

i,j

αiβjA
i+j .

Collecting all terms for which i + j = s, we obtain formula (2.62). �

Corollary 2.57 The polynomials f (A) and g(A) for the same matrix A commute:
f (A)g(A) = g(A)f (A).

Proof The result follows from formula (2.62) and the equality f (x)g(x) =
g(x)f (x). �

Let us observe that the analogous assertion to the lemma just proved is not true for
polynomials in several variables. For example, the identity (x +y)(x −y) = x2 −y2

will not be preserved in general if we replace x and y with arbitrary matrices. The
reason for this is that the identity depends on the relationship xy = yx, which does
not hold for arbitrary matrices.

2.10 Inverse Matrices

In this section we shall consider exclusively square matrices of a given order n.

Definition 2.58 A matrix B is called the inverse of the matrix A if

AB = E. (2.63)

Here E denotes the identity matrix of the fixed order n.
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Not every matrix has an inverse. Indeed, applying Theorem 2.54 on the determi-
nant of a matrix product to equality (2.63), we obtain

|E| = |AB| = |A| · |B|,
and since |E| = 1, then we must have |A| · |B| = 1. Clearly, such a relationship
is impossible if |A| = 0. Therefore, no singular matrix can have an inverse. The
following theorem shows that the converse of this statement is also true.

Theorem 2.59 For every nonsingular matrix A there exists a matrix B satisfying
the relationship (2.63).

Proof Let us denote the yet unknown j th column of the desired inverse matrix B by
[b]j , while [e]j will denote the j th column of the identity matrix E. The columns
[b]j and [e]j are matrices of type (n,1), and by the product rule for matrices, the
equality (2.63) is equivalent to the n relationships

A[b]j = [e]j , j = 1, . . . , n. (2.64)

Therefore, it suffices to prove the solvability of each (for each fixed j ) system of
linear equations (2.64) for the n unknowns that are the elements of the matrix B

appearing in column [b]j . But for every index j , the matrix of this system is A, and
by hypothesis, |A| �= 0. By Theorem 2.12, such a system has a solution (and indeed,
a unique one). Taking the solution of the system obtained for each index j as the
j th column of the matrix B , we obtain a matrix satisfying the condition (2.63), that
is, we have found an inverse to the matrix A. �

Let us recall that matrix multiplication is not commutative, that is, in general,
AB �= BA. Therefore, it would be natural to consider another possible definition of
the inverse matrix of A, namely a matrix C such that

CA = E. (2.65)

The same reasoning as that carried out at the beginning of this section shows that
such a matrix C does not exist if A is singular.

Theorem 2.60 For an arbitrary nonsingular matrix A, there exists a matrix C sat-
isfying relationship (2.65).

Proof This theorem can be proved in two different ways. First, it would be possible
to repeat in full the proof of Theorem 2.59, considering now instead of the columns
of the matrices C and E, their rows. But perhaps there is a somewhat more elegant
proof that derives Theorem 2.60 directly from Theorem 2.59. To this end, let us
apply Theorem 2.59 to the transpose matrix A∗. By Theorem 2.32, |A∗| = |A|, and
therefore, |A∗| �= 0, which means that there exists a matrix B such that

A∗B = E. (2.66)
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Let us apply the transpose operation to both sides of (2.66). It is clear that E∗ = E.
On the other hand, by (2.57),

(
A∗B

)∗ = B∗(A∗)∗,

and it is easily verified that (A∗)∗ = A. We therefore obtain B∗A = E, and in (2.65)
we can take the matrix B∗ for C, where B is defined by (2.66). �

The matrices B from (2.63) and C from (2.65) can make equal claim to the title of
inverse of the matrix A. Fortunately, we do not obtain here two different definitions
of the inverse, since these two matrices coincide. Namely, we have the following
result.

Theorem 2.61 For any nonsingular matrix A there exists a unique matrix B sat-
isfying (2.63) and a unique matrix C satisfying (2.65). Moreover, the two matrices
are equal.

Proof Let A be a nonsingular matrix. We shall show that the matrix B satisfy-
ing (2.63) is unique. Let us assume that there exists another matrix, B ′, such that
AB ′ = E. Then AB = AB ′, and if we multiply both sides of this equality by the
matrix C such that CA = E, whose existence is guaranteed by Theorem 2.60, then
by the associative property of matrix multiplication, we obtain (CA)B = (CA)B ′,
whence follows the equality EB = EB ′, that is, B = B ′. In exactly the same way
we can prove the uniqueness of C satisfying (2.65).

Now let us show that B = C. To this end, we consider the product C(AB) and
make use of the associative property of multiplication:

C(AB) = (CA)B. (2.67)

Then on the one hand, AB = E and C(AB) = CE = C, while on the other hand,
CA = E and (CA)B = EB = B , and relationship (2.67) gives us B = C. �

This unique (by Theorem 2.61) matrix B = C is denoted by A−1 and is called
the inverse of the matrix A. Thus for every nonsingular matrix A, there exists an
inverse matrix A−1 satisfying the relationship

AA−1 = A−1A = E, (2.68)

and such a matrix A−1 is unique.
In following the proof of Theorem 2.59, we see that it is possible to derive an

explicit formula for the inverse matrix. We again assume that the matrix A is non-
singular, and following the notation used in the proof of Theorem 2.59, we arrive at
the system of equations (2.64). Since |A| �= 0, we can find a solution of this system
using Cramer’s rule (2.35). For an arbitrary index j = 1, . . . , n in system (2.64), the
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ith unknown coincides with the element bij of the matrix B . Using Cramer’s rule,
we obtain for it the value

bij = Dij

|A| , (2.69)

where Dij is the determinant of the matrix obtained from A by replacing the ith
column by the column [e]j . The determinant Dij can be expanded along the ith
column, and by formula (2.30), we obtain that it is equal to the cofactor of the
unique nonzero (and equal to 1) element of the ith column. Since the ith column is
equal to [e]j , there is a 1 at the intersection of the ith column (which we replaced
by [e]j ) and the j th row. Therefore, Dij = Aji , and formula (2.69) yields

bij = Aji

|A| .

This is an explicit formula for the elements of the inverse matrix. In words, this can
be formulated thus: to obtain the inverse matrix of a nonsingular matrix A, one must
replace every element with its cofactor, then transpose the matrix thus obtained and
multiply it by the number |A|−1.

For example, for the 2 × 2 matrix

A =
(

a b

c d

)

with δ = |A| = ad − bc �= 0, we obtain the inverse matrix

A−1 =
(

d/δ −b/δ

−c/δ a/δ

)
.

The concept of inverse matrix provides a simple and elegant notation for the
solution of a system of n equations in n unknowns. If, as in the previous section,
we write down the system of linear equations (1.3) with n = m and A a nonsingular
matrix in the form A[x] = [b], where [x] is the column of unknowns x1, . . . , xn

and [b] is the column consisting of the constants of the system, then multiplying
this relationship on the left by the matrix A−1, we obtain the solution in the form
[x] = A−1[b]. Thus, in matrix notation, the formulas for the solution of a system
of n linear equations in n unknowns look just like those for a single equation in
a single unknown. But if we use the formulas for the inverse matrix, then we see
that the relationship [x] = A−1[b] exactly coincides with Cramer’s rule, so that this
more elegant notation gives us nothing essentially new.

Let us consider the matrix A = (aij ), in which the element aij = Aji is the
cofactor of the element aji of the matrix A. The matrix A is called the adjugate
matrix to A. For a matrix A of order n, the elements of the adjugate matrix are
polynomials of degree n − 1 in the elements of A. Formula (2.69) for the inverse
matrix shows that

AA = AA = |A|E. (2.70)
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The advantage of the adjugate matrix A compared to the inverse matrix A−1 is that
the definition of A does not require division by |A|, and formula (2.70), in contrast
to the analogous formula (2.68), holds even for |A| = 0, that is, even for singular
square matrices, as the proof of Cramer’s rule demonstrates. We shall make use of
this fact in the sequel.

In conclusion, let us return once more to the question of presenting elementary
operations in terms of matrix multiplication, which we began to examine in the
previous section. It is easy to see that the matrices Tij and Uij (c) introduced there
are nonsingular, and moreover,

T −1
ij = Tji, U−1

ij (c) = Uij (−c).

Therefore, Theorem 2.53 can be reformulated as follows: An arbitrary matrix A can
be obtained from a particular echelon matrix A′ by multiplying it on the left by
matrices Tij and Uij (c) in a certain order.

Let us apply this result to nonsingular square matrices of order n. Since |Tij | �= 0,
|Uij (c)| �= 0, and |A| �= 0 (by assumption), the matrix A′ must also be nonsingular.
But a nonsingular square echelon matrix is in upper triangular form, that is, all of
its elements below the main diagonal are equal to zero, namely,

A′ =

⎛

⎜⎜⎜⎜
⎜
⎝

a′
11 a′

12 a′
13 · · · a′

1n

0 a′
22 a′

23 · · · a′
2n

0 0 a′
33 · · · a′

2n
...

. . .
. . .

. . .
...

0 0 0 · · · a′
nn

⎞

⎟⎟⎟⎟
⎟
⎠

,

and moreover, |A′| = a′
11a

′
22 · · ·a′

nn. Therefore, all the elements a′
11, . . . , a

′
nn on the

main diagonal are different from zero.
But this matrix A′ can be brought into a yet simpler form with the help of ele-

mentary operations of type II only. Namely, since a′
nn �= 0, one can subtract from

the rows with indices n − 1, n − 2, . . . ,1 of the matrix A′ the last row multiplied by
factors that make all the elements of the nth column (except for a′

nn) equal to zero.
Since a′

n−1n−1 �= 0, it is possible in the same way to reduce to zero all elements
of the (n − 1)st column (except for the element a′

n−1n−1). Doing this n times, we
shall make all of the elements of the matrix equal to zero except those on the main
diagonal. That is, we end up with the matrix

D =

⎛

⎜⎜⎜⎜⎜
⎝

a′
11 0 0 · · · 0

0 a′
22 0 · · · 0

0 0 a′
33 · · · 0

...
. . .

. . .
. . .

...

0 0 0 · · · a′
nn

⎞

⎟⎟⎟⎟⎟
⎠

. (2.71)

A matrix all of whose elements are equal to zero except for those on the main
diagonal is called a diagonal matrix. We have thus proved that a matrix A′ can be
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obtained from a diagonal matrix D by multiplying it on the left by matrices of the
form Tij and Uij (c) in some order.

Let us note that multiplication by a matrix Tij (that is, an elementary operation
of type I) can be replaced by multiplication on the left by matrices of type Uij (c)

for various c and by a certain simpler matrix. Namely, the interchange of the ith and
j th rows can be obtained using the following four operations:

1. Addition of the ith row to the j th row.
2. Subtraction of the j th row from the ith row.
3. Addition of the ith row to the j th row.

Schematically, this can be depicted as follows, where the ith and j th rows are
denoted by ci and cj :

(
ci

cj

)
1−→

(
ci

ci + cj

)
2−→

( −cj

ci + cj

)
3−→

(−cj

ci

)
.

4. It is now necessary to introduce a new type of operation: its effect is to multiply
the ith row by −1 and is achieved by multiplying (with k = i) our matrix on the
left by the square matrix

Sk =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜
⎝

1
. . . k

1 ↓
−1 ← k

1
. . .

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟
⎠

, (2.72)

where there is −1 at the intersection of the kth row and kth column.

We may now reformulate Theorem 2.53 as follows:

Theorem 2.62 Any nonsingular matrix can be obtained from a diagonal matrix by
multiplying it on the left by certain matrices Uij (c) of the form (2.59) and matrices
Sk of the form (2.72).

We shall use this result in Sect. 4.4 when we introduce the orientation of a real
vector space. Furthermore, Theorem 2.62 provides a simple and convenient method
of computing the inverse matrix, in a manner based on Gaussian elimination. To this
end, we introduce yet another (a third) type of elementary matrix operation, which
consists in multiplying the kth row of a matrix by an arbitrary nonzero number α.
It is clear that the result of such an operation can be obtained by multiplying our



76 2 Matrices and Determinants

matrix on the left by the square matrix

Vk(α) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
. . . k

1 ↓
α ← k

1
. . .

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (2.73)

where the number α stands at the intersection of the kth row and kth column. By
multiplying the matrix (2.71) on the left by the matrices V1(a

′−1
11 ), . . . , Vn(a

′−1
nn ), we

transform it into the identity matrix.
From Theorem 2.62, it follows that every nonsingular matrix can be obtained

from the identity matrix by multiplying it on the left by matrices Uij (c) of the type
given in (2.59), matrices Sk from (2.72), and matrices Vk(α) of the form of (2.73).
However, since multiplication by each of these matrices is equivalent to an elemen-
tary operation of one of the three types, this means that every nonsingular matrix
can be obtained from the identity matrix using a sequence of such operations, and
conversely, using a certain number of elementary operations of all three types, it is
possible to obtain the identity from an arbitrary nonsingular matrix. This gives us
a convenient method of computing the inverse matrix. Indeed, suppose that using
some sequence of elementary operations of all three types, we have transformed
matrix A to the identity matrix E. Let us denote by B the product of all the matrices
Uij (c), Sk , and Vk(α), whose product corresponds to the given operations (in the
obvious order: the matrix representing each successive operation stands to the left
of the previous one). Then BA = E, from which it follows that B = A−1. Then af-
ter applying the same sequence of elementary operations to the matrix E, we obtain
from it the matrix BE = B , that is, A−1. Therefore, to compute A−1, it suffices to
transform the matrix A to E using elementary operations of the three types (as was
shown above), while simultaneously applying the same operations to the matrix E.
The matrix obtained from E as a result of the same elementary operations will be
A−1.

Let C be an arbitrary matrix of type (m,n). We shall show that for an arbitrary
nonsingular square matrix A of order m, the rank of the product AC is equal to
the rank of C. Indeed, as we have already seen, the matrix A can be transformed
into E by applying some sequence of elementary operations of the three types to its
rows, to which corresponds multiplication on the left by the matrix A−1. Applying
the same sequence of operations to AC, we clearly obtain the matrix A−1AC = C.
By Theorem 2.37, the rank of a matrix is not changed by elementary operations
of types I and II. It also does not change under elementary operations of type III.
This clearly follows from the fact that every minor is a linear function of its rows,
and consequently, every nonzero minor of a matrix remains a nonzero minor after
multiplication of any of its rows by an arbitrary nonzero number. Therefore, the rank
of the matrix AC is equal to the rank of C.
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Using an analogous argument for the columns as was given for the rows, or sim-
ply using Theorem 2.36, we obtain the following useful result.

Theorem 2.63 For any matrix C of type (m,n) and any nonsingular square matri-
ces A and B of orders m and n, the rank of ACB is equal to the rank of C.



Chapter 3
Vector Spaces

3.1 The Definition of a Vector Space

Vectors on a line, in the plane, or in space play a significant role in mathematics, and
especially in physics. Vectors represent the displacement of bodies, or their speed,
acceleration, or the force applied to them, among many other things.

In a course in elementary mathematics or physics, a vector is defined as a di-
rected line segment. The word directed indicates that a direction is assigned to the
segment, often indicated by an arrow drawn above it. Or else, perhaps, one of the
two endpoints of the segment [A,B], say A, is called the beginning, while the other,
B , is the end, and then the direction is given as motion from the beginning of the
segment to the end. Then two vectors x = −→

AB and y = −→
CD are said to be equal if

it is possible by means of parallel translation to join the segments x and y in such a
way that the beginning A of segment x coincides with the beginning C of segment
y (in which case their ends must coincide as well); see Fig. 3.1.

The fact that we consider the two different vectors in the figure to be equal
does not represent anything unusual in mathematics or generally in human thought.
Rather, it represents the usual method of abstraction, whereby we focus our atten-
tion on some important property of the objects under consideration. Thus in ge-
ometry, we consider certain triangles to be equal, even though they are drawn on
different sheets of paper. Or in arithmetic, we might consider equal the number of
people in a boat and the number of apples on a tree.

It is obvious that having chosen a certain point O (on a line, in the plane, or in
space), we can find a vector (indeed the unique one) equal to a given vector x whose
beginning coincides with the point O .

The laws of addition of velocities, accelerations, and forces lead to the following
definition of vector addition. The sum of vectors x = −→

AB and y = −→
CD is the vector

z = −−→
AD′, where D′ is the end of vector

−−→
BD′, a vector equal to y whose beginning

coincides with the end B of the vector x; see Fig. 3.2.
If we replace all of these vectors with equal vectors but having as their beginning

the fixed point O , then vector addition will proceed by the well-known “parallelo-
gram law”; see Fig. 3.3.
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Fig. 3.1 Equal vectors

Fig. 3.2 Vector summation

Fig. 3.3 The parallelogram
law

There is also a definition of multiplication of a vector x by a number α. For now,
in speaking about numbers, we shall mean real numbers (we shall have something
to say later about the more general situation). If α > 0 and x is the vector

−→
AB , then

the product αx is defined to be the vector
−→
AC lying on the same line as [A,B] in

such a way that the point C lies on the same side of A as the point B and such
that the segment [A,C] is α times the length of the segment [A,B]. (Note that if
α < 1, then the segment [A,C] is shorter than the segment [A,B].) Denoting by
|AB| the length of the segment [A,B], we shall express this by way of the formula
|AC| = α|AB|. However, if α < 0 and α = −β , where then β > 0, then the product

αx is defined to be the vector
−→
CA, where βx = −→

AC.
We shall not derive the simple properties of vector addition and multiplication of

a vector by a number. We observe only that they are amazingly similar for vectors on
a line, in the plane, and in space. This similarity indicates that we are dealing only
with a special case of a general concept. In this and several subsequent chapters,
we shall present the theory of vectors and the spaces consisting of them of arbi-
trary dimension n (including even some facts relating to spaces whose dimension is
infinite).

How do we formulate such a definition? In the case of vectors on a line, in the
plane, and in space, we shall use the intuitively clear concept of directed line seg-
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ment. But what if we are not convinced that our interlocutor shares the same intu-
ition? For example, suppose we wanted to share our knowledge with an extraterres-
trial with whom we are communicating by radio?

A technique was long ago devised for overcoming such difficulties in the sci-
ences. It involves defining (or in our terminology, reporting to the extraterrestrial)
not what are the objects under consideration (vectors, etc.), but the relationships be-
tween them, or in other words, their properties. For example, in geometry, one leaves
undefined such notions as point, line, and the property of a line passing through a
point, and instead formulates some of their properties, for instance that between two
distinct points there passes one and only one line. Such a method of defining new
concepts is called axiomatic. In this course on linear algebra, the vector space will
be the first object to be defined axiomatically. Till now, new concepts have been
defined using constructions or formulas, such as the definition of the determinant
of a matrix (defined either inductively, using the rule of expansion by columns, or
derived using the rather complicated explicit formula (2.44) from Sect. 2.7). It is,
however, possible that the reader has encountered the concepts of groups and fields,
which are also defined axiomatically, but may not have investigated them in detail,
in contrast to the notion of a vector space, the study of which will occupy this entire
chapter.

With that, we move on to the definition of a vector space.

Definition 3.1 A vector (or linear) space is a set L (whose elements we shall call
vectors and denote by x,y,z, etc.) for which the following conditions are satisfied:

(1) There is a rule for associating with any two vectors x and y a third vector, called
their sum and denoted by x + y.

(2) There is a rule for associating with any vector x and any number α a new vector,
called the product of α and x and denoted by αx. (The numbers α by which a
vector can be multiplied, be they real, complex, or from any field K, are called
scalars.)

These operations must satisfy the following conditions:

(a) x + y = y + x.
(b) (x + y) + z = x + (y + z).
(c) There exists a vector 0 ∈ L such that for an arbitrary vector x ∈ L, the sum x + 0

is equal to x (the vector 0 is called the null vector).
(d) For each vector x ∈ L, there exists a vector −x ∈ L such that x + (−x) = 0 (the

vectors x and −x are called additive inverses or opposites of each other).1

(e) For an arbitrary scalar α and vectors x and y,

α(x + y) = αx + αy.

1Readers who are familiar with the concept of a group will be able to reformulate conditions (a)–
(c) in a compact way by saying that with respect to the operation of vector addition, the vectors
form an abelian group.
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(f) For arbitrary scalars α and β and vector x,

(α + β)x = αx + βx.

(g) Similarly,

α(βx) = (αβ)x.

(h) For an arbitrary vector x,

1x = x and 0x = 0.

In the last equality, the 0 on the right-hand side denotes the null vector of the space
L, while the 0 on the left is the scalar zero (these will always be so denoted using
lighter and heavier type).

It is easy to prove that there is a unique null vector in L. Indeed, if there were
another null vector 0′, then by definition, we would have the equality 0′ = 0′+0 = 0,
from which it follows that 0′ = 0.

Using properties (a) through (d) and the uniqueness of the null vector, it is easily
proved that for an arbitrary x, there is a unique additive inverse vector −x in L.

It follows from properties (g) and (h) that the vector −x is obtained by multiply-
ing the vector x by the scalar −1. Indeed, since

x + (−1)x = 1x + (−1)x = (
1 + (−1)

)
x = 0x = 0,

we obtain by the uniqueness of the additive inverse that (−1)x = −x. Analogously,
from properties (f) and (h), it follows that for every vector x and natural number k,
the vector kx is equal to the k-fold sum x + · · · + x.

Remark 3.2 (On scalars and fields) We would like to make more precise what we
mean by scalars α,β , etc. in the definition of vector space above. The majority of
readers will probably assume that we are talking about real numbers. In this case, L
is called a real vector space. But those who are familiar with complex numbers may
choose to understand the scalars α,β , etc., as complex. In that case, L will be called
a complex vector space. The theory developed below will be applicable in this case
as well. Finally, the reader familiar with the concept of field may combine these two
cases, understanding the scalars involved in the definition of a vector space to be
elements of any field K. Then L will be called a vector space over the field K.

Strictly speaking, this question of scalars could have been addressed in the pre-
ceding chapters in which we discussed numbers without going into much detail. The
answer would have been the same: by scalars, one may understand real numbers,
complex numbers, or the elements of any field. All of our arguments apply equally
to all three cases. The only exception is the proof of Property 2.10 from Sect. 2.2, in
which we used the fact that from the equality 2D = 0 it followed that D = 0. A field
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in which that assertion is true for every element D is called a field of characteristic2

different from 2. Nonetheless, it is possible to prove that Property 2.10 holds in the
general case as well.

Example 3.3 We present here a few examples of vector spaces.

(a) The set of vectors on a line, in the plane, or in space as we have previously
discussed.

(b) In Sect. 2.9, we introduced the notions of addition of matrices and multiplication
of a matrix by a number. It is easily verified that the set of matrices of a given
type (m,n) with operations thus defined is a vector space. That conditions (a)
through (h) are satisfied reduces to the corresponding properties of numbers. In
particular, the set of rows (or columns) of a given length n is a vector space.
We shall denote this space by K

n if the row (or column) elements belong to the
field K. Here it is understood that if we are operating with real numbers only,
then K = R, and the field will then be denoted by R

n. If we are using complex
numbers, then K = C, and the vector space will be denoted by C

n. The reader
may choose any of these designations.

(c) Let L be the set of all continuous functions defined on a given interval [a, b]
taking real or complex values. We define addition of such functions and multi-
plication by a scalar in the usual way. It is then clear that L is a vector space.

(d) Let L be the set of all polynomials (of arbitrary degree) with real or complex
coefficients or coefficients in a field K. Addition and multiplication by a scalar
are defined as usual. Then it is obvious that L is a vector space.

(e) Let L be the collection of all polynomials whose degree does not exceed a fixed
number n. Everything else is the same as in the previous example. We again
obtain a vector space (one for each value of n).

Definition 3.4 A subset L′ of a vector space L is called a subspace of L if for arbi-
trary vectors x,y ∈ L′, their sum x + y is also in L′, and for an arbitrary scalar α

and vector x ∈ L′, the vector αx is in L′.

It is obvious that L′ is itself a vector space.

Example 3.5 The space L is a subspace of itself.

Example 3.6 The vector 0 by itself forms a subspace. It is called the zero space and
is denoted by (0).3

2For readers familiar with the definition of a field, we can give a general definition: The character-
istic of a field K is the smallest natural number k such that the k-fold sum kD = D + · · · + D is
equal to 0 for every element D ∈ K (as is easily seen, this number k is the same for all D �= 0). If
no such natural number k exists (as in, for example, the most frequently encountered fields, K = R

and K = C), then the characteristic is defined to be zero.
3Translator’s note: It may be tempting to consider “null space” a possible synonym for the zero
space. However, that term is reserved as a synonym for “kernel,” to be introduced below, in Defi-
nition 3.67.
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Example 3.7 Consider the space encountered in analytic geometry consisting of all
vectors having their beginning at a certain fixed point O . Then an arbitrary line
and an arbitrary plane passing through the point O will be subspaces of the entire
enclosing vector space.

Example 3.8 Consider a system of homogeneous linear equations in n unknowns
with coefficients in the field K. Then the set of rows forming the solution set is a
subspace L′ of the space K

n of rows of length n. This follows from the notation
(1.10) of such a system (with bi = 0) and properties (1.8) and (1.9) of linear func-
tions. The subspace L′ is called the solution subspace of the associated system of
homogeneous linear equations. The equations of the system determine the subspace
L′ just as the equation of a line or plane does in analytic geometry.

Example 3.9 In the space of all polynomials, the collection of all polynomials with
degree at most n (for any fixed number n) is a subspace.

Definition 3.10 A space L is called the sum of a collection of its subspaces
L1,L2, . . . ,Lk if every vector x ∈ L can be written in the form

x = x1 + x2 + · · · + xk, where xi ∈ Li . (3.1)

In that case, we write

L = L1 + L2 + · · · + Lk.

Definition 3.11 A space L is called the direct sum of its subspaces L1,L2, . . . ,Lk if
it is the sum of these subspaces and in addition, for every vector x ∈ L, the repre-
sentation (3.1) is unique. In this case, we write

L = L1 ⊕ L2 ⊕ · · · ⊕ Lk. (3.2)

Example 3.12 The space that we considered in Example 3.7 is the sum of two planes
if they do not coincide; it is the sum of a line and plane if the line is not contained
in the given plane; it is the sum of three lines if they do not belong to a common
plane. In the second and third cases, the sum will be a direct sum. In the case of
two planes, it is easily seen that the representation (3.1) is not unique. For example,
we can represent the null vector as a sum of two vectors that are additive inverses
of each other lying on the line that is obtained as the intersection of the two given
planes.

Example 3.13 Let us denote by Li the vector space consisting of all monomials of
degree i. Then the space L of polynomials of degree at most n can be represented as
the direct sum L = L0 ⊕ L1 ⊕ · · · ⊕ Ln. This follows from the fact that an arbitrary
polynomial is uniquely determined by its coefficients.
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Lemma 3.14 Suppose the vector space L is the sum of certain of its subspaces
L1,L2, . . . ,Lk . Then in order for L to be a direct sum of these subspaces, it is neces-
sary and sufficient that the relationship

x1 + x2 + · · · + xk = 0, xi ∈ Li , (3.3)

hold only if all the xi are equal to 0.

Proof The necessity of condition (3.3) is clear, since for the vector 0 ∈ L, the equal-
ity 0 = 0 + · · · + 0, in which the null vector of the subspace Li stands in the ith
place, is a representation of type (3.1), and the presence of another equality of the
form (3.3) would contradict the definition of direct sum. To prove the sufficiency of
the condition (3.3), if there are two representations (3.1),

x = x1 + x2 + · · · + xk, x = y1 + y2 + · · · + yk,

then it suffices to subtract one from the other and again use the definition of direct
sum. �

We observe that if L1,L2, . . . ,Lk are subspaces of a vector space L, then their
intersection L1 ∩ L2 ∩ · · · ∩ Lk is also a subspace of L, since it satisfies all the re-
quirements in the definition of subspace. In the case k = 2, then Lemma 3.14 allows
us to obtain in the following corollary another, more graphic, criterion for the sum
of subspaces to be a direct sum.

Corollary 3.15 Suppose the vector space L is the sum of two of its subspaces L1
and L2. Then in order that L be a direct sum, it is necessary and sufficient that one
have the equality L1 ∩ L2 = (0).

Proof By Lemma 3.14, L is the direct sum of its subspaces L1 and L2 if and only if
the equation x1 +x2 = 0, where x1 ∈ L1 and x2 ∈ L2, is satisfied only if x1 = 0 and
x2 = 0. But from x1 + x2 = 0, it follows that the vector x1 = −x2 is contained in
both subspaces L1 and L2, whence it follows that it is contained in the intersection
L1 ∩ L2. Therefore, the condition L = L1 ⊕ L2 is equivalent to the satisfaction of the
two conditions L = L1 + L2 and L1 ∩ L2 = (0), which completes the proof. �

We observe that the last assertion cannot be generalized to an arbitrary number
of subspaces L1, . . . ,Lk . For example, suppose that L is the plane consisting of all
vectors with origin at O , and suppose that L1,L2,L3 are three distinct lines in this
plane passing through O . It is clear that the intersection of any two of these lines
consists of only the zero vector, and so a fortiori, L1 ∩ L2 ∩ L3 = (0). The plane L
is the sum of its subspaces L1,L2,L3, but it is not the direct sum, since it is obvious
that one can produce the equality x1 + x2 + x3 = 0 for nonnull vectors xi ∈ Li .

It is easy to see that if equality (3.2) is satisfied, then there exists a bijection
between the set of vectors x ∈ L and the set L1 × · · · × Lk , the product of the sets
L1, . . . ,Lk (see the definition on page xvi). This observation provides a method for
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constructing the direct sum of vector spaces that are not, so to speak, originally
subspaces of a larger enclosing space and even have perhaps completely different
structures from one another.

Let L1, . . . ,Lk be vector spaces. Just as for any other sets, we can define their
product L = L1 ×· · ·× Lk , which in this case is not yet a vector space. However, it is
easy to make it into one by defining the sum and the product by a scalar according
to the following formulas:

(x1, . . . ,xk) + (y1, . . . ,yk) = (x1 + y1, . . . ,xk + yk),

α(x1, . . . ,xk) = (αx1, . . . , αxk),

for all vectors xi ∈ Li , yi ∈ Li , i = 1, . . . , k, and an arbitrary scalar α.
A simple verification shows that in this way, the definition of the operation satis-

fies all the conditions for the definition of a vector space, and the set L = L1 ×· · ·×Lk

becomes a vector space containing L1, . . . ,Lk among its subspaces. If we wish to be
technically precise, then the subspaces of L are not the Li themselves, but the sets
L′
i = (0) × · · · × Li × · · · × (0), where Li stands in the ith place, with the zero space

at all the remaining places other than Li . However, we shall close our eyes to this
circumstance, identifying L′

i with Li itself.4 It is clear, then, that condition (3.2) is
satisfied. Thus, for arbitrary mutually independent vector spaces L1, . . . ,Lk it is al-
ways possible to construct a space L containing all the Li as subspaces that is their
direct sum; that is, L = L1 ⊕ · · · ⊕ Lk .

Example 3.16 Let L1 be the vector space considered in Example 3.7, that is, the
physical space that surrounds us, and let L2 = R be the real line, considered as the
time axis. Operating as described above, we can define the direct sum L = L1 ⊕ L2.

The vectors of the space L thus constructed are called space–time events and have
the form (x, t), where x ∈ L1 is the space component, and t ∈ L2 is the time com-
ponent. For the addition of such vectors, the space components are added among
themselves (as vectors in physical space, for example, according to the parallelo-
gram law), while the time components are added to one another (as real numbers).
Multiplication by a scalar is defined analogously. This space plays an important
role in physics, in particular in the theory of relativity, where it is called Minkowski
space. We remark that we still need to introduce some additional structure, namely
a particular quadratic form. We shall return to this question in Sect. 7.7 (see p. 268).

3.2 Dimension and Basis

In this section we shall use the notion of linear combination, which in the case of
a space of rows (or row space) of length n has already been introduced (see the

4More precisely, this identification is achieved with the help of the concept of isomorphism of
vector spaces, which will be introduced below, in Sect. 3.5.
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definition on p. 57). We shall now repeat that definition practically verbatim. In
preparation, we observe that applying repeatedly the operations of vector addition
and multiplication of a vector by a scalar, we can form more complex expressions,
such as α1x1 + α2x2 + · · · + αmxm, which, moreover, according to properties (a)
and (b) of the definition of vector space, do not depend on the order of terms or the
arrangement of parentheses (which is necessary in order that we be able to combine
not only two vectors, but m of them).

Definition 3.17 In the vector space L, let x1,x2, . . . ,xm be m vectors. A vector y
is called a linear combination of these m vectors if

y = α1x1 + α2x2 + · · · + αmxm, (3.4)

for some scalars α1, α2, . . . , αm.

The collection of all vectors that are linear combinations of some given vectors
x1,x2, . . . ,xm, that is, those having the form (3.4) for all possible α1, α2, . . . , αm,
clearly satisfies the definition of a subspace. This subspace is called the linear span
of the vectors x1,x2, . . . ,xm and is denoted by 〈x1,x2, . . . ,xm〉. It is clear that

〈x1,x2, . . . ,xm〉 = 〈x1〉 + 〈x2〉 + · · · + 〈xm〉. (3.5)

Definition 3.18 Vectors x1,x2, . . . ,xm are called linearly dependent if there exists
a linear combination (3.4) equal to 0 not all of whose coefficients α1, α2, . . . , αm are
equal to zero. Otherwise, x1,x2, . . . ,xm are said to be linearly independent.

Thus vectors x1,x2, . . . ,xm are linearly dependent if for some scalars α1, α2,

. . . , αm, one has

α1x1 + α2x2 + · · · + αmxm = 0, (3.6)

with at least one αi not equal to 0. For example, the vectors x1 and x2 = −x1 are
linearly dependent. Conversely, the vectors x1,x2, . . . ,xm are linearly independent
if (3.6) holds only for α1 = α2 = · · · = αm = 0. In this case, the sum (3.5) is a direct
sum, that is,

〈x1,x2, . . . ,xm〉 = 〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xm〉.
Here is a useful reformulation: Vectors x1,x2, . . . ,xm are linearly dependent if

and only if one of them is a linear combination of the others. Indeed, if

xi = α1x1 + · · · + αi−1xi−1 + αi+1xi+1 + · · · + αmxm, (3.7)

then we have the relationship (3.6) with αi = −1. Conversely, if in (3.6), the coeffi-
cient αi is not equal to 0, then if we transfer the term αixi to the right-hand side and
multiply both sides of the equality by the scalar −α−1

i , we obtain a representation
of xi as a linear combination x1, . . . ,xi−1,xi+1, . . . ,xm.

We are finally in a position to formulate the main definition of this section (and
perhaps of the entire chapter).
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Definition 3.19 The dimension of a vector space L is the largest number of linearly
independent vectors in the space, if such a number exists. The dimension of a vector
space is denoted by dim L, and if the greatest number of linearly independent vectors
is finite, the space L is said to be finite-dimensional. If there is no maximum number
of linearly independent vectors in L, then the space is said to be infinite-dimensional.
The dimension of the vector space (0) is by definition equal to zero.

Thus the dimension of a vector space is equal to the natural number n if the
space contains n linearly independent vectors and every set of m vectors for m > n

is linearly dependent. A vector space is infinite-dimensional if there is a collection
of n linearly independent vectors for every natural number n. Employing standard
terminology, we shall call a space of dimension 1 a line and a space of dimension 2
a plane.

Example 3.20 It is well known from elementary geometry (or from a course in
analytic geometry) that vectors on a line, in the plane, or in the physical space that
surrounds us form vector spaces of dimension 1, 2, and 3. This is the principal
intuitive basis of the general definition of dimensionality.

Example 3.21 The space of all polynomials in the variable t is clearly infinite-
dimensional, since for an arbitrary number n, the polynomials 1, t, t2, . . . , tn−1 are
linearly independent. The space of all continuous functions on the interval [a, b] is
a fortiori infinite-dimensional.

The dimension of a vector space L depends not only on the set itself whose ele-
ments are the vectors of L, but also on the field over which it is defined. This will be
made clear in the following examples.

Example 3.22 Let L1 be the space whose vectors are the complex numbers, defined
over the field C. The operations of vector addition and multiplication by a scalar will
be defined as the usual operations of addition and multiplication of complex num-
bers. Then it is easily seen from the definition that dim L1 = 1. If we now consider
the vector space L2 likewise consisting of the complex numbers, but defined over the
field R, then we obtain dim L2 = 2. This, as we shall see, follows from the fact that
every complex number is uniquely defined by a pair of real numbers (its real and
imaginary parts). The frequently encountered expression “complex plane” implies
the two-dimensional space L2 over the field R, while the expression “complex line”
indicates the one-dimensional space L1 over the field C.

Example 3.23 Let L be the vector space consisting of the real numbers, but defined
over the field Q of rational numbers (it is easy to see that all the conditions for the
definition of a vector space are satisfied). In this case, in a linear combination (3.4),
vectors xi and y are real numbers, while αi is a rational number. By properties of
sets of numbers proved in a course in real analysis, it follows that the space L is
infinite-dimensional. Indeed, if the dimension of L were some finite number n, then
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as we shall prove below, it would imply that there exist numbers x1, . . . ,xn ∈ R

such that an arbitrary y ∈ R could be written as a linear combination (3.4) with
suitable coefficients α1, . . . , αn from the field Q. But that would imply that the set
of real numbers is countable, which, as is known from real analysis, is not the case.

It is obvious that the dimension of a subspace L′ of a vector space L cannot be
greater than the dimension of the entire space L.

Theorem 3.24 If the dimension of a subspace L′ of a vector space L is equal to the
dimension of L, then the subspace L′ is equal to all of L.

Proof Suppose dim L′ = dim L = n. Then in L′ one could find n linearly independent
vectors x1, . . . ,xn. If L′ �= L, then in L there would be some vector x /∈ L′. Since
dim L = n, it follows that any n + 1 vectors in this space are linearly dependent.
In particular, the vectors x1, . . . ,xn,x are linearly dependent. That is, there is a
relationship

α1x1 + · · · + αnxn + αx = 0

with not all coefficients equal to zero. If we had α = 0, then this would yield the
linear dependence of the vectors x1, . . . ,xn, which are linearly independent by as-
sumption. This means that α �= 0 and x = β1x1 + · · · + βnxn, βi = −α−1αi , from
which it follows that x is a linear combination of the vectors x1, . . . ,xn. It clearly
follows from the definition of a subspace that a linear combination of vectors in L′
is itself a vector in L′. Hence we have x ∈ L′, and L′ = L. �

If the dimension of a vector space L is finite, dim L = n, and a subspace L′ ⊂ L
has dimension n − 1, then L′ is called a hyperplane in L.

There is a defect in the definition of dimension given above: it is not effective.
Theoretically, in order to determine the dimension of a vector space, it would be
necessary to look at all systems of vectors x1, . . . ,xm for various m in the space
and determine whether each is linearly independent. With such a method, it is not
so simple to determine the dimension of the row space of length n or of the space
of polynomials of degree less than or equal to n. Therefore, we shall investigate the
notion of dimension in greater detail.

Definition 3.25 Vectors e1, . . . , en of a vector space L are called a basis if they
are linearly independent and every vector in the space L can be written as a linear
combination of these vectors.

Thus if e1, . . . , en is a basis of the space L, then for an arbitrary vector x ∈ L
there exists an expression of the form

x = α1e1 + α2e2 + · · · + αnen. (3.8)

Theorem 3.26 For an arbitrary vector x, the expression (3.8) is unique.
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Proof This is a direct consequence of the fact that the vectors e1, . . . , en form a
basis. Let us assume that there are two expressions

x = α1e1 + α2e2 + · · · + αnen, x = β1e1 + β2e2 + · · · + βnen.

Subtracting one equality from the other, we obtain

(α1 − β1)e1 + (α2 − β2)e2 + · · · + (αn − βn)en = 0.

But since the vectors e1, . . . , en form a basis, then by definition, they are linearly
independent. From this it follows that α1 = β1, α2 = β2, . . . , αn = βn, as was to be
proved. �

Corollary 3.27 If e1, . . . , en is a basis of the vector space L, then L can be written
in the form

L = 〈e1〉 ⊕ 〈e2〉 ⊕ · · · ⊕ 〈en〉.

Definition 3.28 The numbers α1, . . . , αn in the expression (3.8) are called the co-
ordinates of the vector x with respect to the basis e1, . . . , en (or coordinates in that
basis).

Example 3.29 An arbitrary vector e �= 0 on a line (that is, a one-dimensional vector
space) forms a basis of the line. For an arbitrary vector x on the same line, we
have the expression (3.8), which in the given case takes the form x = αe with some
scalar α. This α is the coordinate (in this case the only one) of the vector x in the
basis e. If e′ �= 0 is another vector on the same line, then it provides another basis.
We have seen that e′ = ce for some scalar c �= 0 (since e′ �= 0). Therefore, from the
relationship x = αe we obtain that x = αc−1e′. Thus in the basis e′, the coordinate
of the vector x is equal to αc−1.

Thus we have seen that the coordinates of a vector x depend not only on the vec-
tor itself, but on the basis that we use (in the general case, e1, . . . , en). Consequently,
the coordinates of a vector are not an “intrinsic geometric” property. The situation
here is similar to the measurement of physical quantities: the length of a line seg-
ment or the mass of a body. Neither the one nor the other can be characterized by a
number. It is necessary as well to have a unit of measurement: in the first case, the
meter, centimeter, etc.; in the second, the kilogram, gram, etc. We shall encounter
such a phenomenon repeatedly: some object (such as, for example, a vector) cannot
be defined “in and of itself” by some set or other of numbers; rather, something
similar to a unit of measurement (in our case, a basis) must be chosen. Here, there
are always two possible points of view: either to choose some method of associat-
ing numbers with the object or to limit oneself to the study of its “purely intrinsic”
properties, independent of the method of association. For example, in physics, we
are interested in physical quantities themselves, but the laws of nature are usually
expressed in the form of mathematical relationships among the numbers that char-
acterize them. We will try to reconcile both points of view after defining how the
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numbers that characterize the object change under different methods of associating
numbers with the object. In particular, in Sect. 3.4, we shall consider the question
of how the coordinates of a vector change under a change of basis.

In terms of the coordinates of vectors (relative to an arbitrary basis e1, . . . , en),
it is easy to express the operations that enter into the definition of a vector space,
namely the addition of vectors and the multiplication of a vector by a scalar. Namely,
if x and y are two vectors, and

x = α1e1 + · · · + αnen, y = β1e1 + · · · + βnen,

then

x + y = (α1e1 + · · · + αnen) + (β1e1 + · · · + βnen)

= (α1 + β1)e1 + · · · + (αn + βn)en, (3.9)

and for an arbitrary scalar α,

αx = α(α1e1 + · · · + αnen) = (αα1)e1 + · · · + (ααn)en, (3.10)

so that the coordinates of vectors under addition are added, and under multiplication
by a scalar, they are multiplied by that scalar.

It follows from the definition of a basis that if dim L = n and e1, . . . , en is any set
of n linearly independent vectors in L, then they form a basis of L. Indeed, it suffices
to verify that an arbitrary vector x ∈ L can be written as a linear combination of
these vectors. But from the definition of dimension, n + 1 vectors x, e1, . . . , en are
linearly dependent, that is,

βx + α1e1 + α2e2 + · · · + αnen = 0

for some scalars β,α1, α2, . . . , αn. In this case, β �= 0, for otherwise, this would
contradict the linear independence of the vectors forming the basis. But then

x = −β−1α1e1 − β−1α2e2 − · · · − β−1αnen,

which was to be proved.
From the definition, it follows that if the dimension of a vector space L is equal

to n, then there exist n linearly independent vectors in L, which by what we have
proved, form a basis. Now we shall establish a more general fact.

Theorem 3.30 If e1, . . . , em are linearly independent vectors in a vector space L of
finite dimension n, then this set of vectors can be extended to a basis of L, that is,
there exist vectors ei , m < i ≤ n, such that e1, . . . , em, em+1, . . . , en is a basis of L.

Proof If the vectors e1, . . . , em already form a basis, then m = n, and the theo-
rem is proved. If they do not form a basis, then clearly m < n, and there exists a
vector em+1 in L that is not a linear combination of e1, . . . , em. Thus the vectors
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e1, . . . , em+1 are linearly independent. Indeed, if they were linearly dependent, we
would have the relationship

α1e1 + · · · + αmem + αm+1em+1 = 0, (3.11)

in which not all the α1, . . . , αm+1 were equal to zero. Now we must have αm+1 �= 0,
since otherwise we would have to infer that the vectors e1, . . . , em were linearly de-
pendent. But then from (3.11) we obtain that em+1 = β1e1 + · · · + βmem, where
βi = −α−1

m+1αi , that is, the vector em+1 is a linear combination of the vectors
e1, . . . , em, contradicting our assumption.

The same reasoning can be applied to the system of vectors e1, . . . , em+1. Con-
tinuing in this way, we will obtain a system containing an ever increasing number of
linearly independent vectors, and sooner or later, we will have to stop the process,
since the dimension of the space L is finite. But then every vector of the space L will
be a linear combination of the linearly independent vectors of our enlarged system.
That is, we will have produced a basis. �

In the situation under consideration in Theorem 3.30, we shall say that the sys-
tem of vectors e1, . . . , em has been augmented to the basis e1, . . . , en. As an easy
verification shows, this is equivalent to the relationship

〈e1, . . . , en〉 = 〈e1, . . . , em〉 ⊕ 〈em+1, . . . , en〉. (3.12)

Corollary 3.31 For an arbitrary subspace L′ ⊂ L of the finite-dimensional vector
space L, there exists a subspace L′′ ⊂ L such that L = L′ ⊕ L′′.

Proof It suffices to take any basis e1, . . . , em of L′, augment it to a basis e1, . . . , en

of the space L, and set L = 〈e1, . . . , en〉, L′ = 〈e1, . . . , em〉, and L′′ = 〈em+1, . . . , en〉
in (3.12). �

We shall now prove an assertion that is the central point of the entire theory.
Therefore, we shall present two proofs (although they are, in fact, based on the
same principle).

Lemma 3.32 More than n linear combinations of n vectors in an arbitrary vector
space are of necessity linearly dependent.

Proof First proof. Let us write down explicitly just what has to be proved. Suppose
we are given n vectors x1, . . . ,xn and m linear combinations of them y1, . . . ,ym,
where m > n. Then we have the relationships

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y1 = a11x1 + a12x2 + · · · + a1nxn,

y2 = a21x1 + a22x2 + · · · + a2nxn,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ym = am1x1 + am2x2 + · · · + amnxn

(3.13)
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for certain scalars aij . We now have to find scalars α1, . . . , αm, not all of them equal
to zero, such that

α1y1 + α2y2 + · · · + αmym = 0.

Substituting here (3.13) and collecting like terms, we obtain

(α1a11 + α2a21 + · · · + αmam1)x1 + (α1a12 + α2a22 + · · · + αmam2)x2

+ · · · + (α1a1n + α2a2n + · · · + αmamn)xn = 0.

This equality will be satisfied if all the coefficients of the vectors x1, . . . ,xn are
equal to zero, that is, if the equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a11α1 + a21α2 + · · · + am1αm = 0,

a12α1 + a22α2 + · · · + am2αm = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a1nα1 + a2nα2 + · · · + amnαm = 0,

are satisfied. Since m > n by assumption, we have n homogeneous equations in
more than n unknowns, namely α1, . . . , αm. By Corollary 1.11, this system has a
nontrivial solution α1, . . . , αm, which gives the assertion of the lemma.

Second proof. This proof will be by induction on n and based on formula (3.13).
The base case n = 1 of the induction is obvious: any m vectors proportional to the
given vector x1 will be linearly dependent if m > 1.

Now let us consider the case of arbitrary n > 1. In formula (3.13), suppose that
the coefficient a11 is not equal to 0. We may make this assumption with no loss
of generality. Indeed, if in formula (3.13), all coefficients satisfy aij = 0, then all
the vectors y1, . . . ,ym are equal to 0, and the theorem is true (trivially). But if
at least one coefficient aij is not equal to 0, then by changing the numeration of
the vectors x1, . . . ,xn and y1, . . . ,ym, we can move this coefficient to the upper
left-hand corner and assume that a11 �= 0. Let us now subtract from the vectors
y2, . . . ,ym the vector y1 with a coefficient such that in the relationships (3.13),
the vector x1 is eliminated. After this, we obtain the vectors y2 − γ2y1, . . . ,ym −
γmy1, where γ2 = a−1

11 a21, . . . , γm = a−1
11 am1. These m−1 vectors are already linear

combinations of the n−1 vectors x2, . . . ,xn. Since we are using induction on n, we
may assume the lemma to be true in this case. This means that there exist numbers
α2, . . . , αm, not all zero, such that α2(y2 − γ2y1) + · · · + αm(ym − γmy1) = 0, that
is,

−(γ2α2 + · · · + γmαm)y1 + α2y2 + · · · + αmym = 0,

which means that the vectors y1, . . . ,ym are linearly dependent. �

It was apparent that in the second proof, we used the method of Gaussian elimi-
nation, which was used to prove Theorem 1.10, which served as a basis of the first
proof. Thus both proofs are based on the same idea.
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The connection between the notions of basis and dimension is made apparent in
the following result.

Theorem 3.33 If a vector space L has a basis of n vectors, then its dimension is n.

Proof The proof of the theorem follows easily from the lemma. Let e1, . . . , en be a
basis of the space L. We shall show that dim L = n. In this space, there are n linearly
independent vectors, for instance, the vectors e1, . . . , en themselves. And since an
arbitrary vector of L is a linear combination of the vectors of a basis, then by the
lemma, there cannot exist a greater number of linearly independent vectors. �

Corollary 3.34 Theorem 3.33 shows that every basis of a (finite-dimensional) vec-
tor space consists of the same number of vectors equal to the dimension of the space.
Therefore to determine the dimension of a vector space, it suffices to find any basis
in that space.

As a rule, this is a relatively easy task. For example, it is clear that in the space of
polynomials (in the variable t) of degree at most n, there is a basis consisting of the
polynomials 1, t, t2, . . . , tn. This implies that the dimension of the space is n + 1.

Example 3.35 Consider the vector space K
n of rows of length n consisting of ele-

ments of an arbitrary field K. In this space, there is a basis consisting of the rows

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e1 = (1,0,0, . . . ,0),

e2 = (0,1,0, . . . ,0),

. . . . . . . . . . . . . . . . . .

en = (0,0,0, . . . ,1).

(3.14)

In Sect. 1.1, we verified in the proof of Theorem 1.3 that every row of length n is a
linear combination of these n rows. The same reasoning shows that these rows are
linearly independent. Indeed, suppose that α1e1 + · · ·+αnen = 0. As we have seen,
α1e1 +· · ·+αnen is equal to (α1, . . . , αn). This means that α1 = · · · = αn = 0. Thus
the dimension of the space K

n is n.

Example 3.36 Let M be an arbitrary set. Let us denote by F(M) the collection of all
functions on M taking values in some field (the real numbers, complex numbers, or
an arbitrary field K). The set F(M) becomes a vector space if for f 1 ∈ F(M) and
f 2 ∈ F(M), we define the sum and multiplication by a scalar α using the formulas

(f 1 + f 2)(x) = f 1(x) + f 2(x), (αf )(x) = αf (x)

for arbitrary x ∈ M .
Suppose that the set M is finite. Let us denote by δx(y) the function that is equal

to 1 for y = x and is 0 for all y �= x. Functions δx(y) are called delta functions.
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We shall show that they constitute a basis of the set F(M). Indeed, for any function
f ∈ F(M) we have the obvious equality

f (y) =
∑

x∈M

f (x)δx(y), (3.15)

from which it follows that an arbitrary function in the space F(M) can be expressed
as a linear combination of the δx , x ∈ M . It is clear that the set of all delta functions
is linearly independent, that is, they form a basis of the vector space F(M). Since
the number of functions in this collection is equal to the number of elements of the
set M , the set F(M) is finite-dimensional, and dimF(M) is equal to the number
of elements in M . In the case that M = Nn (see the definition on p. xi), then any
function f ∈ F(Nn) is uniquely determined by its values f (1), . . . ,f (n), which
are its coordinates in the decomposition (3.15) with respect to the basis δx , x ∈ M .
If we set ai = f (i), then the numbers (a1, . . . , an) form a row, and this shows that
the vector space F(Nn) coincides with the space K

n. In particular, the basis of the
space F(Nn) consisting of the delta functions coincides with the basis (3.14) of the
space K

n.

In many cases, Theorem 3.33 provides a simple method for finding the dimension
of a vector space.

Theorem 3.37 The dimension of a vector space 〈x1, . . . ,xm〉 is equal to the maxi-
mal number of linearly independent vectors among the vectors x1, . . . ,xm.

Therefore, even though the definition of dimension requires the consideration of
all the vectors in the space 〈x1, . . . ,xm〉, Theorem 3.37 makes it possible to limit
consideration to only the vectors x1, . . . ,xm.

Proof of Theorem 3.37 Let us set L′ = 〈x1, . . . ,xm〉 and define by l the maximum
number of linearly independent vectors among x1, . . . ,xm. Changing the numera-
tion if necessary, we may suppose that the first l vectors x1, . . . ,xl are linearly in-
dependent. Let L′′ = 〈x1, . . . ,xl〉. It is clear that x1, . . . ,xl form a basis of the space
L′′, and by Theorem 3.33, dim L′′ = l. We shall prove that L′′ = L′, which will give us
the result of Theorem 3.37. If l = m, then this is obvious. Suppose, then, that l < m.
Then by our assumption, for any k = l +1, . . . ,m, the vectors x1, . . . ,xl ,xk are lin-
early dependent, that is, there is a linear combination α1x1 + · · ·+ αlxl + αkxk = 0
in which not all αi are equal to zero. And furthermore, it is necessary that αk �= 0,
since otherwise, we would obtain the linear dependence of the vectors x1, . . . ,xl ,
which contradicts the hypothesis. Then

xk = −α−1
k α1x1 − α−1

k α2x2 − · · · − α−1
k αlxl ,

that is, the vector xk is in L′′. We have shown this for all k > l, but by construction, it
is also true for k ≤ l. This means that all vectors xk are in the space L′′, and hence so
are all linear combinations of them. Therefore, not only do we have L′′ ⊂ L′ (which
is obvious by construction), but L′ ⊂ L′′, which shows that L′′ = L′, as desired. �
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Theorem 3.38 If L1 and L2 are two finite-dimensional vector spaces, then

dim(L1 ⊕ L2) = dim L1 + dim L2.

Proof Let dim L1 = r , dim L2 = s, let e1, . . . , er be a basis of the space L1, and let
f 1, . . . ,f s be a basis of the space L2. We shall show that the collection of r + s vec-
tors e1, . . . , er , and f 1, . . . ,f s forms a basis of the space L1 ⊕ L2. By the definition
of direct sum, every vector x ∈ L1 ⊕ L2 can be expressed in the form x = x1 + x2,
where xi ∈ Li . But the vector x1 is a linear combination of the vectors e1, . . . , er ,
while the vector x2 is a linear combination of the vectors f 1, . . . ,f s . As a result,
we obtain a representation of the vector x as a linear combination of the r + s vec-
tors e1, . . . , er ,f 1, . . . ,f s . The linear independence of these vectors is just as easily
verified. Suppose there exists a relationship

α1e1 + · · · + αrer + β1f 1 + · · · + βsf s = 0.

We set x1 = α1e1 + · · · + αrer and x2 = β1f 1 + · · · + βsf s . Then we have the
equality x1 + x2 = 0 with xi ∈ Li . From this, by the definition of the direct sum,
it follows that x1 = 0 and x2 = 0. From the linear independence of the vectors
e1, . . . , er , it follows that α1 = 0, . . . , αr = 0, and similarly, β1 = 0, . . . , βs = 0. �

Corollary 3.39 For finite-dimensional spaces L1,L2, . . . ,Lk for arbitrary k ≥ 2, we
have

dim(L1 ⊕ L2 ⊕ · · · ⊕ Lk) = dim L1 + dim L2 + · · · + dim Lk.

Proof The assertion follows readily from Theorem 3.38 by induction on k. �

Corollary 3.40 If L1, . . . ,Lr and L are vector spaces such that L = L1 + · · · + Lr ,
and if dim L = dim L1 + · · · + dim Lr , then L = L1 ⊕ · · · ⊕ Lr .

Proof We select a basis in each of the Li and combine them into a system of vec-
tors e1, . . . , en. By assumption, the number n of vectors in this system is equal to
dim L, and L = 〈e1, . . . , en〉. By Theorem 3.37, the vectors e1, . . . , en are linearly
independent, and this implies that L = L1 ⊕ · · · ⊕ Lr . �

These considerations make it possible to give a more visual, geometric, char-
acterization of the notion of linear dependence. Namely, let us prove that vectors
x1, . . . ,xm are linearly dependent if and only if they are contained in a subspace L′
of dimension less than m.

Indeed, let us denote by l the largest number of linearly independent vectors
among x1, . . . ,xm. Let us assume that these independent vectors are x1, . . . ,xl and
set L′ = 〈x1, . . . ,xl〉. Then for l = m, the vectors x1, . . . ,xm are linearly indepen-
dent, and our assertion follows from the definition of dimension. If l < m, then all
the vectors x1, . . . ,xm are contained in the subspace L′, whose dimension, by The-
orem 3.33, is l, and the assertion is correct.
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Using the concepts introduced thus far, it is possible to prove a useful general-
ization of Theorem 3.38.

Theorem 3.41 For any two finite-dimensional vector spaces L1 and L2, one has the
equality

dim(L1 + L2) = dim L1 + dim L2 − dim(L1 ∩ L2). (3.16)

Theorem 3.38 is obtained as a simple corollary of Theorem 3.41. Indeed, if L1 +
L2 = L1 ⊕ L2, then by Corollary 3.15, the intersection L1 ∩ L2 is equal to (0), and it
remains only to use the fact that dim(0) = 0.

Proof of Theorem 3.41 Let us set L0 = L1 ∩ L2. From Corollary 3.31, it follows that
there exist subspaces L′

1 ⊂ L1 and L′
2 ⊂ L2 such that

L1 = L0 ⊕ L′
1, L2 = L0 ⊕ L′

2. (3.17)

Formula (3.16) follows easily from the equality L1 + L2 = L0 ⊕ L′
1 ⊕ L′

2. Indeed,
since L0 = L1 ∩ L2, then in view of relationship (3.17) and Theorem 3.38, we obtain
L1 + L2 = L1 ⊕ L′

2, and therefore,

dim(L1 + L2) = dim L1 + dim L′
2 = dim L1 + dim L2 − dim L0,

which yields relationship (3.16).
Let us prove that L1 + L2 = L0 ⊕ L′

1 ⊕ L′
2. It is clear that each subspace L0,L′

1,L′
2

is contained in L1 + L2, so that their sum L0 + L′
1 + L′

2 is also contained in L1 + L2.
But an arbitrary vector z ∈ L1 + L2 can be represented in the form z = x + y, where
x ∈ L1, y ∈ L2, and in view of relationship (3.17), we have the representations x =
u + v and y = u′ + w, where u,u′ ∈ L0, v ∈ L′

1, w ∈ L′
2, from which we obtain

z = x + y = (u + u′) + v + w, and this means that the vector z is contained in
L0 + L′

1 + L′
2. From this, it follows that

L1 + L2 = L0 + L′
1 + L′

2 = L1 + L′
2.

But L1 ∩ L′
2 = (0), since the vector x ∈ L1 ∩ L′

2 is contained both in L1 ∩ L2 = L0 and
in L′

2, while in view of (3.17), the intersection L0 ∩ L′
2 is equal to (0). As a result,

we obtain the required equality

L1 + L2 = (
L0 ⊕ L′

1

)+ L′
2 = (

L0 ⊕ L′
1

)⊕ L′
2 = L0 ⊕ L′

1 ⊕ L′
2,

which, as we have seen, proves Theorem 3.41. �

Corollary 3.42 Let L1 and L2 be subspaces of a finite-dimensional vector space L.
Then from the inequality dim L1 + dim L2 > dim L, it follows that L1 ∩ L2 �= (0), that
is, the subspaces L1 and L2 have a nonzero vector in common.
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Indeed, in this case, L1 +L2 ⊂ L, which means that dim(L1 +L2) ≤ dim L. Taking
this into account, we obtain from (3.16) that

dim(L1 ∩ L2) = dim L1 + dim L2 − dim(L1 + L2) ≥ dim L1 + dim L2 − dim L > 0,

from which it follows that L1 ∩ L2 �= (0).
For example, two planes passing through the origin in three-dimensional space

have a straight line in common.
We shall now obtain an expression for the dimension of a subspace 〈a1, . . . ,am〉

using the theory of determinants. Let a1, . . . ,am be vectors in the space L, and let
e1, . . . , en be some basis of L. We shall write the coordinates of the vector ai in this
basis as the ith row of a matrix A:

A =

⎛

⎜⎜⎜
⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎞

⎟⎟⎟
⎠

.

Theorem 3.43 The dimension of the vector space 〈a1, . . . ,am〉 is equal to the rank
of the matrix A.

Proof The linear dependence of the vectors a1, . . . ,ak for k ≤ m is equivalent to
the linear dependence of the rows of the matrix A consisting of the same numbers.
In Theorem 2.41 we proved that if the rank of a matrix is equal to r , then all of
its rows are linear combinations of some collection of r of its rows. From this it
follows already that dim〈a1, . . . ,am〉 ≤ r . But in fact, from the proof of the same
Theorem 2.41, it follows that for such a collection of r rows, one may take any r

rows of the matrix in which there is a nonzero minor of order r (see the remark
following Theorem 2.41). Let us show that such a collection of r rows is linearly
independent, from which we will already have a proof of Theorem 3.43. We may
assume that a nonzero minor Mr is located in the first r columns and first r rows
of the matrix A. We then have to establish the linear independence of the vectors
a1, . . . ,ar . If we assume that α1a1 + · · · + αrar = 0, then if we focus attention on
only the first r coordinates of the vectors, we obtain r homogeneous linear equations
in the unknown coefficients α1, . . . , αr . It is easy to see that the determinant of the
matrix of this system is equal to Mr �= 0, and as a consequence, it has a unique solu-
tion, which is the zero solution: α1 = 0, . . . , αr = 0. That is, the vectors a1, . . . ,ar

are indeed linearly independent. �

In the past, Theorem 3.43 was formulated in the following form, which is also
sometimes useful. Consider the vector space Kn of rows of length n (where K is the
field of real numbers, the field of complex numbers, or an arbitrary field). Then the
vectors ai will be rows of length n (in our case, the rows of the matrix A). From the
proof of Theorem 3.43 we have at once the following corollary.
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Fig. 3.4 Hyperplanes in a
vector space

Corollary 3.44 The rank of a matrix A is equal to the largest number of linearly
independent rows of A.

From this, we obtain the following unexpected result.

Corollary 3.45 The rank of a matrix A is also equal to the largest number of lin-
early independent columns of A.

This follows at once from the definition of the rank of a matrix and Theorem 2.32.
To conclude this section, let us examine in greater detail the case of real vector

spaces, and to this end, introduce some important notions that will be used in the
sequel.

Let L′ be a hyperplane in the finite-dimensional vector space L, that is, dim L′ =
dim L − 1. Then this hyperplane divides L into two parts, as shown in Fig. 3.4 for
the case of a line and a plane.

Indeed, since L′ �= L, there exists a vector e ∈ L, e /∈ L′. From this, it follows that
L = L′ ⊕ 〈e〉. For according to the choice of e, the intersection L′ ∩ 〈e〉 is equal to
(0), and by Theorem 3.38, we have the equality

dim
(
L′ ⊕ 〈e〉) = dim L′ + 1 = dim L,

from which we obtain, with the help of Theorem 3.24, that L′ ⊕ 〈e〉 = L. Thus an
arbitrary vector x ∈ L can be uniquely expressed in the form

x = αe + u, u ∈ L′, (3.18)

where α is some scalar. Since the scalars in our case are real, it makes sense to talk
about their sign. The collection of vectors x expressed as in (3.18) for which α > 0
is denoted by L+. Likewise, the set of vectors x of the form (3.18) for which α < 0
is denoted by L−. The sets L+ and L− are called half-spaces of the space L. Clearly,
L \ L′ = L+ ∪ L−.

Of course, our construction depends not only on the hyperplane L′, but also on the
choice of the vector e /∈ L′. It is important to note that with a change in the vector e,
the half-spaces L+ and L− might change, but the pair (L+,L−) will remain as before;
that is, either the spaces do not change at all, or else they exchange places. Indeed,
let e′ /∈ L′ be some other vector. Then it can be represented in the form e′ = λe + v,
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where the number λ is nonzero and v is in L′. This means that e = λ−1(e′ −v). Then
for an arbitrary vector x from (3.18), we obtain, as in (3.18), the representation

x = αλ−1(e′ − v
)+ u = αλ−1e′ + u′, u′ ∈ L′,

where u′ = u − αλ−1v, and we see that in passing from e to e′, the scalar α in the
decomposition (3.18) is multiplied by λ−1. Hence the half-spaces L+ and L− do not
change if λ > 0, and they exchange places if λ < 0.

The above definition of decomposition of a real vector space L by a hyperplane
L′ has a natural interpretation in topological terms (see pp. xvii–xix). Readers not
interested in this aspect of these ideas can skip the following five paragraphs.

If we wish to use topological terminology, then we are going to have to introduce
on L the notion of convergence of a sequence of vectors. We shall do this using the
notion of a metric (see p. xviii). Let us choose in L an arbitrary basis e1, . . . , en, and
for vectors x = α1e1 +· · ·+αnen and y = β1e1 +· · ·+βnen, we define the number
r(x,y) by means of formula

r(x,y) = |α1 − β1| + · · · + |αn − βn|.
It easily follows from the properties of absolute value that all three conditions
in the definition of a metric space are satisfied. Thus the vector space L and all
of its subspaces are metric spaces with the metric r(x,y), and for a sequence
of vectors there is automatically defined the notion of convergence: xk → x as
k → ∞ if r(xk,x) → 0 as k → ∞. In other words, if x = α1e1 + · · · + αnen and
xk = α1ke1 + · · · + αnken, then the convergence xk → x is equivalent to the con-
vergence of the n coordinate sequences: αik → αi for all i = 1, . . . , n. We observe
that in the definition of r(x,y), we have used the coordinates of the vectors x and y

in some basis, and consequently, the metric obtained depends on the choice of ba-
sis. Nevertheless, the notion of convergence does not depend on the choice of basis
e1, . . . , en. This follows easily from the formulas (3.35) relating the coordinates of
a vector in various bases, which will be presented later.

The meaning of a partition L \ L′ = L+ ∪ L− consists in the fact that the metric
space L \ L′ is not path-connected, while L+ and L− are its path-connected compo-
nents.

Indeed, let us suppose that in the metric space L \ L′, there exists a deformation
of the vector x to y, that is, a continuous mapping f : [0,1] → L \ L′ such that
f (0) = x and f (1) = y. Then by formula (3.18), we have the representation

x = αe + u, y = βe + v, f (t) = γ (t)e + w(t), (3.19)

where u,v ∈ L′ and w(t) ∈ L′ for all t ∈ [0,1], and γ (t) is a function taking real
values, continuous in the interval [0,1], and moreover, γ (0) = α and γ (1) = β .

If x ∈ L+ and y ∈ L−, then α > 0 and β < 0, and by properties of continuous
functions known from calculus, γ (τ) = 0 for some 0 < τ < 1. But then the vector
f (τ ) = w(τ ) is contained within the hyperplane L′, and it follows that vectors x and
y cannot be deformed into each other in the set L \ L′. Therefore, the metric space
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Fig. 3.5 Bases assigning one
and the same flag

L \ L′ is not path-connected. But if x,y ∈ L+ or x,y ∈ L−, then in the representa-
tions (3.19) for these vectors, the numbers α and β have the same sign. Then, as is
easily seen, the mapping f (t) = (1 − t)x + ty, t ∈ [0,1], determines a continuous
deformation of x to y in the set L+ or L−, respectively.

From these considerations, it is easy to obtain a proof of the previous assertion
without using any formulas.

If we distinguish one of the two half-spaces L+ and L− (we shall denote the
half-space thus distinguished by L+), then the pair (L,L′) is said to be directed.
For example, in the case of a line (Fig. 3.4(a)), this corresponds to a choice of the
direction of the line L.

Using these concepts, we can obtain a more visual idea of the notion of basis (in
the case of a real vector space).

Definition 3.46 A flag in a finite-dimensional vector space L is a sequence of sub-
spaces

(0) ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Ln = L (3.20)

such that

(a) dim Li = i for all i = 1, . . . , n.
(b) Each pair (Li ,Li−1) is directed.

It is clear that in view of condition (a), the subspace Li−1 is a hyperplane in Li ,
and therefore the above definition of directedness is applicable.

Every basis e1, . . . , en of a space L determines a particular flag. Namely, we set
Li = 〈e1, . . . , ei〉, and to apply directedness to the pair (Li ,Li−1), we select in the
collection of half-spaces L+

i the one determined by the vector ei (clearly, ei /∈ Li−1).
However, we must observe that different bases of the space L can determine one

and the same flag. For example, in Fig. 3.5, the bases (e1, e2) and (e1, e
′
2) determine

the same flag in the plane. But later, in Sect. 7.2, we shall meet a situation in which
there is defined a bijection between the bases of a vector space and its flags (this is
accomplished through the selection of some special bases).

3.3 Linear Transformations of Vector Spaces

Here we shall present a very broad generalization of the notion of linear function,
with which our course began. The generalization occurs in two aspects. First, in
Sect. 1.1, a linear function was defined as a function of rows of length n. Here, we
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shall replace the rows of given length with vectors of an arbitrary vector space L.
Second, the value of the linear function in Sect. 1.1 was considered a number, that
is, in other words, an element of the space R

1 or C1 or K1 for an arbitrary field K.
We shall now replace the numbers with vectors in an arbitrary vector space M. Thus
our definition will include two vector spaces L and M. The reader may consider both
spaces real, complex, or defined over an arbitrary field K, but it must be the same
field for both L and M. In this case, we shall speak about the elements of the field
using the same conventions that we established in Sect. 3.1 for scalars (see p. 82).

Let us recall that a linear function is defined by properties (1.8) and (1.9), pre-
sented in Theorem 1.3 on page 3. The following definition is analogous to this.

Definition 3.47 A linear transformation of a vector space L to another vector space
M is a mapping A : L → M that assigns to each vector x ∈ L some vector A(x) ∈ M
and exhibits the following properties:

A(x + y) = A(x) + A(y),

A(αx) = αA(x)
(3.21)

for every scalar α and all vectors x and y in the space L.

A linear transformation is also called an operator or (only in the case that M = L)
an endomorphism.

Let us note one obvious but useful property that follows directly from the defini-
tions.

Proposition 3.48 Under any linear transformation, the image of the null vector is
the null vector. More precisely, since we may be dealing with two different vector
spaces, we might reformulate the statement in the following form: if A : L → M is a
linear transformation, and 0 ∈ L and 0′ ∈ M are the null vectors in the vector spaces
L and M, then A(0) = 0′.

Proof By the definition of a vector space, for an arbitrary vector x ∈ L, there exists
an additive inverse −x ∈ L, that is, a vector such that x + (−x) = 0, and moreover
(see p. 82), the vector −x is obtained by multiplying x by the number −1. Applying
the linear transformation A to both sides of the equality 0 = x + (−x), then in view
of properties (3.21), we obtain A(0) = A(x)−A(x) = 0′, since for the vector A(x)

of the space M, the vector −A(x) is its additive inverse, and their sum is 0′. �

Example 3.49 For an arbitrary vector space L, the identity mapping defines a linear
transformation E(x) = x, for every x ∈ L, from the space L to itself.

Example 3.50 A rotation of the plane R
2 through some angle about the origin is

a linear transformation (here L = M = R
2). The conditions of (3.21) are clearly

satisfied here.
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Example 3.51 If L is the space of continuously differentiable functions on an in-
terval [a, b], and M is the space of continuous functions on the same interval, and
if for x = f (t), we define A(x) = f ′(t), then the mapping A : L → M is a linear
transformation.

Example 3.52 If L is the space of twice continuously differentiable functions on
an interval [a, b], M is the same space as in the previous example, q(t) is some
continuous function on the interval [a, b], and for x = f (t) we set A(x) = f ′′(t) +
q(t)f (t), then the mapping A : L → M is a linear transformation. In analysis, it is
known as the Sturm–Liouville operator.

Example 3.53 Let L be the space of all polynomials, and for x = f (t), as in Exam-
ple 3.51, we set A(x) = f ′(t). Clearly, A : L → L is a linear transformation (that is,
here we have M = L). But if L is the space of polynomials of degree at most n, and
M is the space of polynomials of degree at most n − 1, then the same formula gives
a linear transformation A : L → M.

Example 3.54 Suppose we are given the representation of a space L as a direct
sum of two subspaces: L = L′ ⊕ L′′. This means that every vector x ∈ L can be
uniquely represented in the form x = x′ +x′′, where x′ ∈ L′ and x′′ ∈ L′′. Assigning
to each vector x ∈ L the term x′ ∈ L′ in this representation gives a mapping P : L →
L′, P (x) = x′. A simple verification shows that P is a linear transformation. It is
called the projection onto the subspace L′ parallel to L′′. In this case, for the vector
x ∈ L, its image P (x) ∈ L′ is called the projection vector of x onto L′ parallel to L′′.
Analogously, for any subset X ⊂ L, its image P (X) ⊂ L′ is called the projection of
X onto L′ parallel to L′′.

Example 3.55 Let L = M and dim L = dim M = 1. Then L = M = 〈e〉, where e is
some nonnull vector and A(e) = αe, where α is a scalar. From the definition of
a linear transformation, it follows directly that A(x) = αx for every vector x ∈ L.
Consequently, such is the general form of all linear transformations A : L → L in
the case dim L = 1.

In the sequel, we shall consider the case that the dimensions of the spaces L and
M are finite. This means that in L, there exists some basis e1, . . . , en, and in M, there
is a basis f 1, . . . ,f m. Then every vector x ∈ L can be written in the form

x = α1e1 + α2e2 + · · · + αnen.

Using the relationship (3.21) several times, we shall obtain that for any linear trans-
formation A : L → M, the image of the vector x is equal to

A(x) = α1A(e1) + α2A(e2) + · · · + αnA(en). (3.22)
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The vectors A(e1), . . . ,A(en) belong to the space M, and by the definition of a
basis, they are linear combinations of the vectors f 1, . . . ,f m, that is,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A(e1) = a11f 1 + a21f 2 + · · · + am1f m,

A(e2) = a12f 1 + a22f 2 + · · · + am2f m,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A(en) = a1nf 1 + a2nf 2 + · · · + amnf m.

(3.23)

On the other hand, the image A(x) of the vector x belonging to the space M has in
the basis f 1, . . . ,f m certain coordinates β1, . . . , βm, that is, it can be written in the
form

A(x) = β1f 1 + β2f 2 + · · · + βmf m, (3.24)

and moreover, such a representation is unique.
Substituting in (3.22) the expression (3.23) for A(ei ) and grouping terms as nec-

essary, we obtain a representation of A(x) in the form

A(x) = α1(a11f 1 + a21f 2 + · · · + am1f m) + · · ·
+ αn(a1nf 1 + a2nf 2 + · · · + amnf m)

= (α1a11 + α2a12 + · · · + αna1n)f 1 + · · ·
+ (α1am1 + α2am2 + · · · + αnamn)f m.

Because of the uniqueness of the decomposition (3.24), we thus obtain expres-
sions for the coordinates β1, . . . , βm of the vector A(x) in terms of the coordinates
α1, . . . , αn of the vector x:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β1 = a11α1 + a12α2 + · · · + a1nαn,

β2 = a21α1 + a22α2 + · · · + a2nαn,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βm = am1α1 + am2α2 + · · · + amnαn.

(3.25)

Formula (3.25) gives us an explicit expression for the action of the linear transfor-
mation A for the chosen coordinates (that is, bases) of the spaces L and M. This
expression represents by itself the linear substitution of variables with the matrix

A =

⎛

⎜⎜⎜
⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎞

⎟⎟⎟
⎠

, (3.26)

consisting of the coefficients that enter into the formula (3.25). The matrix A is of
type (m,n) and is the transpose of the matrix consisting of the coefficients of the
linear combinations in formula (3.23).
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Definition 3.56 The matrix A in (3.26) is called the matrix of the linear transfor-
mation A : L → M given by formula (3.23) in the bases e1, . . . , en and f 1, . . . ,f m.

In other words, the matrix A of the linear transformation A is a matrix whose
ith column consists of the coordinates of the vector A(ei) in the basis f 1, . . . ,f m.
We would like to emphasize that the coordinates are written in the columns, and not
in the rows (which, of course, also would have been possible), which has a number
of advantages. It is clear that the matrix of the linear transformation depends on
both bases e1, . . . , en and f 1, . . . ,f m. The situation here is the same as with the
coordinates of a vector. A linear transformation has no matrix “in and of itself”: in
order to associate a matrix with the transformation, it is necessary to choose bases
in the spaces L and M.

Using matrix multiplication, as defined in Sect. 2.9, one can write formula (3.25)
in a more compact form. To do so, we introduce the following notation: Let α be a
row vector (a matrix of type (1, n)), with coordinates α1, . . . , αn, and let β be a row
vector with coordinates β1, . . . , βn. Similarly, let [α] be a column vector (a matrix
of type (n,1)), consisting of the same coordinates α1, . . . , αn, only now written
vertically, and let [β] be a column vector consisting of β1, . . . , βn, that is,

[α] =
⎛

⎜
⎝

α1
...

αn

⎞

⎟
⎠ , [β] =

⎛

⎜
⎝

β1
...

βn

⎞

⎟
⎠ .

It is clear that α and [α] are interchanged under the transpose operation, that is,
α∗ = [α], and similarly, β∗ = [β]. Recalling the definition of matrix multiplication,
we see that formula (3.25) has the form

[β] = A[α] or β = αA∗. (3.27)

The formulas that we have obtained show that with the chosen bases, a linear
transformation is uniquely determined by its matrix. Conversely, having chosen
bases for the vector spaces L and M in some way, then if we define the mapping
A : L → M with the help of relationships (3.22) and (3.23) with arbitrary matrix
A = (aij ), it is easy to verify that A will be a linear transformation. Therefore, there
exists a bijection between the set L(L,M) of linear transformations L into M and the
set of matrices of type (n,m). It is the choice of bases in the spaces L and M that
determines this correspondence. In the following section, we shall explain precisely
how the matrix of a linear transformation depends on the choice of bases.

We shall denote the space of all linear transformations of the space L into M by
L(L,M). This set can itself be viewed as a vector space if for the mappings A and
B in L(L,M) we define the vector sum and the product of a vector and a scalar α by
the following formulas:

(A + B)(x) = A(x) + B(x),

(αA)(x) = αA(x).
(3.28)
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It is easily checked that A+B and αA are again linear transformations of L into M,
that is, each of them satisfies conditions (3.21), while the operations that we have
defined satisfy conditions (a)–(h) of a vector space. The null vector of the space
L(L,M) is the linear transformation O : L → M, defined by the formula O(x) = 0
for all x ∈ L (in the last equality, 0 denotes, of course, the null vector of the space
M). It is called the null transformation.

For some bases, suppose the matrix A of type (3.26) corresponds to the transfor-
mation A : L → M, while the matrix B of the same type corresponds to the transfor-
mation B : L → M. We now explain how these matrices correspond to the transfor-
mations A + B and αA defined by the conditions (3.28). By (3.23), we have

(A + B)ei = a1if 1 + a2if 2 + · · · + amif m + b1if 1 + b2if 2 + · · · + bmif m

= (a1i + b1i )f 1 + (a2i + b2i )f 2 + · · · + (ami + bmi)f m,

and consequently the matrix A+B corresponds to the transformation A+B. It can
be checked even more simply that the transformation αA corresponds to the matrix
αA. We thus see again that the set of linear transformations L(L,M), or the set of
matrices of type (m,n), is converted into a vector space.

In conclusion, let us consider the composition of mappings that are linear trans-
formations.

Let L,M,N be vector spaces, and let A : L → M and B : M → N be linear trans-
formations. We observe that this is a special case of mappings between arbitrary
sets, and by the general definition (see p. xiv), the composition of mappings B and
A is the mapping BA : L → N given by the formula

(BA)(x) = B
(
A(x)

)
(3.29)

for all x ∈ L. A simple verification shows that BA is a linear transformation: it is
necessary only to verify by substitution into (3.29) that all the relationships (3.21)
are satisfied by BA if they are satisfied for A and B. In particular, in the case
L = M = N we obtain that the composition of linear transformations from L to L is
again a linear transformation from L to L.

Let us assume now that in the vector spaces L, M, and N we have chosen bases
e1, . . . , en, f 1, . . . ,f m, and g1, . . . ,gl . We shall denote the matrix of the linear
transformation A in the bases e1, . . . , en and f 1, . . . ,f m by A, and the matrix of the
linear transformation B in the bases f 1, . . . ,f m and g1, . . . ,gl by B , and we seek
the matrix of the linear transformation BA in the bases e1, . . . , en and g1, . . . ,gl .
To this end, we must substitute the formulas of (3.23) for the transformation A into
analogous formulas for the transformation B:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B(f 1) = b11g1 + b21g2 + · · · + bl1gl ,

B(f 2) = b12g1 + b22g2 + · · · + bl2gl ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B(f m) = b1mg1 + b2mg2 + · · · + blmgl .

(3.30)
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Formulas (3.23) and (3.30) represent two linear replacements in which the vec-
tors play the role of the variables, whereas in other respects, they are no different
from linear replacements of variables as examined by us earlier (see p. 62). Conse-
quently, the result of sequentially applying these replacements will be the same as
in Sect. 2.9, namely linear replacement with the matrix BA; that is, we obtain the
relationship

(BA)(ei ) =
l∑

j=1

cijgj , i = 1, . . . , n,

where the matrix C = (cij ) of the transformation BA is BA. We have thus estab-
lished that the composition of linear transformations corresponds to the multiplica-
tion of their matrices, taken in the same order.

We observe that we have thus obtained a shorter and more natural proof of the
associativity of matrix multiplication (formula (2.52)) in Sect. 2.9. Indeed, the asso-
ciativity of the composition of arbitrary mappings of sets is well known (p. xiv), and
in view of the established connection between linear transformations and their ma-
trices (in whatever selected bases), we obtain the associativity of the matrix product.

The operations of addition and composition of linear transformations are con-
nected by the relationships

A(B + C) = AB + AC, (A + B)C = AC + AC,

called the distributive property. To prove this, one may either use the definitions of
addition and composition defined above together with the well-known property of
the distributivity of the real and complex numbers (or the elements of any set K,
since it derives from the properties of a field) or derive the distributivity of linear
transformations from what was proved in Sect. 2.9 regarding distributivity of ad-
dition and multiplication of matrices (formula (2.53)), again using the connection
established above between a linear transformation and its matrix.

3.4 Change of Coordinates

We have seen that the coordinates of a vector relative to a basis depend on which
basis in the vector space we have chosen. We have seen as well that the matrix of a
linear transformation of vector spaces depends on the choice of bases in both vector
spaces. We shall now establish an explicit form of this dependence both for vectors
and for transformations.

Let e1, . . . , en be a certain basis of the vector space L. By Corollary 3.34, a basis
of the given vector space consists of a fixed number of vectors, equal to dim L.
Let e′

1, . . . , e
′
n be another basis of L. By definition, every vector x ∈ L is a linear

combination of the vectors e1, . . . , en, that is, it can be expressed in the form

x = α1e1 + α2e2 + · · · + αnen (3.31)
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with coefficients αi , which are the coordinates of x in the basis e1, . . . , en. Similarly,
we have the representation

x = α′
1e

′
1 + α′

2e
′
2 + · · · + α′

ne
′
n (3.32)

with coordinates α′
i of the vector x in the basis e′

1, . . . , e
′
n.

Furthermore, each of these vectors e′
1, . . . , e

′
n is itself a linear combination of the

vectors e1, . . . , en, that is,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e′
1 = c11e1 + c21e2 + · · · + cn1en,

e′
2 = c12e1 + c22e2 + · · · + cn2en,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e′
n = c1ne1 + c2ne2 + · · · + cnnen

(3.33)

with some scalars cij . And similarly, each of the vectors e1, . . . , en is a linear com-
bination of e′

1, . . . , e
′
n, that is,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e1 = c′
11e

′
1 + c′

21e
′
2 + · · · + c′

n1e
′
n,

e2 = c′
12e

′
1 + c′

22e
′
2 + · · · + c′

n2e
′
n,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

en = c′
1ne

′
1 + c′

2ne
′
2 + · · · + c′

nne
′
n

(3.34)

for some scalars c′
ij .

Clearly, the collections of coefficients cij and c′
ij in formulas (3.33) and (3.34)

provide the exact same information about the “mutual relationship” between the
bases e1, . . . , en and e′

1, . . . , e
′
n in the space L, and therefore it suffices for us to know

only one (either one will do) of these collections. More detailed information about
the relationship between the coefficients cij and c′

ij will be given below, but first,
we shall deduce a formula that describes the relationship between the coordinates of
the vector x in the bases e1, . . . , en and e′

1, . . . , e
′
n. To this end, we shall substitute

the expressions (3.33) for the vectors e′
i into (3.32). Grouping the requisite terms,

we obtain an expression for the vector x as a linear combination of e1, . . . , en:

x = α′
1(c11e1 + c21e2 + · · · + cn1en) + · · · + α′

n(c1ne1 + c2ne2 + · · · + cnnen)

= (
α′

1c11 + α′
2c12 + · · · + α′

nc1n

)
e1 + · · · + (

α′
1cn1 + α′

2cn2 + · · · + α′
ncnn

)
en.

Since e1, . . . , en is a basis of the vector space L and the coordinates of the vector x

in this space are αi (formula (3.31)), we obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α1 = c11α
′
1 + c12α

′
2 + · · · + c1nα

′
n,

α2 = c21α
′
1 + c22α

′
2 + · · · + c2nα

′
n,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

αn = cn1α
′
1 + cn2α

′
2 + · · · + cnnα

′
n.

(3.35)



3.4 Change of Coordinates 109

Relationships (3.35) are called change-of-coordinate formulas for a vector. Such
a formula represents a linear change of variables, with the help of the matrix C

consisting of the coefficients cij , but in an order different from that in (3.33). In
particular, C is the transpose of the matrix of coefficients (3.33). The matrix C is
called the transition matrix from the basis e′

1, . . . , e
′
n to the basis e1, . . . , en, since

with its help, the coordinates of a vector in the basis e1, . . . , en are expressed in
terms of its coordinates in the basis e′

1, . . . , e
′
n.

Using the product rule for matrices, the formula for the change of coordinates
can be written in a more compact form. To this end, we shall use notation from the
preceding section: α is a row vector consisting of the coordinates α1, . . . , αn, and
[α] is a column vector consisting of the very same coordinates. Keeping in mind the
definition of matrix multiplication (Sect. 2.9), we see that formula (3.35) takes the
form

[α] = C
[
α′] or α = α′C∗. (3.36)

Remark 3.57 It is not difficult to see that the formulas for changing coordinates are
quite similar to the formulas for a linear transformation. More precisely, relation-
ships (3.35) and (3.36) are special cases of (3.25) and (3.27) for m = n, for exam-
ple, if the vector space M coincides with L. This allows an interpretation of changing
coordinates (that is, changing bases) of a vector space L as a linear transformation
A : L → L.

Similarly, if we substitute expressions (3.34) for vectors ei into (3.31), we obtain
the relationship

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α′
1 = c′

11α1 + c′
12α2 + · · · + c′

1nαn,

α′
2 = c′

21α1 + c′
22α2 + · · · + c′

2nαn,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α′
n = c′

n1α1 + c′
n2α2 + · · · + c′

nnαn,

(3.37)

similar to (3.35). Formula (3.37) is also called the substitution formula for coordi-
nates of a vector. It represents the linear substitution of variables with the matrix C′,
which is the transpose of the matrix consisting of the coefficients c′

ij from (3.34).
The matrix C′ is called the transition matrix from the basis e1, . . . , en to the basis
e′

1, . . . , e
′
n. In matrix form, formula (3.37) takes the form

[
α′] = C′[α] or α′ = αC′∗. (3.38)

Using formulas (3.36) and (3.38), one easily establishes the connection between C

and C′.

Lemma 3.58 The transition matrices C and C′ between any two bases of a vector
space are nonsingular and are the inverses of each other. That is, C′ = C−1.

Proof Substituting the expression [α′] = C′[α] into [α] = C[α′], taking into ac-
count the associativity of matrix multiplication, we obtain the equality [α] =
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(CC′)[α]. This equality holds for all column vectors [α] of a given length n, and
therefore, the matrix CC′ on the right-hand side is the identity matrix. Indeed,
rewriting this equality in the equivalent form (CC′ − E)[α] = 0, it becomes clear
that if the matrix CC′ − E contains at least one nonzero element, then there ex-
ists a column vector [α] for which (CC′ − E)[α] �= 0. Thus we conclude that
CC′ = E, from which by definition of the inverse matrix (see Sect. 2.10), it fol-
lows that C′ = C−1. �

We shall now explain how the matrix of a linear transformation depends on the
choice of bases. Suppose that in the bases e1, . . . , en and f 1, . . . ,f m of the vector
spaces L and M the transformation A : L → M has matrix A, the coordinates of the
vector x are denoted by αi , and the coordinates of the vector A(x) are denoted by
βj . Similarly, in the bases e′

1, . . . , e
′
n and f ′

1, . . . ,f
′
m of these vector spaces, the

same transformation A : L → M has matrix A′, the coordinates of the vector x are
denoted by α′

i , and the coordinates of the vector A(x) are denoted by β ′
j .

Let C be the transition matrix from the basis e′
1, . . . , e

′
n to the basis e1, . . . , en,

which is a nonsingular matrix of order n, while D is the transition matrix from the
basis f ′

1, . . . ,f
′
m to the basis f 1, . . . ,f m, which is a nonsingular matrix of order

m (here n and m are the dimensions of the vector spaces L and M). Then by the
change-of-coordinates formula (3.38), we obtain

[
α′] = C−1[α], [

β ′] = D−1[β],
and formula (3.27) of the linear transformation gives us the equalities

[β] = A[α], [
β ′] = A′[α′].

Let us substitute on the right-hand side of the equality [β ′] = D−1[β], the ex-
pression [β] = A[α], and on the left-hand side, the expression [β ′] = A′[α′] =
A′C−1[α], as a result of which we obtain the relationship

A′C−1[α] = D−1A[α]. (3.39)

This line of argument holds for any vector x ∈ L, and hence equality (3.39) holds
for any column vector [α] of length n. Clearly, this is possible if and only if we have
the equality

A′C−1 = D−1A. (3.40)

Indeed, both matrices A′C−1 and D−1A are of type (m,n), and if they were not
equal, then there would be at least one row (with index i between 1 and n) and
one column (with index j between 1 and m) such that the ij th elements of the
matrices A′C−1 and D−1A did not coincide. But then one could easily identify a
column vector [α] for which the equality (3.39) was not satisfied. For example, set
its element αj equal to 1, and all the rest to zero.

Let us note that we could have obtained formula (3.40) by considering the tran-
sition from one basis to another as a linear transformation of vector spaces given
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by multiplication by the transition matrix (see Remark 3.57 above). Indeed, in this
case, we obtain the following diagram, in which each arrow indicates multiplication
of a column vector by the matrix next to it:

[α] C−1−−−−→ [
α′]

A

⏐⏐�
⏐⏐�A′

[β] −−−−→
D−1

[
β ′]

By the definition of matrix multiplication, from the vector [α], we can obtain the
vector [β ′] located in the opposite corner of the diagram in two ways: multiplication
by the matrix A′C−1 and multiplication by the matrix D−1A. Both methods should
give the same result (in such case, we say that the diagram is commutative, and this
is equivalent to equality (3.40)).

We can multiply both sides of (3.40) on the right by the matrix C, obtaining as a
result

A′ = D−1AC, (3.41)

which is called the formula for a change of matrix of a linear transformation.
In the case that the dimensions n and m of the vector spaces L and M coincide,

both matrices A and A′ are square (of order n = m), and for such matrices, one has
the notion of the determinant. Then by Theorem 2.54, from formula (3.41), there
follows the relationship

∣∣A′∣∣ = |D−1| · |A| · |C| = |D|−1 · |A| · |C|. (3.42)

Since C and D are transition matrices, they are nonsingular, and therefore the de-
terminants |A′| and |A| differ from each other through multiplication by the number
|D|−1|C| �= 0. This indicates that if the matrix of a linear transformation of spaces
of the same dimension is nonsingular for some choice of bases, then it will be non-
singular for any other choice of bases for these spaces. Therefore, we may make the
following definition.

Definition 3.59 A linear transformation of spaces of the same dimension is said to
be nonsingular if its matrix (expressed in terms of some choice of bases of the two
spaces) is nonsingular.

There is a special case, which is of greatest importance for a variety of applica-
tions to which Chaps. 4 and 5 will be devoted, in which the spaces L and M coincide
(that is, A is a linear transformation of a vector space into itself and so n = m),
the basis e1, . . . , en coincides with the basis f 1, . . . ,f m, and the basis e′

1, . . . , e
′
n

coincides with f ′
1, . . . ,f

′
m. Consequently, in this case, D = C, and the change-of-

matrix formula (3.41) is converted to

A′ = C−1AC, (3.43)
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and equation (3.42) assumes the very simple form |A′| = |A|. This means that al-
though the matrix of a linear transformation of a vector space L into itself depends
on the choice of basis, its determinant does not depend on the choice of basis. This
circumstance is frequently expressed by saying that the determinant is invariant un-
der a linear transformation of a vector space into itself. In this case, we may give the
following definition.

Definition 3.60 The determinant of a linear transformation A : L → L of a vector
space to itself (denoted by |A|) is the determinant of its matrix A, expressed in terms
of any basis of the space L, that is, |A| = |A|.

3.5 Isomorphisms of Vector Spaces

In this section we shall investigate the case in which a linear transformation A : L →
M is a bijection. We observe first of all that if A is a bijective linear transformation
from L to M, then like any bijective mapping (not necessarily linear), it has an inverse
mapping A−1 : M → L. It is clear that A−1 will also be a linear transformation
from M to L. Indeed, if for the vector y1 ∈ M there is a unique vector x1 ∈ L such
that A(x1) = y1, and for y2 ∈ M there is an analogous vector x2 ∈ L such that
A(x1 + x2) = y1 + y2, then by the definition of inverse mapping, we obtain the
first of conditions (3.21) in the definition of a linear transformation:

A−1(y1 + y2) = x1 + x2 = A−1(y1) + A−1(y2).

Similarly, but even more simply, we can verify the second condition of (3.21), that
is, that A−1(αy) = αA−1(y) for an arbitrary vector y ∈ M and scalar α.

Definition 3.61 Vector spaces L and M between which there exists a bijective linear
transformation A are said to be isomorphic, and the transformation A itself is called
an isomorphism. The fact that vector spaces L and M are isomorphic is denoted by
L � M. If we wish to specify a concrete transformation A : L → M that produces the
isomorphism, then we write A : L→̃M.

The property of being isomorphic defines an equivalence relation on the set of
all vector spaces (see the definition on p. xii). To prove this, we need to verify three
properties: reflexivity, symmetry, and transitivity. Reflexivity is obvious: we have
simply to consider the identity mapping E : L→̃L. Symmetry is also obvious: if
A : L→̃M, then the inverse transformation A−1 is also an isomorphism, that is,
A−1 : M→̃L. Finally, if A : L→̃M and B : M→̃N, then, as is easily verified, the
transformation C = BA is also an isomorphism, that is, C : L→̃N, which estab-
lishes transitivity. Therefore, the set of all vector spaces can be represented as a
collection of equivalence classes of vector spaces whose elements are mutually iso-
morphic.
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Example 3.62 With the choice of basis e1, . . . , en in a vector space L over a field
K, assigning to a vector x ∈ L the row consisting of its coordinates in this basis
establishes an isomorphism between L and the row space Kn. Similarly, the elements
of a row in the form of a column produces an isomorphism between the row space
and the column space (with rows and columns containing the same numbers of
elements). This explains why we use a single symbol for denoting these spaces.

Example 3.63 Through the selection of bases e1, . . . , en and f 1, . . . ,f m in the
spaces L and M of dimensions n and m, we assign to each linear transformation
A : L → M its matrix A. We thereby establish an isomorphism between the space
L(L,M) and the space of rectangular matrices of type (m,n).

Theorem 3.64 Two finite-dimensional vector spaces L and M are isomorphic if and
only if dim L = dim M.

Proof The fact that all vector spaces of a given finite dimension are isomorphic
follows easily from the fact that every vector space L of finite dimension n is iso-
morphic to the space K

n of rows or columns of length n (Example 3.62). Indeed,
let L and M be two vector spaces of dimension n. Then L � K

n and M � K
n, from

which as a result of transitivity and symmetry, we obtain L � M.
We now prove that isomorphic vector spaces L and M have the same dimension.

Let us assume that A : L→̃M is an isomorphism. Let us denote by 0 ∈ L and 0′ ∈ M
the null vectors in the spaces L and M. Recall, by the property of linear transforma-
tions that we proved on p. 102, that A(0) = 0′. Let dim M = m, and let us choose
in M some basis f 1, . . . ,f m. By the definition of isomorphism of a vector space L,
there exist vectors e1, . . . , em such that f i = A(ei ) for i = 1, . . . ,m. We shall prove
that the vectors e1, . . . , em form a basis of the space L, whence it will follow that
dim L = m, completing the proof of the theorem.

First of all, let us show that these vectors are linearly independent. Indeed, if
e1, . . . , em were linearly dependent, then there would exist scalars α1, . . . , αm, not
all equal to zero, such that

α1e1 + α2e2 + · · · + αmem = 0.

But after applying the linear transformation A to both parts of this relationship, in
view of the equality A(0) = 0′, we would obtain

α1f 1 + α2f 2 + · · · + αmf m = 0′,

from which follows α1 = 0, . . . , αm = 0, since by assumption, the vectors
f 1, . . . ,f m are linearly independent.

Let us now prove that every vector x ∈ L is a linear combination of the vectors
e1, . . . , em. Let us set A(x) = y and express y in the form

y = α1f 1 + α2f 2 + · · · + αmf m.
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Applying to both sides of this equality the linear transformation A−1, we obtain

x = α1e1 + α2e2 + · · · + αmem,

as required. We have thus shown that the vectors e1, . . . , em form a basis of the
vector space L. �

Example 3.65 Suppose we are given a system of m homogeneous linear equations
in n unknowns x1, . . . , xn and with coefficients in the field K. As we saw in Exam-
ple 3.8 (p. 84), its solution forms a subspace L′ of the space K

n of rows of length n.
Since we know that the dimension of the space K

n is n, it follows that dim L′ ≤ n.
Let us determine this dimension. To this end, using Theorem 1.15, let us bring our
system into echelon form (1.18). Since the equations of the original system are ho-
mogeneous, it follows that in (1.18), all the equations will also be homogeneous,
that is, all the constant terms bi are equal to 0. Let r be the number of principal un-
knowns, and hence (n− r) is the number of free unknowns. As shown following the
proof of Theorem 1.15, we shall obtain all the solutions of our system by assigning
arbitrary values to the free unknowns and then determining the principal unknowns
from the first r equations. That is, if (x1, . . . , xn) is some solution, then comparing
to it the row of values of the free unknowns (xi1, . . . , xin−r ), we obtain a bijection
between the set of solutions of the system and rows of length n − r . An obvious
verification shows that this relationship is an isomorphism of the spaces Kn−r and
L′. Since dimK

n−r = n − r , then by Theorem 3.64, the dimension of the space L′
is also equal to n − r . Finally, we observe that the number r is equal to the rank of
the matrix of the system (see Sect. 2.8). Therefore, we have obtained the following
result: the space of solutions of a homogeneous linear system of equations has di-
mension n − r , where n is the number of unknowns, and r is the rank of the matrix
of the system.

Let A : L→̃M be an isomorphism of vector spaces L and M of dimension n,
and let e1, . . . , en be a basis of L. Then the vectors A(e1), . . . ,A(en) are linearly
independent. Indeed, if not, we would have the equality

α1A(e1) + · · · + αnA(en) = A(α1e1 + · · · + αnen) = 0′,

from which by the property A(0) = 0′ and that fact that A is a bijection, we obtain
the relationship α1e1 + · · · + αnen = 0, contradicting the definition of basis. Hence
the vectors A(e1), . . . ,A(en) form a basis of the vector space M. It is easy to see that
in these bases, the matrix of the transformation A is the identity matrix of order n,
and the coordinates of an arbitrary vector x ∈ L in the basis e1, . . . , en coincide with
the coordinates of the vector A(x) in the basis A(e1), . . . ,A(en). Consequently, the
transformation A in nonsingular.

A similar argument easily establishes the converse fact that an arbitrary nonsin-
gular linear transformation A : L → M of vector spaces of the same dimension is an
isomorphism.
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Remark 3.66 Theorem 3.64 shows that all assertions formulated in terms of con-
cepts entering the definition of a vector space are equivalent for all spaces of a given
dimension. In other words, there exists a single, unique theory of n-dimensional
vector spaces for a given n. An example of the opposite situation can be found
in Euclidean geometry and the non-Euclidean geometry of Lobachevsky. It is well
known that if we accept all the axioms of Euclid except for the “parallel postulate”
(so-called absolute geometry), then there are two completely different geometries
that satisfy these axioms: Euclid’s and Lobachevsky’s. With vector spaces, such a
situation does not arise.

The definition of an isomorphism under the linear transformation A : L → M
consists of two parts. The first asserts that for an arbitrary vector y ∈ M, there ex-
ists a vector x ∈ L such that A(x) = y, that is, the image A(L) coincides with the
entire space M. The second condition is that the equality A(x1) = A(x2) holds only
for x1 = x2. Since A is a linear transformation, then for the latter condition to be
satisfied, it is necessary that the equality A(x) = 0′ imply x = 0. This motivates the
following definition.

Definition 3.67 The set of vectors in the space L such that A(x) = 0′ is called the
kernel of the linear transformation A.5 In other words, the kernel is the preimage of
the null vector under the mapping A.

It is obvious that the kernel of a linear transformation A : L → M is a subspace
of L, and that its image A(L) is a subspace of M.

Thus to satisfy the second condition in the definition of a bijection, it is necessary
that the kernel A consist of the null vector alone. But this condition is sufficient as
well. Indeed, if for vectors x1 �= x2 the condition A(x1) = A(x2) is satisfied, then
subtracting one side of the equality from the other and applying the linearity of the
transformation A, we obtain A(x1 − x2) = 0′, that is, the vector x1 − x2 is in the
kernel of A. Therefore, the linear transformation A : L → M is an isomorphism if
and only if its image coincides with all of M and its kernel is equal to (0). We shall
now show that if A is a linear transformation of spaces of the same finite dimen-
sion, then an isomorphism results if either one or the other of the two conditions is
satisfied.

Theorem 3.68 If A : L → M is a linear transformation of vector spaces of the same
finite dimension and the kernel of A is equal to (0), then A is an isomorphism.

Proof Let dim L = dim M = n. Let us consider a particular basis e1, . . . , en of the
vector space L. The transformation A maps each vector ei to some vector f i =
A(ei ) of the space M. Then the vectors f 1, . . . ,f n are linearly independent, that is,

5Translator’s note: Another name for kernel that the reader may encounter is null space (since the
kernel is the space of all vectors that map to the null vector).
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they form a basis of the space M. Indeed, from the linearity of the transformation A,
for arbitrary scalars α1, . . . , αn, we have the equality

A(α1e1 + · · · + αnen) = α1f 1 + · · · + αnf n. (3.44)

If α1f 1 + · · · + αnf n = 0′ for some collection of scalars α1, . . . , αn, then from the
condition that the kernel of A is equal to (0), we will have α1e1 + · · · + αnen = 0,
from which it follows, by the definition of a basis, that all the scalars αi are equal
to zero. The relationship (3.44) also shows that the transformation A maps each
vector x ∈ L with coordinates (α1, . . . , αn) in the basis e1, . . . , en into the vector M
with the same coordinates in the corresponding basis f 1, . . . ,f n (the matrix of the
transformation A in such bases is the identity matrix of order n).

By the definition of an isomorphism, it suffices to prove that for an arbitrary
vector y ∈ M, there exists a vector x ∈ L such that A(x) = y. Since the vectors
f 1, . . . ,f n form a basis of the space M, it follows that y can be expressed as a linear
combination of these vectors with certain coefficients (α1, . . . , αn), from which by
the linearity of A it follows that

y = α1f 1 + · · · + αnf n = A(α1e1 + · · · + αnen) = A(x)

with vectors x = α1e1 + · · · + αnen, which completes the proof of the theorem. �

Theorem 3.69 If A : L → M is a linear transformation of vector spaces of the same
finite dimension and the image of A(L) is equal to M, then A is an isomorphism.

Proof Let f 1, . . . ,f n be a basis of the vector space M. By the condition of the
theorem, for each f i , there exists a vector ei ∈ L such that f i = A(ei ). We shall
show that the vectors e1, . . . , en are linearly independent and therefore form a basis
of L. Indeed, if there existed a collection of scalars α1, . . . , αn such that α1e1 +· · ·+
αnen = 0, then by A(0) = 0′ and the linearity of A, we would have the equality

A(α1e1 + · · · + αnen) = α1A(e1) + · · · + αnA(en) = α1f 1 + · · · + αnf n = 0′,

from which by the definition of basis it would follow that αi = 0. That is, the vectors
e1, . . . , en indeed form a basis of the space L.

It follows from the definition of a basis that an arbitrary vector x ∈ L can be
written as x = α1e1 + · · · + αnen. From this, we obtain

A(x) = A(α1e1 + · · · + αnen) = α1A(e1) + · · · + αnA(en)

= α1f 1 + · · · + αnf n.

If A(x) = 0′, then we have α1f 1 + · · · + αnf n = 0′, which is possible only if all
the αi are equal to 0, since the vectors f 1, . . . ,f n form a basis of the space M. But
then, clearly, the vector x = α1e1 +· · ·+αnen equals 0. Therefore, the kernel of the
transformation A consists solely of the null vector, and by Theorem 3.68, A is an
isomorphism. �
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It is not difficult to see that the theorems proved just above give us the following
result.

Theorem 3.70 A linear transformation A : L → M between vector spaces of the
same finite dimension is an isomorphism if and only if it is nonsingular.

In other words, Theorem 3.70 asserts that for spaces of the same finite dimension,
the notion of a nonsingular transformation coincides with that of isomorphism.

With the proof of Theorem 3.68 we have also established one important fact:
a nonsingular linear transformation A : L → M of vector spaces of the same finite
dimension maps a basis e1, . . . , en of the space L to a basis f 1, . . . ,f n of the space
M, and every vector x ∈ L with coordinates (α1, . . . , αn) in the first basis is mapped
to the vector A(x) ∈ M with the same coordinates relative to the second basis. This
clearly follows from formula (3.44).

Thus it is possible to define a nonsingular transformation A : L → M by stating
that it maps a particular basis e1, . . . , en of the space L into a basis f 1, . . . ,f n of the
space M, and an arbitrary vector x ∈ L with coordinates (α1, . . . , αn) with respect
to the basis e1, . . . , en into the vector of M with the same coordinates with respect
to the basis f 1, . . . ,f n. Later, we will make use of this method in the case L = M,
when we will be studying certain special subsets X ⊂ L, primarily quadrics. The
basic idea is that subsets X and Y are mapped into each other using a certain non-
singular mapping A : L → L (that is, Y = A(X)) if and only if there exist two bases
e1, . . . , en and f 1, . . . ,f n of the vector space L such that the condition of the vector
x belonging to the subset X in coordinates relative to the basis e1, . . . , en coincides
with the condition of the same vector belonging to Y in coordinates relative to the
basis f 1, . . . ,f n.

In conclusion, let us return once more to Theorem 1.12, proved in Sect. 1.2, and
Corollary 1.13 (Fredholm alternative; see p. 11). This theorem and corollary are
now completely obvious, obtained as trivial consequences of a more general result.

Indeed, as we saw in Sect. 2.9, a system of n linear equations in n unknowns can
be written in matrix form A[x] = [b], where A is a square matrix of order n, [x] is
a column vector consisting of the unknowns x1, . . . , xn, and [b] is a column vector
consisting of the constants b1, . . . , bn. Let A : L → M be a linear transformation
between vector spaces of the same dimension n, having for some bases e1, . . . , en

and f 1, . . . ,f n, the matrix A. Let b ∈ M be the vector whose coordinates in the
basis f 1, . . . ,f n are equal to b1, . . . , bn. Then we can interpret the linear system
A[x] = [b] as equations

A(x) = b (3.45)

with the unknown vector x ∈ L whose coordinates in the basis e1, . . . , en give the
solution (x1, . . . , xn) to this system.

We have the following obvious alternative: Either the linear transformation
A : L → M is an isomorphism, or else it is not. By Theorem 3.70, the first case
is equivalent to the mapping A being nonsingular. Then the kernel of A is equal to
(0), and we have the image A(L) = M. Consequently, for an arbitrary vector b ∈ M,
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there exists (and indeed, it is unique) a vector x ∈ L such that A(x) = b, that is,
equation (3.45) is solvable. In particular, from this we obtain Theorem 1.12 and its
corollary. In the second case, the kernel of A contains a nontrivial vector (the asso-
ciated homogeneous system has a nontrivial solution), and the image A(L) is not all
of the space M, that is, there exists a vector b ∈ M such that equation (3.45) is not
satisfied (the system A[x] = [b] is inconsistent).

This assertion, that either equation (3.45) has a solution for every right-hand side
or the associated homogeneous equation has a nontrivial solution, holds also in the
case that A is a linear transformation (operator) in an infinite-dimensional space
satisfying a certain special condition. Such transformations occur in particular in
the theory of integral equations, where this assertion is given the name Fredholm
alternative.

3.6 The Rank of a Linear Transformation

In this section we shall look at linear transformations A : L → M without mak-
ing any assumptions about the dimensions n and m of the spaces L and M except
to assume that they are finite. We note that if e1, . . . , en is any basis of the space
L, then the image of A is equal to 〈A(e1), . . . ,A(en)〉. If we choose some basis
f 1, . . . ,f m of the space M and write the matrix of the transformation A with re-
spect to the chosen bases, then its columns will consist of the coordinates of the
vectors A(e1), . . . ,A(en) in the bases f 1, . . . ,f m, and therefore, the dimension
of the image of A is equal to the greatest number of linearly independent vectors
among these columns, that is, the rank of the matrix of the linear transformation A.
Thus the rank of the matrix of a linear transformation is independent of the bases
in which it is written, and therefore, we may speak of the rank of a linear trans-
formation. This allows us to give an equivalent definition of the rank of a linear
transformation that does not depend on the choice of coordinates.

Definition 3.71 The rank of a linear transformation A : L → M is the dimension of
the vector space A(L).

The following theorem establishes a connection between the rank of a linear
transformation and the dimension of its kernel, and it shows a very simple form into
which the matrix of a linear transformation A : L → M can be brought through a
suitable choice of bases of both spaces.

Theorem 3.72 For any linear transformation A : L → M of finite-dimensional vec-
tor spaces, the dimension of the kernel of A is equal to dim L−r , where r is the rank
of A. In the two spaces, it is possible to choose bases in which the transformation
A has a matrix in block-diagonal form

(
Er 0
0 0

)
, (3.46)

where Er is the identity matrix of order r .



3.6 The Rank of a Linear Transformation 119

Proof Let us denote the kernel of the transformation A by L′, and its image A(L)

by M′. We begin by proving the relationship

dim L′ + dim M′ = dim L. (3.47)

By the definition of the rank of a transformation, we have here r = dim M′, and thus
the equality (3.47) gives precisely the first assertion of the theorem.

Let us consider the mapping A′ : L → M′ that assigns to each vector x ∈ L the
vector y = A(x) in M′, which by assumption is the image of the mapping A :
L → M. It is clear that such a mapping A′ : L → M′ is also a linear transformation.
In view of Corollary 3.31, we have the decomposition

L = L′ ⊕ L′′, (3.48)

where L′′ is some subspace of L. We now consider the restriction of the transforma-
tion A′ to the subspace L′′ and denote it by A′′ : L′′ → M′. It is easily seen that the
image of A′′ coincides with the image of A′, that is, is equal to M′. Indeed, since
M′ is the image of the original mapping A : L → M, every vector y ∈ M′ can be rep-
resented in the form y = A(x) with some x ∈ L. But in view of the decomposition
(3.48), we have the equality x = u + v, where u ∈ L′ and v ∈ L′′, and moreover, L′
is the kernel of A, that is, A(u) = 0′. Consequently, A(x) = A(u)+A(v) = A(v),
and this means that the vector y = A(v) is the image of the vector v ∈ L′′.

The kernel of the transformation A′′ : L′′ → M′ is equal to (0). Indeed, by defini-
tion, the kernel is equal to L′ ∩L′′, and this intersection consists solely of the null vec-
tor, since on the right-hand side of the decomposition (3.48) is to be found a direct
sum (see Corollary 3.15). As a result, we obtain that the image of the transformation
A′′ : L′′ → M′ is equal to M′, while its kernel is equal to (0), that is, this transfor-
mation is an isomorphism. By Theorem 3.64, it follows that dim L′′ = dim M′. On
the other hand, from the decomposition (3.48) and Theorem 3.41, it follows that
dim L′ + dim L′′ = dim L. Substituting here dim L′′ by the equal number dim M′, we
obtain the required equality (3.47).

We shall now prove the assertion of the theorem about bringing the matrix of a
linear transformation A into the form (3.46). To this end, similar to the decompo-
sition (3.48) of the space L, we make the decomposition M = M′ ⊕ M′′, where M′′
is some subspace of M. By the fact proved above that dim L′ = n − r and in view
of (3.48), it follows that dim L′′ = r . Let us now choose in the subspace L′′ some
basis u1, . . . ,ur and set vi = A′′(ui ), that is, by definition, vi = A(ui ). As we have
seen, the transformation A′′ : L′′ → M′ is an isomorphism, and therefore, the vectors
v1, . . . ,vr form a basis of the space M′, and moreover, in the bases u1, . . . ,ur and
v1, . . . ,vr , the transformation A′′ has the identity Er as its matrix.

Let us now choose in the space L′ some basis ur+1, . . . ,un and combine it with
the basis u1, . . . ,ur into the unified basis u1, . . . ,un of the space L. Similarly, we
extend the basis v1, . . . ,vr to an arbitrary basis v1,v2, . . . ,vm of the space M. What
will be the matrix of the linear transformation A in the constructed bases u1, . . . ,un

and v1, . . . ,vm? It is clear that A(ui ) = vi for i = 1, . . . , r (by construction, for
these vectors, the transformation A′′ is the same as A).



120 3 Vector Spaces

On the other hand, A(ui ) = 0′ for i = r+1, . . . , n, since the vectors ur+1, . . . ,un

are contained in the kernel of A. Writing the coordinates of the vectors A(u1), . . . ,

A(un) in the basis v1, . . . ,vm as the columns of a matrix, we obtain that the matrix
of the transformation A has the block-diagonal form (3.46). �

Theorem 3.72 allows us to obtain a simpler and more natural proof of Theo-
rem 2.63 from the previous section.

To this end, we note that every matrix is the matrix of some linear transfor-
mation of vector spaces of suitable dimensions, and in particular, a nonsingular
square matrix represents an isomorphism of vector spaces of the same dimension.
For the matrices A, B , and C of Theorem 2.63, let us consider the linear transfor-
mations A : M→̃M′, B : L′ →̃L, and C : L → M, where dim L = dim L′ = n and
dim M = dim M′ = m, having matrices A, B , and C in some bases.

Let us find the rank of the transformation ACB : L′ → M′. From the equalities
A(M) = M′ and B(L′) = L, it follows that ACB(L′) = A(C(L)), whence taking into
account the isomorphism A, we obtain that dimACB(L′) = dimC(L). By defini-
tion, the dimension of the image of a linear transformation is equal to its rank, which
coincides with the rank of its matrix, written in terms of arbitrary bases, from which
it follows that rkACB = rkC. From this, we finally obtain the required equality
rkACB = rkC.

We would like to emphasize that the matrix of a transformation is reduced to the
simple form (3.46) in the case that the spaces L and M are different from each other,
and it follows that there is no possibility of coordinating their bases, and they are
thus chosen independently of each other. We shall see below that in other cases (for
example, if L = M), there is a more natural way of making this assignment when the
bases of the spaces L and M are not chosen independently (for example, in the case
L = M, it is simply one and the same basis). Then the question of the simplest form
of the matrix of a transformation becomes much more complex.

The statement of Theorem 3.72 on bringing the matrix of a linear transformation
into the form (3.46) can be reformulated. As we established in Sect. 3.4 (substitution
formula (3.41)), under a change of bases in the spaces L and M, the matrix A of a
linear transformation A : L → M is replaced by the matrix A′ = D−1AC, where C

and D are the transition matrices for the new bases in the spaces L and M. We know
that the matrices C and D are nonsingular, and conversely, any nonsingular square
matrix of the appropriate order can be taken as the transition matrix to a new basis.
Therefore, Theorem 3.72 yields the following corollary.

Corollary 3.73 For every matrix A of type (m,n), there exist nonsingular square
matrices C and D of orders n and m such that the matrix D−1AC has the form
(3.46).

3.7 Dual Spaces

In this section, we shall examine the notion of a linear transformation A : L → M in
the simplest case of dim M = 1. As a result, we shall arrive at a concept very close
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to that with which we began our course in Sect. 1.1, but now reformulated more
abstractly, in terms of vector spaces. If dim M = 1, then after selecting a basis in M
(that is, some nonzero vector e), we can express any vector in this space in the form
αe, where α is a scalar (real, complex, or from an arbitrary field K, depending on the
interpretation that the reader wishes to give to this term). Identifying αe with α, we
may consider in place of M the collection of scalars (R, C, or K). In connection with
this, we shall in this case denote the vector space L(L,M) introduced in Sect. 3.3 by
L(L,K). It is called the space of linear functions on L.

Therefore, a linear function on a space L is a mapping f : L → K that assigns to
each vector x ∈ L the number f (x) and satisfies the conditions

f (x + y) = f (x) + f (y), f (αx) = αf (x)

for all vectors x,y ∈ L and scalars α ∈K.

Example 3.74 If L = K
n is the space of rows of length n with elements in the field

K, then the notion of linear function introduced above coincides with the concept
introduced in Sect. 1.1.

Example 3.75 Let L be the space of continuous functions on the interval [a, b] tak-
ing real or complex values. For every function x(t) in L, we set

f ϕ(x) =
∫ b

a

ϕ(t)x(t) dt, (3.49)

where ϕ(t) is some fixed function in L. It is clear that f ϕ(x) is a linear function on L.
We observe that in going through all functions ϕ(t), we shall obtain by formula
(3.49) an infinite number of linear functions on L, that is, elements of the space
L(L,K), where K = R or C. However, it is not possible to obtain all linear functions
on L with the help of formula (3.49). For example, let s ∈ [a, b] be some fixed point
on this interval. Consider the mapping L → K that assigns to each function x(t) ∈ L
its value at the point s. It is then clear that such a mapping is a linear function on L,
but it is represented in the form (3.49) for no function ϕ(t).

Definition 3.76 If L is finite-dimensional, the space L(L,K) is called the dual to L
and is denoted by L∗.

Remark 3.77 (The infinite-dimensional case) For an infinite-dimensional vector
space L (for example, that considered in Example 3.75 of the space of continu-
ous functions on an interval), the dual space L∗ is defined to be the space not of all
linear functions, but only of those satisfying the particular additional condition of
continuity (in the case of a finite-dimensional space, the requirement of continuity
is automatically satisfied).

The study of linear functions on infinite-dimensional vector spaces turns out to
be useful in many questions in analysis and mathematical physics. In this direction,
the remarkable idea arose to treat arbitrary linear functions as if they had been given
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in the form (3.49), where ϕ(t) is a certain “generalized function” that does not, in
general, belong to the initial space L. This leads to new and interesting results.

For example, if we take as L the space of functions that are differentiable on the
interval [a, b] and equal to zero at the endpoints, then for a differentiable function
ϕ(t), the rule of integration by parts can be written in the form f ϕ′(x) = −f ϕ(x′).
But if the derivative ϕ′(t) does not exist, then it is possible to define a new, “general-
ized,” function ψ(t) by f ψ (x) = −f ϕ(x′). In this case, it is clear that ψ(t) = ϕ′(t)
if the derivative ϕ′(t) exists and is continuous. Thus it is possible to define deriva-
tives of arbitrary functions (including discontinuous and even generalized func-
tions).

For example, let us suppose that our interval [a, b] contains in its interior the
point 0 and let us calculate the derivative of the function h(t) that is equal to zero
for t < 0 and to 1 for t ≥ 0, and consequently has a discontinuity at the point t = 0.
By definition, for any function x(t) in L, we obtain the equality

f h′(x) = −f h

(
x′) = −

∫ b

a

h(t)x ′(t) dt = −
∫ b

0
x′(t) dt = x(0) − x(b) = x(0),

since x(b) = 0. Consequently, the derivative h′(t) is a generalized function6 that
assigns to each function x(t) in L its value at the point t = 0.

We now return to exclusive consideration of the finite-dimensional case.

Theorem 3.78 If a vector space L is of finite dimension, then the dual space L∗ has
the same dimension.

Proof Let e1, . . . , en be any basis of the space L. Let us consider vectors f i ∈ L∗,
i = 1, . . . , n, where f i is defined as a linear function that assigns to a vector

x = α1e1 + α2e2 + · · · + αnen (3.50)

its ith coordinate in the basis e1, . . . , en, that is,

f 1(x) = α1, . . . , f n(x) = αn. (3.51)

We will thus obtain n vectors in the dual space. Let us verify that they form a basis
of that space.

Let f = β1f 1 + · · · + βnf n. Then applying the function f to the vector x,
defined by the formula (3.50), we obtain

f (x) = α1β1 + α2β2 + · · · + αnβn. (3.52)

6Such a generalized function is called a Dirac delta function in honor of the English physicist Paul
Adrien Maurice Dirac, who was the first to use generalized functions (toward the end of the 1920s)
in his work on quantum mechanics.
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In particular, assuming x = ei , we obtain that f (ei ) = βi . Thus the equality f = 0
(where 0 is the null vector of the space L∗, that is, a linear function on L identically
equal to zero) means that f (x) = 0 for every vector x ∈ L. It is clear that this is
the case if and only if β1 = 0, . . . , βn = 0. By this we have established the linear
independence of the functions f 1, . . . ,f n. By equality (3.52), every linear function
on L can be expressed in the form β1f 1 + · · · + βnf n with coefficients βi = f (ei ).
This means that the functions f 1, . . . ,f n form a basis of L∗, from which it follows
that dim L = dim L∗ = n. �

The basis f 1, . . . ,f n of the dual space L∗ constructed according to formula
(3.51) is called the dual to the basis e1, . . . , en of the original vector space L. It
is clear that it is defined by the formula

f i (ei ) = 1, f i (ej ) = 0 for j �= i.

We observe that L and L∗, like any two finite-dimensional vector spaces of the
same dimension, are isomorphic. (For infinite-dimensional vector spaces, this is not
in general the case, as in the case examined in Example 3.75 of the space L of con-
tinuous functions on an interval, for which L and L∗ are not isomorphic.) However,
the construction of an isomorphism between them requires the choice of a basis
e1, . . . , en in L and a basis f 1,f 2, . . . ,f n in L∗. Thus between L and L∗ there does
not exist a “natural” isomorphism independent of the choice of basis. If we repeat
the process of passage to the dual space twice, we will obtain the space (L∗)∗, for
which it is easy to construct an isomorphism with the original space L without re-
sorting to the choice of a special basis. The space (L∗)∗ is called the second dual
space to L and is denoted by L∗∗.

Our immediate objective is to define a linear transformation A : L → L∗∗ that is
an isomorphism. To do so, we need to define A(x) for every vector x ∈ L. The vector
A(x) must lie in the space L∗∗, that is, it must be a linear function on the space L∗.
Since A(x) is an element of the second dual space L∗∗, it follows by definition that
A(x) is a linear transformation that assigns to each element f ∈ L∗ (which itself
is a linear function on L) some number, denoted by A(x)(f ). We will define this
number by the natural condition

A(x)(f ) = f (x) for all x ∈ L,f ∈ L∗. (3.53)

The transformation A is in L(L,L∗∗) (its linearity is obvious). To verify that A
is a bijection, we can use any basis e1, . . . , en in L and the dual basis f 1, . . . ,f n

in L∗. Then, as is easy to verify, A is the composition of two isomorphisms: the
isomorphism L→̃L∗ constructed in the proof of Theorem 3.78 and the analogous
isomorphism L∗ →̃L∗∗, whence it follows that A is itself an isomorphism.

The isomorphism L→̃L∗∗ determined by condition (3.53) shows that the vector
spaces L and L∗ play symmetric roles: each of them is the dual of the other. To point
out this symmetry more clearly, we shall find it convenient to write the value f (x),
whereby x ∈ L and f ∈ L∗, in the form (x,f ). The expression (x,f ) possesses the
following easily verified properties:
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1. (x1 + x2,f ) = (x1,f ) + (x2,f );
2. (x,f 1 + f 2) = (x,f 1) + (x,f 2);
3. (αx,f ) = α(x,f );
4. (x, αf ) = α(x,f );
5. if (x,f ) = 0 for all x ∈ L, then f = 0;
6. if (x,f ) = 0 for all f ∈ L∗, then x = 0.

Conversely, if for two vector spaces L and M, the function (x,y) is defined, where
x ∈ L and y ∈ M, taking numeric values and satisfying conditions (1)–(6), then as is
easily verified, L � M∗ and M � L∗. We shall rely heavily on this fact in Chap. 6 in
our study of bilinear forms.

Definition 3.79 Let L′ be a subspace of the vector space L. The set of all f ∈ L∗
such that f (x) = 0 for all x ∈ L′ is called the annihilator of the subspace L′ and is
denoted by (L′)a .

It follows at once from this definition that (L′)a is a subspace of L∗. Let us deter-
mine its dimension. Let dim L = n and dim L′ = r . We choose a basis e1, . . . , er of
the subspace L′, extend it to a basis e1, . . . , en of the entire space L, and consider the
dual basis f 1, . . . ,f n of L∗. From the definition of the dual basis, it follows easily
that a linear function f ∈ L∗ belongs to (L′)a if and only if f ∈ 〈f r+1, . . . ,f n〉. In
other words (L′)a = 〈f r+1, . . . ,f n〉, and this implies that

dim
(
L′)a = dim L − dim L′. (3.54)

If we now consider the natural isomorphism L∗∗ →̃L defined above and with its
help identify these spaces, then it is possible to apply the construction given above
to the annihilator (L′)a and examine the obtained subspace ((L′)a)a in L. From the
definition, it follows that L′ ⊂ ((L′)a)a . From the derived relationship (3.54) for
dimension, we obtain that dim((L′)a)a = n − (n − r) = r , and by Theorem 3.24, it
follows that ((L′)a)a = L′.

At the same time, we obtain that the subspace L′ consists of all vectors x ∈ L for
which

f r+1(x) = 0, . . . , f n(x) = 0. (3.55)

Thus an arbitrary subspace L′ is defined by some system of linear equations (3.55).
This fact is well known in the case of lines and planes (dim L = 1,2) in three-
dimensional space from courses in analytic geometry. In the general case, this as-
sertion is the converse of what was proved in Example 3.8 (p. 84).

We have defined the correspondence L′ 	→ (L′)a between subspaces L′ ⊂ L and
(L′)a ⊂ L∗, which in view of the equality ((L′)a)a = L′ is a bijection. We shall denote
this correspondence by ε and call it duality. Let us now point out some simple
properties of this correspondence.

If L′ and L′′ are two subspaces of L, then

ε
(
L′ + L′′) = ε

(
L′)∩ ε

(
L′′). (3.56)
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In other words, this means that
(
L′ + L′′)a = (

L′)a ∩ (
L′′)a. (3.57)

Indeed, let f ∈ (L′)a ∩ (L′′)a . By the definition of sum, for every vector x ∈ L′ + L′′
we obtain the representation x = x′ + x′′, where x′ ∈ L′ and x′′ ∈ L′′, whence it fol-
lows that f (x) = f (x′)+f (x′′) = 0, since f ∈ (L′)a and f ∈ (L′′)a . Consequently,
f ∈ (L′ + L′′)a , and thus we have proved the inclusion (L′)a ∩ (L′′)a ⊂ (L′ + L′′)a .
Let us now prove the reverse inclusion. Let f ∈ (L′ + L′′)a , that is, f (x) = 0 for
all vectors x = x′ + x′′, where x′ ∈ L′ and x′′ ∈ L′′; in particular, for all vectors
in both subspaces L′ and L′′, that is, by the definition of the annihilator, we ob-
tain the relationship f ∈ (L′)a and f ∈ (L′′)a . Thus f ∈ (L′)a ∩ (L′′)a , that is,
(L′ + L′′)a ⊂ (L′)a ∩ (L′′)a . From this, by the previous inclusion, we obtain rela-
tionship (3.57), and hence the relationship (3.56).

As a result, we may formulate the following almost obvious duality principle.
Later, we shall prove deeper versions of this principle.

Proposition 3.80 (Duality principle) If for all vector spaces of a given finite dimen-
sion n over a given field K, a theorem is proven in whose formulation there appear
only the notions of subspace, dimension, sum, and intersection, then for all such
spaces, a dual theorem holds, obtained from the initial theorem via the following
substitution:

dimension r dimension n − r

intersection L′ ∩ L′′ sum L′ + L′′
sum L′ + L′′ intersection L′ ∩ L′′

Finally, we shall examine the linear transformation A : L → M. Here, as with
all functions, linear functions are written in reverse order to the order of the sets
on which they are defined; see p. xv in the Introduction. Using the notation of that
section, we define the set T = K and restrict the mapping F(M,K) → F(L,K) con-
structed there to the subset M∗ ⊂ F(M,K), the space of linear functions on M. We
observe that the image M∗ is contained in the space L∗ ⊂ F(L,K), that is, it consists
of linear functions on L. We shall denote this mapping by A∗. According to the def-
inition on page xv, we define a linear transformation A∗ : M∗ → L∗ by determining,
for each vector g ∈ M∗, its value from the equality

(
A∗(g)

)
(x) = g

(
A(x)

)
for all x ∈ L. (3.58)

A trivial verification shows that A∗(g) is a linear function on L, and A∗ is a linear
transformation of M∗ to L∗. The transformation A∗ thus constructed is called the
dual transformation of A. Using our earlier notation to write f (x) as (x,f ), we
can write the definition (3.58) in the following form:

(
A∗(y),x

) = (
y,A(x)

)
for all x ∈ L and y ∈ M∗.

Let us choose in the space L some basis e1, . . . , en, and in M, a basis f 1, . . . ,f m,
and also dual bases e∗

1, . . . , e
∗
n in L∗ and f ∗

1, . . . ,f
∗
m in M∗.
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Theorem 3.81 The matrix of a transformation A : L → M written in terms of ar-
bitrary bases of the spaces L and M and the matrix of the dual transformation
A∗ : M∗ → L∗ written in the dual bases in the spaces M∗ and L∗ are transposes
of each other.

Proof Let A = (aij ) be the matrix of the transformation A in the bases e1, . . . , en

and f 1, . . . ,f m. By formula (3.23), this means that

A(ei ) =
m∑

j=1

ajif j , i = 1, . . . , n. (3.59)

By the definition of the dual transformation (formula (3.58)), for every linear func-
tion f ∈ L∗, the following equality holds:

(
A∗(f )

)
(ei ) = f

(
A(ei )

)
, i = 1, . . . , n.

If e∗
1, . . . , e

∗
n is the basis of L∗ dual to the basis e1, . . . , en of L, and f ∗

1, . . . ,f
∗
m is

the basis of M∗ dual to the basis f 1, . . . ,f m of M, then A∗(f ∗
k) is a linear function

on L, as defined in (3.58). In particular, applying A∗(f ∗
k) to the vector ei ∈ L, taking

into account (3.58) and (3.59), we obtain

(
A∗(f ∗

k

))
(ei ) = f ∗

k

(
A(ei )

) =
(

f ∗
k,

m∑

j=1

ajif j

)

=
m∑

j=1

aji

(
f ∗

k,f j

)
,

and this number is equal to aki by the definition of the dual basis. It is obvious
that this linear function on L is the function

∑n
i=1 akie

∗
i . Thus we obtain that the

transformation A∗ assigns the vector f ∗
k ∈ M∗ to the vector

A∗(f ∗
k

) =
n∑

i=1

akie
∗
i , k = 1, . . . ,m, (3.60)

of the space L∗. Comparing formulas (3.59) and (3.60), we conclude that in the
given bases, the matrix of the transformation A∗ is equal to A∗ = (aji), that is, the
transpose of the matrix of the transformation A. �

If we are given two linear transformations of vector spaces, A : L → M and B :
M → N, then we can define their composition BA : L → N, which means that its
dual transformation is also defined, and is given by (BA)∗ : N∗ → L∗. From the
condition (3.58), an immediate verification easily leads to the relation

(BA)∗ = A∗B∗. (3.61)

Together with Theorem 3.81, we thus obtain a new proof of equality (2.57), and
moreover, now no formulas are used; relationship (2.57) is obtained on the basis of
general notions.
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3.8 Forms and Polynomials in Vectors

A natural generalization of the concept of linear function on a vector space is the
notion of form. It plays an important role in many branches of mathematics and in
mechanics and physics.

In the sequel, we shall assume that the vector space L on which we want to
define a form is defined over an arbitrary field K. In the space L, we choose a basis
e1, . . . , en. Then every vector x ∈ L is uniquely defined by the choice of coordinates
(x1, . . . , xn) in the given basis.

Definition 3.82 A function F : L →K is called a polynomial on the space L if F(x)

can be written as a polynomial in the coordinates x1, . . . , xn of the vector x, that is,
F(x) is a finite sum of expressions of the form

cx
k1
1 · · ·xkn

n , (3.62)

where k1, . . . , kn are nonnegative integers and the coefficient c is in K. The expres-
sion (3.62) is called a monomial in the space L, while the number k = k1 + · · · + kn

is called its degree. The degree of F(x) is the maximum over the degrees of the
monomials that enter into it with nonzero coefficients c.

Let us note that for n > 1, a polynomial F(x) of degree k can have several differ-
ent monomials (3.62) of the same degree entering into it with nonzero coefficients c.

Definition 3.83 A polynomial F(x) on a vector space L is said to be homogeneous
of degree k or a form of degree k (or frequently k-form) if every monomial entering
into F(x) with nonzero coefficients is of degree k.

The definitions we have given require a bit of comment; indeed, we introduced
them having chosen a particular basis of the space L, and now we need to show that
everything remains as defined under a change of basis; that is, if the function F(x) is
a polynomial (or form) in the coordinates of the vector x in one basis, then it should
be a polynomial (or form) of the same degree in the coordinates of the vector x in
any other basis. Indeed, using the formula for changing the coordinates of a vec-
tor, that is, substituting relationships (3.35) into (3.62), it is easily seen that under a
change of basis, every monomial (3.62) of degree k is converted to a sum of mono-
mials of the same degree. Consequently, a change of basis transforms the monomial
(3.62) of degree k into a certain form F ′(x) of degree k′ ≤ k. The reason for the
inequality here is that monomials entering into this form might cancel, resulting in a
leading-degree term that is equal to zero. However, it is easy to see that such cannot
occur. For example, using back-substitution, that is, substituting relationship (3.37)
into the form F ′(x), we will clearly again obtain the monomial (3.62). Therefore,
k ≤ k′. Thus we have established the equality k′ = k. This establishes everything
that we needed to prove.

Forms of degree k = 0 are simply the constant functions, which assign to every
vector x ∈ L one and the same number. Forms of degree k = 1 are said to be linear,
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and these are precisely the linear functions on the space L that we studied in detail
in the previous section.

Forms of degree k = 2 are called quadratic; they play an especially important
role in courses in linear algebra as well as in many other branches of mathematics
and physics. In our course, an entire chapter will be devoted to quadratic forms
(Chap. 6).

We observe that we have in fact already encountered forms of arbitrary degree,
as shown in the following example.

Example 3.84 Let F(x1, . . . ,xm) be a multilinear function on m rows of length n

(see the definition on p. 51). Since the space K
n of rows of length n is isomorphic

to every n-dimensional vector space, we may view F(x1, . . . ,xm) as a multilinear
function in m vectors of the space L. Setting all the vectors x1, . . . ,xm in L equal to
x, then by Theorem 2.29, we obtain on the space L the form F̂ (x) = F(x, . . . ,x) of
degree m.

Let us denote by Fk(x) the sum of all monomials of degree k ≥ 0 appearing in
the polynomial F(x) for a given choice of basis e1, . . . , en. Thus Fk(x) is a form of
degree k, and we obtain the expression

F(x) = F0 + F1(x) + · · · + Fm(x), (3.63)

in which Fk(x) = 0 if there are no terms of degree k. For every form Fk(x) of degree
k, the equation

Fk(λx) = λkFk(x) (3.64)

is satisfied for every scalar λ ∈K and every vector x ∈ L (clearly, it suffices to verify
(3.64) for a monomial). Substituting in relation (3.63) the vector λx in place of x,
we obtain

F(λx) = F0 + λF1(x) + · · · + λmFm(x). (3.65)

From this, it follows easily that the forms Fi in the representation (3.63) are uniquely
determined by the polynomial F .

It is not difficult to see that the totality of all polynomials on the space L form a
vector space, which we shall denote by A. This notation is connected with the fact
that the totality of all polynomials forms not only a vector space, but a richer and
more complex algebraic structure called an algebra. This means that in addition to
the operations of a vector space, in A is also defined the operation of the product
of every pair of elements satisfying certain conditions; see the definition on p. 370.
However, we shall not yet use this fact and will continue to view A solely as a vector
space.

Let us note that the space A is infinite-dimensional. Indeed, it suffices to consider
the infinite sequence of forms Fk(x) = xk

i , where k runs through the natural num-
bers, and the form Fk(x) assigns to a vector x with coordinates (x1, . . . , xn) the kth
power of its ith coordinate (the number i may be fixed).
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The totality of forms of fixed degree k on a space L forms a subspace Ak ⊂ A.
Here A0 = K, and A1 coincides with the space L∗ of linear functions on L. The
decomposition (3.63) could be interpreted as a decomposition of the space A as the
direct sum of an infinite number of subspaces Ak (k = 0,1, . . .) if we were to define
such a notion. In the field of algebra, the accepted name for this is graded algebra.

In the remainder of this section we shall look at two examples that use the con-
cepts just introduced. Here we shall use the rules for differentiating functions of
several variables (as applied to polynomials), which is something that might be new
to some readers. However, reference to the formulas thus obtained will occur only
at isolated places in the course, which can be omitted if desired. We present these
arguments only to emphasize the connection with other areas of mathematics.

Let us begin with reasoning that uses a certain coordinate system, that is, a choice
of some basis in the space L. For the polynomial F(x1, . . . , xn), its partial deriva-
tives are defined by ∂F/∂xi , which are again polynomials. It is easy to see that the
mapping that assigns to every polynomial F ∈ A the polynomial ∂F/∂xi determines
a linear transformation A → A, which we denote by ∂/∂xi . From these transforma-
tions we obtain new transformations A → A of the form

D =
n∑

i=1

Pi

∂

∂xi

, (3.66)

where the Pi are arbitrary polynomials. Linear transformations of the form (3.66)
are called first-order differential operators. In analysis and geometry one considers
their analogues, whereby the Pi are functions of a much more general class and the
space A is correspondingly enlarged. From the simplest properties of differentiation,
it follows that the linear operators D defined by formula (3.66) exhibit the property

D(FG) = FD(G) + GD(F ) (3.67)

for all F ∈ A and G ∈ A.
Let us show that the converse also holds: an arbitrary linear transformation D :

A → A satisfying condition (3.67) is a first-order differential operator. To this end,
we observe first that from the relation (3.67), it follows that D(1) = 0. Indeed,
setting in (3.67) the polynomial F = 1, we obtain the equality D(1G) = 1D(G) +
GD(1). Canceling the term D(G) on the left- and right-hand sides, we see that
GD(1) = 0, and having selected as G an arbitrary nonzero polynomial (even if
only G = 1), we obtain D(1) = 0.

Let us now determine a linear transformation D ′ : A → A according to the for-
mula

D ′ = D −
n∑

i=1

Pi

∂

∂xi

, where Pi = D(xi).

It is easily seen that D ′(1) = 0 and D ′(xi) = 0 for all indices i = 1, . . . , n. We ob-
serve as well that the transformation D ′, like D , satisfies the relationship (3.67),
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whence it follows that if D(F ) = 0 and D(G) = 0, then also D(FG) = 0. There-
fore, D ′(F ) = 0 if the polynomial F is the product of any two monomials from the
collection 1, x1, . . . , xn. It is obvious that into the collection of such polynomials
enter all monomials of degree two, and consequently, for them we have D ′(F ) = 0.

Proceeding by induction, we can show that D ′(F ) = 0 for all monomials in Ak

for all k, and therefore, this holds in general for all forms Fk ∈ Ak . Finally, we recall
that an arbitrary polynomial F ∈ A is the sum of a finite number of homogeneous
polynomials Fk ∈ Ak . Therefore, D ′(F ) = 0 for all F ∈ A, which means that the
transformation D has the form (3.66).

The relationship (3.67) gives the definition of a first-order differential operator in
a way that does not depend on the coordinate system, that is, on the choice of basis
e1, . . . , en of the space L.

Example 3.85 Let us consider the differential operator

D̃ =
n∑

i=1

xi

∂

∂xi

.

It is clear that D̃(xi) = xi for all i = 1, . . . , n, from which it follows that for the
restriction to the subspace A1 ⊂ A, the linear transformation D̃ : A1 → A1 becomes
the identity, that is, equal to E . We shall prove that for the restriction to the subspace
Ak ⊂ A, the transformation D̃ : Ak → Ak coincides with kE . We shall proceed by
induction on k. We have already analyzed the case k = 1, and the case k = 0 is
obvious. Consider now polynomials xiG, where G ∈ Ak−1 and i = 1, . . . , n. Then
from (3.67), we have the equality D̃(xiG) = xiD̃(G)+GD̃(xi). We have seen that
D̃(xi) = xi , and by induction, we may assume that D̃(G) = (k − 1)G. As a result,
we obtain the equality

D̃(xiG) = xi(k − 1)G + Gxi = kxiG.

But every polynomial F ∈ Ak can be written as the sum of polynomials of the form
xiGi with suitable Gi ∈ Ak−1. Thus for an arbitrary polynomial F ∈ Ak , we obtain
the relationship D̃(F ) = kF . Written in coordinates, this takes the form

n∑

i=1

xi

∂F

∂xi

= kF, F ∈ Ak, (3.68)

and is called Euler’s identity.

Example 3.86 Let F(x) be an arbitrary polynomial on the vector space L. For a
variable t ∈ R and fixed vector x ∈ L, the function F(tx), in view of relationships
(3.63) and (3.64), is a polynomial in the variable t . The expression

(d0F)(x) = d

dt
F (tx)

∣
∣∣∣
t=0

(3.69)
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is called the differential of the function F(x) at the point 0. Let us point out that on
the right-hand side of equality (3.69) can be found the ordinary derivative of F(tx)

as a function of the variable t ∈ R at the point t = 0. On the left-hand side of the
equality (3.69) and in the expression “differential of the function at the point 0,” the
symbol 0 signifies, as usual, the null vector of the space L.

Let us now verify that (d0F)(x) is a linear function in x. To this end, we use
equality (3.65) for the polynomial F(tx). From the relationship

F(tx) = F0 + tF1(x) + · · · + tmFm(x),

we obtain immediately that

d

dt
F (tx)

∣∣∣∣
t=0

= F1(x),

where F1(x) is a linear function on L. Thus in the decomposition (3.63) for the
polynomial F(x), for the second term, F1(x) = (d0F)(x), and therefore d0F is
frequently called the linear part of the polynomial F .

We shall give an expression in coordinates for this important function. Using the
rules of differentiation for a function of several variables, we obtain

d

dt
F (tx) =

n∑

i=1

∂F

∂xi

(tx)
d(txi)

dt
=

n∑

i=1

∂F

∂xi

(tx)xi .

Setting t = 0, we obtain from this formula

(d0F)(x) =
n∑

i=1

∂F

∂xi

(0)xi . (3.70)

The coordinate representation (3.70) for the differential is quite convenient, but it
requires the selection of a basis e1, . . . , en in the space L and the notation x =
x1e1 +· · ·+xnen. The expression (3.69) alone shows that (d0F)(x) does not depend
on the choice of basis. In analysis, both expressions (3.69) and (3.70) are defined
for functions of a much more general class than polynomials.

We note that for polynomials F(x1, . . . , xn) = xi , we obtain with the help of
formula (3.70) the expression (d0F)(x) = xi . This indicates that the functions
(d0x1), . . . , (d0xn) form a basis of L∗ dual to the basis e1, . . . , en of L.



Chapter 4
Linear Transformations of a Vector Space
to Itself

4.1 Eigenvectors and Invariant Subspaces

In the previous chapter we introduced the notion of a linear transformation of a
vector space L into a vector space M. In this and the following chapters, we shall
consider the important special case in which M coincides with L, which in this book
will always be assumed to be finite-dimensional. Then a linear transformation A :
L → L will be called a linear transformation of the space L to itself, or simply a
linear transformation of the space L. This case is of great importance, since it is
encountered frequently in various fields of mathematics, mechanics, and physics.
We now recall some previously introduced facts regarding this case. First of all,
as before, we shall understand the term number or scalar in the broadest possible
sense, namely as a real or complex number or indeed as an element of any field K

(of the reader’s choosing).
As established in the preceding chapter, to represent a transformation A by a

matrix, one has to choose a basis e1, . . . , en of the space L and then to write the
coordinates of the vectors A(e1), . . . ,A(en) in terms of that basis as the columns
of a matrix. The result will be a square matrix A of order n. If the transforma-
tion A of the space L is nonsingular, then the vectors A(e1), . . . ,A(en) themselves
form a basis of the space L, and we may interpret A as a transition matrix from
the basis e1, . . . , en to the basis A(e1), . . . ,A(en). A nonsingular transformation A
obviously has an inverse, A−1, with matrix A−1.

Example 4.1 Let us write down the matrix of the linear transformation A that acts
by rotating the plane in the counterclockwise direction about the origin through the
angle α. To do so, we first choose a basis consisting of two mutually perpendicular
vectors e1 and e2 of unit length in the plane, where the vector e2 is obtained from
e1 by a counterclockwise rotation through a right angle (see Fig. 4.1).

Then it is easy to see that we obtain the relationship

A(e1) = cosαe1 + sinαe2, A(e2) = − sinαe1 + cosαe2,
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DOI 10.1007/978-3-642-30994-6_4, © Springer-Verlag Berlin Heidelberg 2013

133

http://dx.doi.org/10.1007/978-3-642-30994-6_4


134 4 Linear Transformations of a Vector Space to Itself

Fig. 4.1 Rotation through
the angle α

and it follows from the definition that the matrix of the transformation A in the
given basis is equal to

A =
(

cosα − sinα

sinα cosα

)
. (4.1)

Example 4.2 Consider the linear transformation A of the complex plane that con-
sists in multiplying each number z ∈ C by a given fixed complex number p + iq

(here i is the imaginary unit).
If we consider the complex plane as a vector space L over the field C, then it is

clear that in an arbitrary basis of the space L, such a transformation A has a matrix of
order 1, consisting of a unique element, namely the given complex number p + iq .
Thus in this case, we have dim L = 1, and we need to choose in L a basis consisting
of an arbitrary nonzero vector in L, that is, an arbitrary complex number z �= 0. Thus
we obtain A(z) = (p + iq)z.

Now let us consider the complex plane as a vector space L over the field R. In
this case, dim L = 2, since every complex number z = x + iy is represented by a pair
of real numbers x and y. Let us choose in L the same basis as in Example 4.1. Now
we choose the vector e1 lying on the real axis, and the vector e2 on the imaginary
axis. From the equation

(x + iy)(p + iq) = (px − qy) + i(py + qx)

it follows that

A(e1) = pe1 + qe2, A(e2) = −qe1 + pe2,

from which it follows by definition that the matrix of the transformation A in the
given basis takes the form

A =
(

p −q

q p

)
. (4.2)

In the case |p + iq| = 1, we may put p = cosα and q = sinα for a certain number
0 ≤ α < 2π (such an α is called the argument of the complex number p + iq). Then
the matrix (4.2) coincides with (4.1); that is, multiplication by a complex number
with modulus 1 and argument α is equivalent to the counterclockwise rotation about
the origin of the complex plane through the angle α. We note that every complex
number p + iq can be expressed as the product of a real number r and a complex
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number of modulus 1; that is, p + iq = r(p′ + iq ′), where |p′ + iq ′| = 1 and r =
|p + iq|. From this it is clear that multiplication by p + iq is the product of two
linear transformations of the complex plane: a rotation through the angle α and a
dilation (or contraction) by the factor r .

In Sect. 3.4, we established that in the transition from a basis e1, . . . , en of the
space L to some other basis e′

1, . . . , e
′
n, the matrix of the transformation is changed

according to the formula

A′ = C−1AC, (4.3)

where C is the transition matrix from the second basis to the first.

Definition 4.3 Two square matrices A and A′ related by (4.3), where C is any
nonsingular matrix, are said to be similar.

It is not difficult to see that in the set of square matrices of a given order, the sim-
ilarity relation thus defined is an equivalence relation (see the definition on p. xii).

It follows from formula (4.3) that in changing bases, the determinant of the trans-
formation matrix does not change, and therefore it is possible to speak not simply
about the determinant of the transformation matrix, but about the determinant of the
linear transformation A itself, which will be denoted by |A|. A linear transforma-
tion A : L → L is nonsingular if and only if |A| �= 0. If L is a real space, then this
number |A| �= 0 is also real and can be either positive or negative.

Definition 4.4 A nonsingular linear transformation A : L → L of the real space L is
called proper if |A| > 0, and improper if |A| < 0.

One of the basic tasks in the theory of linear transformations, one with which
we shall be occupied in the sequel, is to find, given a linear transformation of a
vector space into itself, a basis for which the matrix of the transformation takes the
simplest possible form. An equivalent formulation of this task is for a given square
matrix to find the simplest matrix that is similar to it. Having such a basis (or similar
matrix) gives us the possibility of surveying a number of important properties of the
initial linear transformation (or matrix). In its most general form, this problem will
be solved in Chap. 5, but at present, we shall examine it for a particular type of
linear transformation that is most frequently encountered.

Definition 4.5 A subspace L′ of a vector space L is called invariant with respect to
the linear transformation A : L → L if for every vector x ∈ L′, we have A(x) ∈ L′.

It is clear that according to this definition, the zero subspace (0) and the entire
space L are invariant with respect to any linear transformation A : L → L. Thus
whenever we enumerate the invariant subspaces of a space L, we shall always mean
the subspaces L′ ⊂ L other than (0) and L.

Example 4.6 Let L be the three-dimensional space studied in courses in analytic
geometry consisting of vectors originating at a given fixed point O , and consider the
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transformation A that reflects each vector with respect to a given plane L′ passing
through the point O . It is then easy to see that A has two invariant subspaces: the
plane L′ itself and the straight line L′′ passing through O and perpendicular to L′.

Example 4.7 Let L be the same space as in the previous example, and now let the
transformation A be a rotation through the angle α, 0 < α < π , about a given axis
L′ passing through O . Then A has two invariant subspaces: the line L′ itself and the
plane L′′ perpendicular to L′ and passing through O .

Example 4.8 Let L be the same as in the previous example, and let A be a homo-
thety, that is, A acts by multiplying each vector by a fixed number α �= 0. Then it
is easy to see that every line and every plane passing through O is an invariant sub-
space with respect to the transformation A. Moreover, it is not difficult to observe
that if A is a homothety on an arbitrary vector space L, then every subspace of L is
invariant.

Example 4.9 Let L be the plane consisting of all vectors originating at some point
O , and let A be the transformation that rotates a vector about O through the angle α,
0 < α < π . Then A has no invariant subspace.

It is evident that the restriction of a linear transformation A to an invariant sub-
space L′ ⊂ L is a linear transformation of L′ into itself. We shall denote this trans-
formation by A′, that is, A′ : L′ → L′ and A′(x) = A(x) for all x ∈ L′.

Let e1, . . . , em be a basis of the subspace L′. Then since it consists of linearly
independent vectors, it is possible to extend it to a basis e1, . . . , en of the entire
space L. Let us examine how the matrix of the linear transformation A appears in
this basis. The vectors A(e1), . . . ,A(em) are expressed as a linear combination of
e1, . . . , em; this is equivalent to saying that e1, . . . , em is the basis of a subspace that
is invariant with respect to the transformation A. We therefore obtain the system of
equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A(e1) = a11e1 + a21e2 + · · · + am1em,

A(e2) = a12e1 + a22e2 + · · · + am2em,

...

A(em) = a1me1 + a2me2 + · · · + ammem.

It is clear that the matrix

A′ =

⎛

⎜⎜⎜
⎝

a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

am1 am2 · · · amm

⎞

⎟⎟⎟
⎠

(4.4)

is the matrix of the linear transformation A′ : L′ → L′ in the basis e1, . . . , em. In
general, we can say nothing about the vectors A(ei ) for i > m except that they are
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linear combinations of vectors from the basis e1, . . . , en of the entire space L. How-
ever, we shall represent this by separating out terms that are multiples of e1, . . . , em

(we shall write the associated coefficients as bij ) and those that are multiples of the
vectors em+1, . . . , en (here we shall write the associated coefficients as cij ). As a
result we obtain the matrix

A =
(

A′ B ′
0 C′

)
, (4.5)

where B ′ is a matrix of type (m,n − m), C′ is a square matrix of order n − m, and
0 is a matrix of type (n − m,m) all of whose elements are equal to zero.

If it turns out to be possible to find an invariant subspace L′′ related to the invari-
ant subspace L′ by L = L′ ⊕ L′′, then by joining the bases of L′ and L′′, we obtain
a basis for the space L in which the matrix of our linear transformation A can be
written in the form

A =
(

A′ 0
0 C′

)
,

where A′ is the matrix (4.4) and C′ is the matrix of the linear transformation ob-
tained by restricting the transformation A to the subspace L′′. Analogously, if

L = L1 ⊕ L2 ⊕ · · · ⊕ Lk,

where all the Li are invariant subspaces with respect to the transformation A, then
the matrix of the transformation A can be written in the form

A =

⎛

⎜⎜⎜
⎝

A′
1 0 · · · 0

0 A′
2 · · · 0

...
...

. . .
...

0 0 · · · A′
k

⎞

⎟⎟⎟
⎠

, (4.6)

where A′
i is the matrix of the linear transformation obtained by restricting A to the

invariant subspace Li . Matrices of the form (4.6) are called block-diagonal.
The simplest case is that of an invariant subspace of dimension 1. This subspace

has a basis consisting of a single vector e �= 0, and its invariance is expressed by the
relationship

A(e) = λe (4.7)

for some number λ.

Definition 4.10 If the relationship (4.7) is satisfied for a vector e �= 0, then e is
called an eigenvector, and the number λ is called an eigenvalue of the transforma-
tion A.

Given an eigenvalue λ, it is easy to verify that the set of all vectors e ∈ L satis-
fying the relationship (4.7), including here also the zero vector, forms an invariant
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subspace of L. It is called the eigensubspace for the eigenvalue λ and is denoted
by Lλ.

Example 4.11 In Example 4.6, the eigenvectors of the transformation A are, first
of all, all the vectors in the plane L′ (in this case the eigenvalue is λ = 1), and
secondly, every vector on the line L′′ (the eigenvalue is λ = −1). In Example 4.7,
the eigenvectors are all vectors lying on the line L′, and to them correspond the
eigenvalue λ = 1. In Example 4.8, every vector in the space is an eigenvector with
eigenvalue λ = α. Of course all the vectors that we are speaking about are nonzero
vectors.

Example 4.12 Let L be the space consisting of all infinitely differentiable functions,
and let the transformation A be differentiation, that is, it maps every function x(t) in
L to its derivative x′(t). Then the eigenvectors of A are the functions x(t), not iden-
tically zero, that are solutions of the differential equation x′(t) = λx(t). One easily
verifies that such solutions are the functions x(t) = ceλt , where c is an arbitrary
constant. It follows that to every number λ there corresponds a one-dimensional in-
variant subspace of the transformation A consisting of all vectors x(t) = ceλt , and
for c �= 0 these are eigenvectors.

There is a convenient method for finding eigenvalues of a transformation A and
the associated subspaces. We must first choose an arbitrary basis e1, . . . , en of the
space L and then search for vectors e that satisfy relation (4.7), in the form of the
linear combination

e = x1e1 + x2e2 + · · · + xnen. (4.8)

Let the matrix of the linear transformation A in the basis e1, . . . , en be A = (aij ).
Then the coordinates of the vector A(e) in the same basis can be expressed by the
equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y1 = a11x1 + a12x2 + · · · + a1nxn,

y2 = a21x1 + a22x2 + · · · + a2nxn,

...

yn = an1x1 + an2x2 + · · · + annxn.

Now we can write down relation (4.7) in the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a11x1 + a12x2 + · · · + a1nxn = λx1,

a21x1 + a22x2 + · · · + a2nxn = λx2,

...

an1x1 + an2x2 + · · · + annxn = λxn,
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or equivalently,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a11 − λ)x1 + a12x2 + · · · + a1nxn = 0,

a21x1 + (a22 − λ)x2 + · · · + a2nxn = 0,

...

an1x1 + an2x2 + · · · + (ann − λ)xn = 0.

(4.9)

For the coordinates x1, x2, . . . , xn of the vector (4.8), we obtain a system of n ho-
mogeneous linear equations. By Corollary 2.13, this system will have a nonzero
solution if and only if the determinant of its matrix is equal to zero. We may write
this condition in the form

|A − λE| = 0.

Using the formula for the expansion of the determinant, we see that the determinant
|A − tE| is a polynomial in t of degree n. It is called the characteristic polyno-
mial of the transformation A. The eigenvalues of A are precisely the zeros of this
polynomial.

Let us prove that the characteristic polynomial is independent of the basis in
which we write down the matrix of the transformation. It is only after we have ac-
complished this that we shall have the right to speak of the characteristic polynomial
of the transformation itself and not merely of its matrix in a particular basis.

Indeed, as we have seen (formula (4.3)), in another basis we obtain the matrix
A′ = C−1AC, where |C| �= 0. For this matrix, the characteristic polynomial is

∣∣A′ − tE
∣∣ = ∣∣C−1AC − tE

∣∣ = ∣∣C−1(A − tE)C
∣∣.

Using the formula for the multiplication of determinants and the formula for the
determinant of an inverse matrix, we obtain

∣
∣C−1(A − tE)C

∣
∣ = ∣

∣C−1
∣
∣ · |A − tE| · |C| = |A − tE|.

If a space has a basis e1, . . . , en consisting of eigenvectors, then in this basis, we
have A(ei ) = λiei . From this, it follows that the matrix of a transformation A in
this basis has the diagonal form

⎛

⎜⎜⎜
⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

⎞

⎟⎟⎟
⎠

.

This is a special case of (4.6) in which the invariant subspaces Li are one-
dimensional, that is, Li = 〈ei〉. Such linear transformations are called diagonaliz-
able.

As the following example shows, not all transformations are diagonalizable.
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Example 4.13 Let A be a linear transformation of the (real or complex) plane that
in some basis e1, e2 has the matrix

A =
(

a b

0 a

)
, b �= 0.

The characteristic polynomial |A − tE| = (t − a)2 of this transformation has a
unique zero t = a, of multiplicity 2, to which corresponds the one-dimensional
eigensubspace 〈e1〉. From this it follows that the transformation A is nondiago-
nalizable.

This can be proved by another method, using the concept of similar matrices.
If the transformation A were diagonalizable, then there would exist a nonsingular
matrix C of order 2 that would satisfy the relation C−1AC = aE, or equivalently,
the equation AC = aC. With respect to the unknown elements of the matrix C =
(cij ), the previous equality gives us two equations, bc21 = 0 and bc22 = 0, whence
by virtue of b �= 0, it follows that c21 = c22 = 0, and the matrix C is thus seen to be
singular.

We have seen that the number of eigenvalues of a linear transformation is finite,
and it cannot exceed the number n (the dimension of the space L), since they are the
zeros of the characteristic polynomial, whose degree is n.

Theorem 4.14 The dimension of the eigensubspace Lλ ⊂ L associated with the
eigenvalue λ is at most the multiplicity of the value λ as a zero of the character-
istic polynomial.

Proof Suppose the dimension of the eigensubspace Lλ is m. Let us choose a basis
e1, . . . , em of this subspace and extend it to a basis e1, . . . , en of the entire space
L, in which the matrix of the transformation A has the form (4.5). Since by the
definition of an eigensubspace, A(ei ) = λei for all i = 1, . . . ,m, it follows that in
(4.5), the matrix A′ is equal to λEm, where Em is the identity matrix of order m.
Then

A − tE =
(

A′ − tEm B ′
0 C′ − tEn−m

)
=

(
(λ − t)Em B ′

0 C′ − tEn−m

)
,

where En−m is the identity matrix of order n − m. Therefore,

|A − tE| = (λ − t)m
∣∣C′ − tEn−m

∣∣.

On the other hand, if L = Lλ ⊕ L′′, then Lλ ∩ L′′ = (0), which means that the re-
striction of the transformation A to L′′ has no eigenvectors with eigenvalue λ. This
means that |C′ − λEn−m| �= 0, that is, the number λ is not a zero of the polynomial
|C′ − tEn−m|, which is what we had to show. �

In the previous chapter we were introduced to the operations of addition and
multiplication (composition) of linear transformations, which are clearly defined



4.1 Eigenvectors and Invariant Subspaces 141

for the special case of a transformation of a space L into itself. Therefore, for any
integer n > 0 we may define the nth power of a linear transformation. By definition,
An for n > 0 is the result of multiplying A by itself n times, and for n = 0, A0 is the
identity transformation E . This enables us to introduce the concept of a polynomial
in a linear transformation, which will play an important role in what follows.

Let A be a linear transformation of the vector space L (real, complex, or over an
arbitrary field K) and define

f (x) = α0 + α1x + · · · + αkx
k,

a polynomial with scalar coefficients (respectively real, complex, or from the
field K).

Definition 4.15 A polynomial f in the linear transformation A is a linear mapping

f (A) = α0E + α1A + · · · + αkA
k, (4.10)

where E is the identity linear transformation.

We observe that this definition does not make use of coordinates, that is, the
choice of a specific basis in the space L. If such a basis e1, . . . , en is chosen, then to
the linear transformation A there corresponds a unique square matrix A. In Sect. 2.9
we introduced the notion of a polynomial in a square matrix, which allows us to give
another definition: f (A) is the linear transformation with matrix

f (A) = α0E + α1A + · · · + αkA
k (4.11)

in the basis e1, . . . , en.
It is not difficult to be convinced of the equivalence of these definitions if we

recall that the actions of linear transformations are expressed through the actions
of their matrices (see Sect. 3.3). It is thus necessary to show that in a change of
basis from e1, . . . , en, the matrix f (A) also changes according to formula (4.3)
with transition matrix C the same as for matrix A. Indeed, let us consider a change of
coordinates (that is, switching to another basis of the space L) with matrix C. Then in
the new basis, the matrix of the transformation A is given by A′ = C−1AC. By the
associativity of matrix multiplication, we also obtain a relationship A′n = C−1AnC

for every integer n ≥ 0. If we substitute A′ for A in formula (4.11), then considering
what we have said, we obtain

f
(
A′) = α0E + α1A

′ + · · · + αkA
′k

= C−1(α0E + α1A + · · · + αkA
k
)
C = C−1f (A)C,

which proves our assertion.
It should be clear that the statements that we proved in Sect. 2.9 for polynomials

in a matrix (p. 69) also apply to polynomials in a linear transformation.
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Lemma 4.16 If f (x) + g(x) = u(x) and f (x)g(x) = v(x), then for an arbitrary
linear transformation A, we have

f (A) + g(A) = u(A), (4.12)

f (A)g(A) = v(A). (4.13)

Corollary 4.17 Polynomials f (A) and g(A) in the same linear transformation A
commute: f (A)g(A) = g(A)f (A).

4.2 Complex and Real Vector Spaces

We shall now investigate in greater detail the concepts introduced in the previous
section applied to transformations of complex and real vector spaces (that is, we
shall assume that the field K is respectively C or R). Our fundamental result applies
specifically to complex spaces.

Theorem 4.18 Every linear transformation of a complex vector space has an eigen-
vector.

This follows immediately from the fact that the characteristic polynomial of a
linear transformation, and in general an arbitrary polynomial of positive degree, has
a complex root. Nevertheless, as Example 4.13 of the previous section shows, even
in a complex space, not every linear transformation is diagonalizable.

Let us consider the question of diagonalizability in greater detail, always assum-
ing that we are working with complex spaces. We shall prove the diagonalizability
of a commonly occurring type of transformation. To this end, we require the follow-
ing lemma.

Lemma 4.19 Eigenvectors associated with distinct eigenvalues are linearly inde-
pendent.

Proof Suppose the eigenvectors e1, . . . , em are associated with distinct eigenvalues
λ1, . . . , λm,

A(ei ) = λiei , i = 1, . . . ,m.

We shall prove the lemma by induction on the number m of vectors. For the case
m = 1, the result follows from the definition of an eigenvector, namely that e1 �= 0.

Let us assume that there exists a linear dependence

α1e1 + α2e2 + · · · + αmem = 0. (4.14)

Applying the transformation A to both sides of the equation, we obtain

λ1α1e1 + λ2α2e2 + · · · + λmαmem = 0. (4.15)
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Subtracting (4.14) multiplied by λm from (4.15), we obtain

α1(λ1 − λm)e1 + α2(λ2 − λm)e2 + · · · + αm−1(λm−1 − λm)em−1 = 0.

By our induction hypothesis, we may consider that the lemma has been proved
for m − 1 vectors e1, . . . , em−1. Thus we obtain that α1(λ1 − λm) = 0, . . . ,
αm−1(λm−1 − λm) = 0, and since by the condition in the lemma, λ1 �= λm, . . . ,
λm−1 �= λm, it follows that α1 = · · · = αm−1 = 0. Substituting this into (4.14), we
arrive at the relationship αmem = 0, that is (by the definition of an eigenvector),
αm = 0. Therefore, in (4.14), all the αi are equal to zero, which demonstrates the
linear independence of e1, . . . , em. �

By Lemma 4.19, we have the following result.

Theorem 4.20 A linear transformation on a complex vector space is diagonalizable
if its characteristic polynomial has no multiple roots.

As is well known, in this case, the characteristic polynomial has n distinct roots
(we recall once again that we are speaking about polynomials over the field of com-
plex numbers).

Proof of Theorem 4.20 Let λ1, . . . , λn be the distinct roots of the characteristic poly-
nomial of the transformation A and let e1, . . . , en be the corresponding eigenvec-
tors. It suffices to show that these vectors form a basis of the entire space. Since
their number is equal to the dimension of the space, this is equivalent to showing
their linear independence, which follows from Lemma 4.19. �

If A is the matrix of the transformation A in some basis, then the condition of
Theorem 4.20 is satisfied if and only if the so-called discriminant of the character-
istic polynomial is nonzero.1 For example, if the order of a matrix A is 2, and

A =
(

a b

c d

)
,

then

|A − tE| =
∣∣
∣∣
a − t b

c d − t

∣∣
∣∣ = (a − t)(d − t) − bc = t2 − (a + d)t + ad − bc.

The condition that this quadratic trinomial have two distinct roots is that (a + d)2 −
4(ad − bc) �= 0. This can be rewritten in the form

(a − d)2 + 4bc �= 0. (4.16)

1For the general notion of the discriminant of a polynomial, see, for instance, Polynomials, by
Victor V. Prasolov, Springer 2004.
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Similarly, for complex vector spaces of arbitrary dimension, linear transforma-
tions not satisfying the conditions of Theorem 4.20 have a matrix that regardless
of the basis, has elements that satisfy a special algebraic relationship. In this sense,
only exceptional transformations do not meet the conditions of Theorem 4.20.

Analogous considerations give necessary and sufficient conditions for a linear
transformation to be diagonalizable.

Theorem 4.21 A linear transformation of a complex vector space is diagonaliz-
able if and only if for each of its eigenvalues λ, the dimension of the corresponding
eigenspace Lλ is equal to the multiplicity of λ as a root of the characteristic polyno-
mial.

In other words, the bound on the dimension of the subspace Lλ obtained in The-
orem 4.14 is attained.

Proof of Theorem 4.21 Let the transformation A be diagonalizable, that is, in some
basis e1, . . . , en it has the matrix

A =

⎛

⎜⎜⎜
⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

⎞

⎟⎟⎟
⎠

.

It is possible to arrange the eigenvalues λ1, . . . , λn so that those that are equal are
next to each other, so that altogether, they have the form

λ1, . . . , λ1︸ ︷︷ ︸
m1 times

, λ2, . . . , λ2︸ ︷︷ ︸
m2 times

, . . . . . . . . . , λk, . . . , λk︸ ︷︷ ︸
mk times

,

where all the numbers λ1, . . . , λk are distinct. In other words, we can write the
matrix A in the block-diagonal form

A =

⎛

⎜⎜
⎜
⎝

λ1Em1 0 · · · 0
0 λ2Em2 · · · 0
...

...
. . .

...

0 0 · · · λkEmk

⎞

⎟⎟
⎟
⎠

, (4.17)

where Emi
is the identity matrix of order mi . Then

|A − tE| = (λ1 − t)m1(λ2 − t)m2 · · · (λk − t)mk ,

that is, the number λi is a root of multiplicity mi of the characteristic equation.
On the other hand, the equality A(x) = λix for vectors x = α1e1 + · · · + αnen

gives the relationship λsαj = λiαj for all j = 1, . . . , n and s = 1, . . . , k, that is,
either αj = 0 or λs = λi . In other words, the vector x is a linear combination only
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of those eigenvectors ej that correspond to the eigenvalue λi . This means that the
subspace Lλi

consists of all linear combinations of such vectors, and consequently,
dim Lλi

= mi .
Conversely, for distinct eigenvalues λ1, . . . , λk , let the dimension of the eigen-

subspace Lλi
be equal to the multiplicity mi of the number λi as a root of the char-

acteristic polynomial. Then from known properties of polynomials, it follows that
m1 + · · · + mk = n, which means that

dim Lλ1 + · · · + dim Lλk
= dim L. (4.18)

We shall show that the sum Lλ1 + · · · + Lλk
is a direct sum of its eigensubspaces

Lλi
. To do so, it suffices to show that for all vectors x1 ∈ Lλ1 , . . . , xk ∈ Lλk

, the
equality x1 + · · · + xk = 0 is possible only in the case that x1 = · · · = xk = 0. But
since x1, . . . ,xk are eigenvectors of the transformation A corresponding to distinct
eigenvalues λ1, . . . , λk , the required assertion follows by Lemma 4.19. Therefore,
by equality (4.18), we have the decomposition

L = Lλ1 ⊕ · · · ⊕ Lλk
.

Having chosen from each eigensubspace Lλi
, i = 1, . . . , k, a basis (consisting of mi

vectors), and having ordered them in such a way that the vectors entering into a
particular subspace Lλi

are adjacent, we obtain a basis of the space L in which the
matrix A of the transformation A has the form (4.17). This means that the transfor-
mation A is diagonalizable. �

The case of real vector spaces is more frequently encountered in applications.
Their study proceeds in almost the same way as with complex vector spaces, except
that the results are somewhat more complicated. We shall introduce here a proof of
the real analogue of Theorem 4.18.

Theorem 4.22 Every linear transformation of a real vector space of dimension
n > 2 has either a one-dimensional or two-dimensional invariant subspace.

Proof Let A be a linear transformation of a real vector space L of dimension
n > 2, and let x ∈ L be some nonnull vector. Since the collection x,A(x),A2(x),

. . . ,An(x) consists of n+1 > dim L vectors, then by the definition of the dimension
of a vector space, these vectors must be linearly dependent. This means that there
exist real numbers α0, α1, . . . , αn, not all zero, such that

α0x + α1FF(x) + α2A
2(x) + · · · + αnA

n(x) = 0. (4.19)

Consider the polynomial P(t) = α0 +α1t +· · ·+αnt
n and substitute for the variable

t , the transformation A, as was done in Sect. 4.1 (formula (4.10)). Then the equality
(4.19) can be written in the form

P(A)(x) = 0. (4.20)
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A polynomial P(t) satisfying equality (4.20) is called an annihilator polynomial of
the vector x (where it is implied that it is relative to the given transformation A).

Let us assume that the annihilator polynomial P(t) of some vector x �= 0 is the
product of two polynomials of lower degree: P(t) = Q1(t)Q2(t). Then by definition
(4.20) and formula (4.13) from the previous section, we have Q1(A)Q2(A)(x) = 0.
Then either Q2(A)(x) = 0, and hence the vector x is annihilated by an anni-
hilator polynomial Q2(t) of lower degree, or else Q2(A)(x) �= 0. If we assume
y = Q2(A)(x), we obtain the equality Q1(A)(y) = 0, which means that the non-
null vector y is annihilated by the annihilator polynomial Q1(t) of lower degree. As
is well known, an arbitrary polynomial with real coefficients is a product of polyno-
mials of first and second degree. Applying to P(t) as many times as necessary the
process described above, we finally arrive at a polynomial Q(t) of first or second
degree and a nonnull vector z such that Q(A)(z) = 0. This is the real analogue of
Theorem 4.18.

Factoring out the coefficient of the high-order term of Q(t), we may assume that
this coefficient is equal to 1. If the degree of Q(t) is equal to 1, then Q(t) = t −λ for
some λ, and the equality Q(A)(z) = 0 yields (A−λE)(z) = 0. This means that λ is
an eigenvalue of z, which is an eigenvector of the transformation A, and therefore,
〈z〉 is a one-dimensional invariant subspace of the transformation A.

If the degree of Q(t) is equal to 2, then Q(t) = t2 + pt + q and (A2 + pA +
qE)(z) = 0. In this case, the subspace L′ = 〈z,A(z)〉 is two-dimensional and is in-
variant with respect to A. Indeed, the vectors z and A(z) are linearly independent,
since otherwise, we would have the case of an eigenvector z considered above. This
means that dim L′ = 2. We shall show that L′ is an invariant subspace of the trans-
formation A. Let x = αz +βA(z). To show that A(x) ∈ L′, it suffices to verify that
vectors A(z) and A(A(z)) belong to L′. This holds for the former by the definition
of L′. It holds for the latter by the fact that A(A(z)) = A2(z) and by the condition
of the theorem, A2(z) + pA(z) + qz = 0, that is, A2(z) = −qz − pA(z). �

Let us discuss the concept of the annihilator polynomial that we encountered in
the proof of Theorem 4.22. An annihilator polynomial of a vector x �= 0 having
minimal degree is called a minimal polynomial of the vector x.

Theorem 4.23 Every annihilator polynomial is divisible by a minimal polynomial.

Proof Let P(t) be an annihilator polynomial of the vector x �= 0, and Q(t) a mini-
mal polynomial. Let us suppose that P is not divisible by Q. We divide P by Q with
remainder. This gives the equality P = UQ + R, where U and R are polynomials
in t , and moreover, R is not identically zero, and the degree of R is less than that
of Q. If we substitute into this equality the transformation A for the variable t , then
by formulas (4.12) and (4.13), we obtain that

P(A)(x) = U(A)Q(A)(x) + R(A)(x), (4.21)
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and since P and Q are annihilator polynomials of the vector x, it follows that
R(A)(x) = 0. Since the degree of R is less than that of Q, this contradicts the
minimality of the polynomial Q. �

Corollary 4.24 The minimal polynomial of a vector x �= 0 is uniquely defined up to
a constant factor.

Let us note that for the annihilator polynomial, Theorem 4.23 and its converse
hold: any multiple of any annihilator polynomial is also an annihilator polynomial
(of course, of the same vector x). This follows from the fact that in this case, in
equality (4.21), we have R = 0. From this follows the assertion that there exists a
single polynomial that is an annihilator for all vectors of the space L. Indeed, let
e1, . . . , en be some basis of the space L, and let P1, . . . ,Pn be annihilator polyno-
mials for these vectors. Let us denote by Q the least common multiple of these
polynomials. Then from what we have said above, it follows that Q is an annihi-
lator polynomial for each of the vectors e1, . . . , en; that is, Q(A)(ei ) = 0 for all
i = 1, . . . , n. We shall prove that Q is an annihilator polynomial for every vec-
tor x ∈ L. By definition, x is a linear combination of vectors of a basis, that is,
x = α1e1 + α2e2 + · · · + αnen. Then

Q(A)(x) = Q(A)(α1e1 + · · · + αnen)

= α1Q(A)(e1) + · · · + αnQ(A)(en)

= 0.

Definition 4.25 A polynomial the annihilates every vector of a space L is called an
annihilator polynomial of this space (keeping in mind that we mean for the given
linear transformation A : L → L).

In conclusion, let us compare the arguments used in the proofs of Theorems 4.18
and 4.22. In the first case, we relied on the existence of a root (that is, a factor of
degree 1) of the characteristic polynomial, while in the latter case, we required the
existence of a simplest factor (of degree 1 or 2) for the annihilator polynomial. The
connection between these polynomials relies on a result that is important in and of
itself. It is called the Cayley–Hamilton theorem.

Theorem 4.26 The characteristic polynomial is an annihilator polynomial for its
associated vector space.

The proof of this theorem is based on arguments analogous to those used in the
proof of Lemma 4.19, but relating to a much more general situation. We shall now
consider polynomials in the variable t whose coefficients are not numbers, but linear
transformations of the vector space L into itself or (which is the same thing if some
fixed basis has been chosen in L) square matrices Pi :
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P(t) = P0 + P1t + · · · + Pkt
k.

One can work with these as with ordinary polynomials if one assumes that the vari-
able t commutes with the coefficients. It is also possible to substitute for t the matrix
A of a linear transformation. We shall denote the result of this substitution by P(A),
that is,

P(A) = P0 + P1A + · · · + PkA
k.

It is important here that t and A are written to the right of the coefficients Pi . Further,
we shall consider the situation in which Pi and A are square matrices of one and the
same order. In view of what we have said above, all assertions will be true as well
for the case that in the last formula, instead of the matrices Pi and A we have the
linear transformations Pi and A of some vector space L into itself:

P (A) = P0 + P1A + · · · + PkA
k.

However, in this case, the analogue of formula (4.13) from Sect. 4.1 does not
hold, that is, if the polynomial R(t) is equal to P(t)Q(t) and A is the matrix of
an arbitrary linear transformation of the vector space L. Then generally speaking,
R(A) �= P(A)Q(A). For example, if we have polynomials P = P1t and Q = Q0,
then P1tQ0 = P1Q0t , but it is not true that P1AQ0 = P1Q0A for an arbitrary matrix
A, since matrices A and Q0 do not necessarily commute. However, there is one
important special case in which formula (4.13) holds.

Lemma 4.27 Let

P(t) = P0 + P1t + · · · + Pkt
k, Q(t) = Q0 + Q1t + · · · + Qlt

l,

and suppose that the polynomial R(t) equals P(t)Q(t). Then R(A) = P(A)Q(A)

if the matrix A commutes with every coefficient of the polynomial Q(t), that is,
AQi = QiA for all i = 1, . . . , l.

Proof It is not difficult to see that the polynomial R(t) = P(t)Q(t) can be rep-
resented in the form R(t) = R0 + R1t + · · · + Rk+l t

k+l with coefficients Rs =∑s
i=0 PiQs−i , where Pi = 0 if i > k, and Qi = 0 if i > l. Similarly, the polyno-

mial R(A) = P(A)Q(A) can be expressed in the form

R(A) =
k+l∑

s=0

(
s∑

i=0

PiA
iQs−iA

s−i

)

with the same conditions: Pi = 0 if i > k, and Qi = 0 if i > l. By the condition of
the lemma, AQj = QjA, whence by induction, we easily obtain that AiQj = QjA

i

for every choice of i and j . Thus our expression takes the form

R(A) =
k+l∑

s=0

(
s∑

i=0

PiQs−iA
s

)

= P(A)Q(A).
�
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Of course, the analogous assertion holds for all polynomials for which the vari-
able t stands to the left of the coefficients (then the matrix A must commute with
every coefficient of the polynomial P , and not Q).

Using Lemma 4.27, we can prove the Cayley–Hamilton theorem.

Proof of Theorem 4.26 Let us consider the matrix tE−A and denote its determinant
by ϕ(t) = |tE − A|. The coefficients of the polynomial ϕ(t) are numbers, and as is
easily seen, it is equal to the characteristic polynomial matrix A multiplied by (−1)n

(in order to make the coefficient of tn equal to 1). Let us denote by B(t) the adjugate
matrix to tE − A (see the definition on p. 73). It is clear that B(t) will contain as
its elements certain polynomials in t of degree at most n − 1, and consequently, we
may write it in the form B(t) = B0 +B1t +· · ·+Bn−1t

n−1, where the Bi are certain
matrices. Formula (2.70) for the adjugate matrix yields

B(t)(tE − A) = ϕ(t)E. (4.22)

Let us substitute into formula (4.22) in place of the variable t the matrix A of the
linear transformation A with respect to some basis of the vector space L. Since the
matrix A commutes with the identity matrix E and with itself, then by Lemma 4.27,
we obtain the matrix equality B(A)(AE −A) = ϕ(A)E, the left-hand side of which
is equal to the null matrix. It is clear that in an arbitrary basis, the null matrix is the
matrix of the null transformation O : L → L, and consequently, ϕ(A) = O. And this
is the assertion of Theorem 4.26. �

In particular, it is now clear that by the proof of Theorem 4.22, we may take as
the annihilator polynomial the characteristic polynomial of the transformation A.

4.3 Complexification

In view of the fact that real vector spaces are encountered especially frequently in
applications, we present here another method of determining the properties of linear
transformations of such spaces, proceeding from already proved properties of linear
transformations of complex spaces.

Let L be a finite-dimensional real vector space. In order to apply our previously
worked-out arguments, it will be necessary to embed it in some complex space LC.
For this, we shall use the fact that, as we saw in Sect. 3.5, L is isomorphic to the
space of rows of length n (where n = dim L), which we denote by R

n.
In view of the usual set inclusion R ⊂ C, we may consider Rn a subset of Cn. In

this case, it is not, of course, a subspace of Cn as a vector space over the field C.
For example, multiplication by the complex scalar i does not take R

n into itself. On
the contrary, as is easily seen, we have the decomposition

C
n = R

n ⊕ iRn
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(let us recall that in C
n, multiplication by i is defined for all vectors, and in particular

for vectors in the subset Rn). We shall now denote Rn by L, while Cn will be denoted
by LC. The previous relationship is now written thus:

LC = L ⊕ iL. (4.23)

An arbitrary linear transformation A on a vector space L (as a space over the field
R) can then be extended to all of LC (as a space over the field C). Namely, as follows
from the decomposition (4.23), every vector x ∈ LC can be uniquely represented in
the form x = u + iv, where u,v ∈ L, and we set

AC(x) = A(u) + iA(v). (4.24)

We omit the obvious verification that the mapping AC defined by the relationship
(4.24) is a linear transformation of the space LC (over the field C). Moreover, it is
not difficult to prove that AC is the only linear transformation of the space LC whose
restriction to L coincides with A, that is, for which the equality AC(x) = A(x) is
satisfied for all x in L.

The construction presented here may seem somewhat inelegant, since it uses
an isomorphism of the spaces L and R

n, for whose construction it is necessary to
choose some basis of L. Although in the majority of applications such a basis exists,
we shall give a construction that does not depend on the choice of basis. For this,
we recall that the space L can be reconstructed from its dual space L∗ via the iso-
morphism L � L∗∗, which we constructed in Sect. 3.7. In other words, L � L(L∗,R),
where as before, L(L,M) denotes the space of linear mappings L → M (here either
all spaces are considered complex or else they are all considered real).

We now consider C as a two-dimensional vector space over the field R and set

LC = L
(
L∗,C

)
, (4.25)

where in L(L∗,C), both spaces L∗ and C are considered real. Thus the relation-
ship (4.25) carries LC into a vector space over the field R. But we can convert
it into a space over the field C after defining multiplication of vectors in LC by
complex scalars. Namely, if ϕ ∈ L(L∗,C) and z ∈ C, then we set zϕ = ψ , where
ψ ∈ L(L∗,C) is defined by the condition

ψ(f ) = z · ϕ(f ) for all f ∈ L∗.

It is easily verified that LC thus defined is a vector space over the field C, and passage
from L to LC will be the same as described above, for an arbitrary choice of basis L
(that is, choice of the isomorphism L � R

n).
If A is a linear transformation of the space L, then we shall define a corresponding

linear transformation AC of the space LC, after assigning to each vector ψ ∈ LC the
value AC(ψ) ∈ LC using the relation

(
AC(ψ)

)
(f ) = ψ

(
A∗(f )

)
for all f ∈ L∗,
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where A∗ : L∗ → L∗ is the dual transformation to A (see p. 125). It is clear that
AC is indeed a linear transformation of the space LC, and its restriction to L coin-
cides with the transformation A, that is, for every ψ ∈ L, AC(ψ)(f ) = A(ψ)(f ) is
satisfied for all f ∈ L∗.

Definition 4.28 The complex vector space LC is called the complexification of the
real vector space L, while the transformation AC : LC → LC is the complexification
of the transformation A : L → L.

Remark 4.29 The construction presented above is applicable as well to a more gen-
eral situation: using it, it is possible to assign to any vector space L over an arbitrary
field K the space LK

′
over the bigger field K

′ ⊃ K, and to the linear transformation
A of the field L, the linear transformation AK

′
of the field LK

′
.

In the space LC that we constructed, it will be useful to introduce the operation of
complex conjugation, which assigns to a vector x ∈ LC the vector x ∈ LC, or inter-
preting LC as Cn (with which we began this section), taking the complex conjugate
for each number in the row x, or (equivalently) using (4.23), setting x = u − iv for
x = u + iv. It is clear that

x + y = x + y, (αx) = αx

hold for all vectors x,y ∈ LC and arbitrary complex scalar α.
The transformation AC obtained according to the rule (4.24) from a certain trans-

formation A of a real vector space L will be called real. For a real transformation
AC, we have the relationship

AC(x) = AC(x), (4.26)

which follows from the definition (4.24) of a transformation AC. Indeed, if we have
x = u + iv, then

AC(x) = A(u) + iA(v), AC(x) = A(u) − iA(v).

On the other hand, x = u − iv, from which follows AC(x) = A(u) − iA(v) and
therefore (4.26).

Consider the linear transformation A of the real vector space L. To it there corre-
sponds, as shown above, the linear transformation AC of the complex vector space
LC. By Theorem 4.18, the transformation AC has an eigenvector x ∈ LC for which,
therefore, one has the equality

AC(x) = λx, (4.27)

where λ is a root of the characteristic polynomial of the transformation A and,
generally speaking, is a certain complex number. We must distinguish two cases: λ

real and λ complex.
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Case 1: λ is a real number. In this case, the characteristic polynomial of the trans-
formation A has a real root, and therefore A has an eigenvector in the field L; that
is, L has a one-dimensional invariant subspace.

Case 2: λ is a complex number. Let λ = a + ib, where a and b are real numbers,
b �= 0. The eigenvector x can also be written in the form x = u + iv, where the
vectors u,v are in L. By assumption, AC(x) = A(u)+ iA(v), and then relationship
(4.27), in view of the decomposition (4.23), gives

A(v) = av + bu, A(u) = −bv + au. (4.28)

This means that the subspace L′ = 〈v,u〉 of the space L is invariant with respect to
the transformation A. The dimension of the subspace L′ is equal to 2, and vectors
v,u form a basis of it. Indeed, it suffices to verify their linear independence. The lin-
ear dependence of v and u would imply that v = ξu (or else that u = ξv) for some
real ξ . But by v = ξu, the second equality of (4.28) would yield the relationship
A(u) = (a − bξ)u, and that would imply that u is a real eigenvector of the transfor-
mation A, with the real eigenvalue a − bξ ; that is, we are dealing with case 1. The
case u = ξv is similar.

Uniting cases 1 and 2, we obtain another proof of Theorem 4.22. We observe
that in fact, we have now proved even more than what is asserted in that theorem.
Namely, we have shown that in the two-dimensional invariant subspace L′ there
exists a basis v,u in which the transformation A gives the formula (4.28), that is, it
has a matrix of the form

(
a −b

b a

)
, b �= 0.

Definition 4.30 A linear transformation A of a real vector space L is said to be
block-diagonalizable if in some basis, its matrix has the form

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

α1 0 · · · · · · · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . . αr 0

. . .
...

...
. . . 0 B1

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · · · · · · · 0 Bs

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

, (4.29)

where α1, . . . , αr are real matrices of order 1 (that is, real numbers), and B1, . . . ,Bs

are real matrices of order 2 of the form

Bj =
(

aj −bj

bj aj

)
, bj �= 0. (4.30)
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Block-diagonalizable linear transformations are the real analogue of diagonaliz-
able transformations of complex vector spaces. The connection between these two
concepts is established in the following theorem.

Theorem 4.31 A linear transformation A of a vector space L is block-
diagonalizable if and only if its complexification AC is a diagonalizable trans-
formation of the space LC.

Proof Suppose the linear transformation A : L → L is block-diagonalizable. This
means that in some basis of the space L, its matrix has the form (4.29), which is
equivalent to the decomposition

L = L1 ⊕ · · · ⊕ Lr ⊕ M1 ⊕ · · · ⊕ Ms , (4.31)

where Li and Mj are subspaces that are invariant with respect to the transforma-
tion A. In our case, dim Li = 1, so that Li = 〈ei〉 and A(ei ) = αiei , and dim Mj = 2,
where in some basis of the subspace Mj , the restriction of the transformation A to
Mj has matrix of the form (4.30). Using formula (4.30), one is easily convinced that
the restriction AC to the two-dimensional subspace Mj has two distinct complex-
conjugate eigenvalues: λj and λj . If f j and f ′

j are the corresponding eigenvectors,

then in LC there is a basis e1, . . . , er ,f 1,f
′
1, . . . ,f s ,f

′
s , in which the matrix of the

transformation AC assumes the form
⎛

⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

α1 0 · · · · · · · · · · · · 0 0

0
. . .

. . .
. . .

. . .
. . .

. . . 0
...

. . . αr 0
. . .

. . .
. . .

...
...

. . . 0 λ1
. . .

. . .
. . .

...
...

. . .
. . .

. . . λ1
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . .
. . . λs 0

0 0 · · · · · · · · · · · · 0 λs

⎞

⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

. (4.32)

This means that the transformation AC is diagonalizable.
Now suppose, conversely, that AC is diagonalizable, that is, in some basis of the

space LC, the transformation AC has the diagonal matrix
⎛

⎜⎜⎜
⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

⎞

⎟⎟⎟
⎠

. (4.33)

Among the numbers λ1, . . . , λn may be found some that are real and some that are
complex. All the numbers λi are roots of the characteristic polynomial of the trans-
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formation AC. But clearly (by the definition of LC), any basis of the real vector
space L is a basis of the complex space LC, and in such a basis, the matrices of the
transformations A and AC coincide. That is, the matrix of the transformation AC

is real in some basis. This means that its characteristic polynomial has real coeffi-
cients. It then follows from well-known properties of real polynomials that if among
the numbers λ1, . . . , λn some are complex, then they come in conjugate pairs λj and
λj , and moreover, λj and λj occur the same number of times. We may assume that
in the matrix of (4.33), the first r numbers are real: λi = αi ∈R (i ≤ r), while the re-
mainder are complex, and moreover, λj and λj (j > r) are adjacent to each other. In
this case, the matrix of the transformation assumes the form (4.32). Along with each
eigenvector e of the transformation AC, the space LC contains a vector e. Moreover,
if e has the eigenvalue λ, then e has the eigenvalue λ. This follows easily from the
fact that A is a real transformation and from the relationship (LC)λ = (LC)λ, which
can be easily verified. Therefore, we may write down the basis in which the trans-
formation AC has the form (4.32) in the form e1, . . . , er ,f 1,f 1, . . . ,f s ,f s , where
all ei are in L.

Let us set f j = uj + ivj , where uj ,vj ∈ L, and let us consider the subspace
Nj = 〈uj ,vj 〉. It is clear that Nj is invariant with respect to A, and by formula
(4.28), the restriction of A to the subspace Nj gives a transformation that in the
basis uj ,vj has matrix of the form (4.30). We therefore see that

LC = 〈e1〉 ⊕ · · · ⊕ 〈er 〉 ⊕ i〈e1〉 ⊕ · · · ⊕ i〈er 〉 ⊕ N1 ⊕ iN1 ⊕ · · · ⊕ Ns ⊕ iNs ,

from which follows the decomposition

L = 〈e1〉 ⊕ · · · ⊕ 〈er 〉 ⊕ N1 ⊕ · · · ⊕ Ns ,

analogous to (4.31). This shows that the transformation A : L → L is block-
diagonalizable. �

Similarly, using the notion of complexification, it is possible to prove a real ana-
logue of Theorems 4.14, 4.18, and 4.21.

4.4 Orientation of a Real Vector Space

The real line has two directions: to the left and to the right (from an arbitrarily cho-
sen point, taken as the origin). Analogously, in real three-dimensional space, there
are two directions for traveling around a point: clockwise and counterclockwise. We
shall consider analogous concepts in an arbitrary real vector space (of finite dimen-
sion).

Let e1, . . . , en and e′
1, . . . , e

′
n be two bases of a real vector space L. Then there

exists a linear transformation A : L → L such that

A(ei ) = e′
i , i = 1, . . . , n. (4.34)
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It is clear that for the given pair of bases, there exists only one such linear transfor-
mation A, and moreover, it is not singular: (|A| �= 0).

Definition 4.32 Two bases e1, . . . , en and e′
1, . . . , e

′
n are said to have the same ori-

entation if the transformation A satisfying the condition (4.34) is proper (|A| > 0;
recall Definition 4.4), and to be oppositely oriented if A is improper (|A| < 0).

Theorem 4.33 The property of having the same orientation induces an equivalence
relation on the set of all bases of the vector space L.

Proof The definition of equivalence relation (on an arbitrary set) was given on
page xii, and to prove the theorem, we have only to verify symmetry and transitivity,
since reflexivity is completely obvious (for the mapping A, take the identity trans-
formation E ). Since the transformation A is nonsingular, it follows that relationship
(4.34) can be written in the form A−1(e′

i ) = ei , i = 1, . . . , n, from which follows
the symmetry property of bases having the same orientation: the transformation A
is replaced by A−1, where here |A−1| = |A|−1, and the sign of the determinant
remains the same.

Let bases e1, . . . , en and e′
1, . . . , e

′
n have the same orientation, and suppose bases

e′
1, . . . , e

′
n and e′′

1, . . . , e
′′
n also have the same orientation. By definition, this means

that the transformations A, from (4.34), and B, defined by

B
(
e′
i

) = e′′
i , i = 1, . . . , n, (4.35)

are proper. Replacing in (4.35) the expressions for the vectors e′
i from (4.34), we

obtain

BA(ei ) = e′′
i , i = 1, . . . , n,

and since |BA| = |B| · |A|, the transformation BA is also proper, that is, the bases
e1, . . . , en and e′′

1, . . . , e
′′
n have the same orientation, which completes the proof of

transitivity. �

We shall denote the set of all bases of the space L by E. Theorem 4.33 then
tells us that the property of having the same orientation decomposes the set E into
two equivalence classes, that is, we have the decomposition E = E1 ∪ E2, where
E1 ∩E2 = ∅. To obtain this decomposition in practice, we may proceed as follows:
Choose in L an arbitrary basis e1, . . . , en and denote by E1 the collection of all bases
that have the same orientation as the chosen basis, and let E2 denote the collection
of bases with the opposite orientation. Theorem 4.33 tells us that this decomposi-
tion of E does not depend on which basis e1, . . . , en we choose. We can assert that
any two bases appearing together in one of the two subsets E1 and E2 have the
same orientation, and if they belong to different subsets, then they have opposite
orientations.

Definition 4.34 The choice of one of the subsets E1 and E2 is called an orientation
of the vector space L. Once an orientation has been chosen, the bases lying in the
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chosen subset are said to be positively oriented, while those in the other subset are
called negatively oriented.

As can be seen from this definition, the selection of an orientation of a vector
space depends on an arbitrary choice: it would have been equally possible to have
called the positively oriented bases negatively oriented, and vice versa. It is no ac-
cident that in practical applications, the actual choice of orientation is frequently
based on an appeal such as to the structure of the human body (left–right) or to the
motion of the Sun in the heavens (clockwise or counterclockwise).

The crucial part of the theory presented in this section is that there is a connection
between orientation and certain topological concepts (such as those presented in the
introduction to this book; see p. xvii).

To pursue this idea, we must first of all define convergence for sequences of
elements of the set E. We shall do so by introducing on the set E a metric, that
is, by converting it into a metric space. This means that we must define a function
r(x, y) for all x, y ∈ E taking real values and satisfying properties 1–3 introduced
on p. xvii. We begin by defining a metric r(A,B) on the set A of square matrices of
a given order n with real entries.

For a matrix A = (aij ) in A, we let the number μ(A) equal the maximum abso-
lute value of its entries:

μ(A) = max
i,j=1,...,n

|aij |. (4.36)

Lemma 4.35 The function μ(A) defined by relationship (4.36) exhibits the follow-
ing properties:

(a) μ(A) > 0 for A �= O and μ(A) = 0 for A = O .
(b) μ(A + B) ≤ μ(A) + μ(B) for all A,B ∈A.
(c) μ(AB) ≤ nμ(A)μ(B) for all A,B ∈A.

Proof Property (a) obviously follows from the definition (4.36), while property (b)
follows from an analogous inequality for numbers: |aij + bij | ≤ |aij | + |bij |. It re-
mains to prove property (c). Let A = (aij ), B = (bij ), and C = AB = (cij ). Then
cij = ∑n

k=1 aikbkj , and so

|cij | ≤
n∑

k=1

|aik||bkj | ≤
n∑

k=1

μ(A)μ(B) = nμ(A)μ(B).

From this it follows that μ(C) ≤ nμ(A)μ(B). �

We can now convert the set A into a metric space by setting for every pair of
matrices A and B in A,

r(A,B) = μ(A − B). (4.37)

Properties 1–3 introduced in the definition of a metric follow from the definitions in
(4.36) and (4.37) and properties (a) and (b) proved in Lemma 4.35.
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A metric on A enables us to introduce a metric on the set E of bases of a vector
space L. Let us fix a distinguished basis e1, . . . , en and define the number r(x, y)

for two arbitrary bases x and y in the set E as follows. Suppose the bases x and y

consist of vectors x1, . . . ,xn and y1, . . . ,yn, respectively. Then there exist linear
transformations A and B of the space L such that

A(ei ) = xi , B(ei ) = yi , i = 1, . . . , n. (4.38)

The transformations A and B are nonsingular, and by condition (4.38), they are
uniquely determined. Let us denote by A and B the matrices of the transformations
A and B in the basis e1, . . . , en, and set

r(x, y) = r(A,B), (4.39)

where r(A,B) is as defined above by relationship (4.37). Properties 1–3 in the defi-
nition of a metric hold for r(x, y) from analogous properties of the metric r(A,B).

However, here a difficulty arises: The definition of the metric r(x, y) by rela-
tionship (4.39) depends on the choice of some basis e1, . . . , en of the space L. Let
us choose another basis e′

1, . . . , e
′
n and let us see how the metric r ′(x, y) that re-

sults differs from r(x, y). To this end, we use the familiar fact that for two bases
e1, . . . , en and e′

1, . . . , e
′
n there exists a unique linear (and in addition, nonsingular)

transformation C : L → L taking the first basis into the second:

e′
i = C(ei ), i = 1, . . . , n. (4.40)

Formulas (4.38) and (4.40) show that for linear transformations A = AC−1 and
B = BC−1, one has the equality

A
(
e′
i

) = xi , B
(
e′
i

) = yi , i = 1, . . . , n. (4.41)

Let us denote by A′ and B ′ the matrices of the transformations A and B in the basis
e′

1, . . . , e
′
n, and by A and B , the matrices of the transformations A and B in this

basis. Let C be the matrix of the transformation C, that is, by (4.40), the transition
matrix from the basis e′

1, . . . , e
′
n to the basis e1, . . . , en. Then matrices A′,A and

B ′,B are related by A = A′C−1 and B = B ′C−1. Furthermore, we observe that A

and A′ are matrices of the same transformation A in two different bases (e1, . . . , en

and e′
1, . . . , e

′
n), and similarly, B and B ′ are matrices of the single transformation B.

Therefore, by the formula for changing coordinates, we have A′ = C−1AC and
B ′ = C−1BC, and so as a result, we obtain the relationship

A = A′C−1 = C−1A, B = B ′C−1 = C−1B. (4.42)

Returning to the definition (4.39) of a metric on A, we see that r ′(x, y) = r(A,B).
Substituting in the last relationship the expression (4.42) for matrices A and B , and
taking into account definition (4.37) and property (c) from Lemma 4.35, we obtain
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r ′(x, y) = r(A,B) = r
(
C−1A,C−1B

)

= μ
(
C−1(A − B)

) ≤ nμ
(
C−1)μ(A − B) = αr(x, y),

where the number α = nμ(C−1) does not depend on the bases x and y, but only
on e1, . . . , en and e′

1, . . . , e
′
n. Since the last two bases play a symmetric role in our

construction, we may obtain analogously a second equality r(x, y) ≤ βr ′(x, y) with
a certain positive constant β . The relationship

r ′(x, y) ≤ αr(x, y), r(x, y) ≤ βr ′(x, y),α, β > 0, (4.43)

shows that although the metrics r(x, y) and r ′(x, y) defined in terms of different
bases e1, . . . , en and e′

1, . . . , e
′
n are different, nevertheless, on the set A, the notion

of convergence is the same for both bases. To put this more formally, having chosen
in E two different bases and having with the help of these bases defined metrics
r(x, y) and r ′(x, y) on E, we have thereby defined two different metric spaces E′
and E′′ with one and the same underlying set E but with different metrics r and r ′
defined on it. Here the identity mapping of the space E onto itself is not an isometry
of E′ and E′′, but by relationship (4.43), it is a homeomorphism. We may therefore
speak about continuous mappings, paths in E, and its connected components without
specifying precisely which metric we are using.

Let us move on to the question whether two bases of the set E can be continuously
deformed into each other (see the general definition on p. xx). This question reduces
to whether there is a continuous deformation between the nonsingular matrices A

and B corresponding to these bases under the selection of some auxiliary basis
e1, . . . , en (just as with other topological concepts, continuous deformability does
not depend on the choice of the auxiliary basis). We wish to emphasize that the
condition of nonsingularity of the matrices A and B plays here an essential role.

We shall formulate the notion of continuous deformability for matrices in a cer-
tain set A (which in our case will be the set of nonsingular matrices).

Definition 4.36 A matrix A is said to be continuously deformable into a matrix B

if there exists a family of matrices A(t) in A whose elements depend continuously
on a parameter t ∈ [0,1] such that A(0) = A and A(1) = B .

It is obvious that this property of matrices being continuously deformable into
each other defines an equivalence relation on the set A. By definition, we need to
verify that the properties of reflexivity, symmetry, and transitivity are satisfied. The
verification of all these properties is simple and given on p. xx.

Let us note one additional property of continuous deformability in the case that
the set A has another property: for two arbitrary matrices belonging to A, their
product also belongs to A. It is clear that this property is satisfied if A is the set of
nonsingular matrices (in subsequent chapters, we shall meet other examples of such
sets).
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Lemma 4.37 If a matrix A is continuously deformable into B , and C ∈ A is an
arbitrary matrix, then AC is continuously deformable into BC, and CA is continu-
ously deformable into CB .

Proof By the condition of the theorem, we have a family A(t) of matrices in A,
where t ∈ [0,1], effecting a continuous deformation of A into B . To prove the first
assertion, we take the family A(t)C, and for the second, the family CA(t). This
family produces the deformations that we require. �

Theorem 4.38 Two nonsingular square matrices of the same order with real ele-
ments are continuously deformable into each other if and only if the signs of their
determinants are the same.

Proof Let A and B be the matrices described in the statement of the theorem. The
necessary condition that the determinants |A| and |B| be of the same sign is obvious.
Indeed, in view of the formula for the expansion of the determinant (Sect. 2.7) or else
by its inductive definition (Sect. 2.2), it is clear that the determinant is a polynomial
in the elements of the matrix, and consequently, |A(t)| is a continuous function of t .
But a continuous function taking values with opposite signs at the endpoints of an
interval must take the value zero at some point within the interval, while at the same
time, the condition |A(t)| �= 0 must be satisfied for all t ∈ [0,1].

Let us prove the sufficiency of the condition, at first for determinants for which
|A| > 0. We shall show that A is continuously deformable into the identity matrix E.
By Theorem 2.62, the matrix A can be represented as a product of matrices Uij (c),
Sk , and a diagonal matrix. The matrix Uij (c) is continuously deformable into the
identity: as the family A(t), we may take the matrices Uij (ct). Since the Sk are
themselves diagonal matrices, we see that (in view of Lemma 4.37) the matrix A

is continuously deformable into the diagonal matrix D, and from the assumption
|A| > 0 and the part of the theorem already proved, it follows that |D| > 0.

Let

D =

⎛

⎜⎜⎜⎜⎜
⎝

d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
...

. . .
. . .

. . .
...

0 0 0 · · · dn

⎞

⎟⎟⎟⎟⎟
⎠

.

Every element di can be represented in the form εipi , where εi = 1 or −1, while
pi > 0. The matrix (pi) of order 1 for pi > 0 can be continuously deformed into
(1). For this, it suffices to set A(t) = (a(t)), where a(t) = t + (1− t)pi for t ∈ [0,1].
Therefore, the matrix D is continuously deformable into the matrix D′, in which all
di = εipi are replaced by εi . As we have seen, from this it follows that |D′| > 0,
that is, the number of −1’s on the main diagonal is even. Let us combine them in
pairs. If there is −1 in the ith and j th places, then we recall that the matrix

(−1 0
0 −1

)
(4.44)
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defines in the plane the central symmetry transformation with respect to the origin,
that is, a rotation through the angle π . If we set

A(t) =
(

cosπt − sinπt

sinπt cosπt

)
, (4.45)

then we obtain the matrix of rotation through the angle πt , which as t changes from
0 to 1, effects a continuous deformation of the matrix (4.44) into the identity. It is
clear that we thus obtain a continuous deformation of the matrix D′ into E.

Denoting continuous deformability by ∼, we can write down three relationships:
A ∼ D, D ∼ D′, D′ ∼ E, from which follows by transitivity that A ∼ E. From
this follows as well the assertion of Theorem 4.38 for two matrices A and B with
|A| > 0 and |B| > 0.

In order to take care of matrices A with |A| < 0, we introduce the function
ε(A) = +1 if |A| > 0 and ε(A) = −1 if |A| < 0. It is clear that ε(AB) = ε(A)ε(B).
If ε(A) = ε(B) = −1, then let us set A−1B = C. Then ε(C) = 1, and by what was
proved previously, C ∼ E. By Lemma 4.37, it follows that B ∼ A, and by symmetry,
we have A ∼ B . �

Taking into account the results of Sect. 3.4 and Lemma 4.37, from Theorem 4.38,
we obtain the following result.

Theorem 4.39 Two nonsingular linear transformations of a real vector space are
continuously deformable into each other if and only if the signs of their determinants
are the same.

Theorem 4.40 Two bases of a real vector space are continuously deformable into
each other if and only if they have the same orientation.

Recalling the topological notions introduced earlier of path-connectedness and
path-connected component (p. xx), we see that the results we have obtained can be
formulated as follows. The set A of nonsingular matrices of a given order (or linear
transformations of the space L into itself) can be represented as the union of two
path-connected components corresponding to positive and negative determinants.
Similarly, the set E of all bases of a space L can be represented as the union of two
path-connected components consisting of positively and negatively oriented bases.



Chapter 5
Jordan Normal Form

5.1 Principal Vectors and Cyclic Subspaces

In the previous chapter, we studied linear transformations of real and complex vector
spaces into themselves, and in particular, we found conditions under which a linear
transformation of a complex vector space is diagonalizable, that is, has a diagonal
matrix (consisting of eigenvectors of the transformation) in some specially chosen
basis. We showed there that not all transformations of a complex vector space are
diagonalizable.

The goal of this chapter is a more complete study of linear transformations of a
real or complex vector space to itself, including the investigation of nondiagonal-
izable transformations. In this chapter as before, we shall denote a vector space by
L and assume that it is finite-dimensional. Moreover, in Sects. 5.1 to 5.3, we shall
consider linear transformations of complex vector spaces only.

As already noted, the diagonalizable linear transformations are the simplest class
of transformations. However, since this class does not cover all linear transforma-
tions, we would like to find a construction that generalizes the construction of di-
agonalizable linear transformations, and indeed so general as to encompass all lin-
ear transformations. A transformation can be brought into diagonal form if there is
a basis consisting of the transformation’s eigenvectors. Therefore, let us begin by
generalizing the notion of eigenvector.

Let us recall that an eigenvector e �= 0 of a linear transformation A : L → L with
eigenvalue λ satisfies the condition A(e) = λe, or equivalently, the equality

(A − λE)(e) = 0.

A natural generalization of this is contained in the following definition.

Definition 5.1 A nonnull vector e is said to be a principal vector of a linear trans-
formation A : L → L with eigenvalue λ if for some natural number m, the following
condition is satisfied:

(A − λE)m(e) = 0. (5.1)
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The smallest natural number m for which relation (5.1) is satisfied is called the
grade of the principal vector e.

Example 5.2 An eigenvector is a principal vector of grade 1.

Example 5.3 Let L be the vector space of polynomials x(t) of degree at most n− 1,
and let A be the linear transformation that maps every function x(t) to its derivative
x′(t). Then

A
(
x(t)

) = x′(t), Ak
(
x(t)

) = x(k)(t).

Since (tk)(k) = k! �= 0 and (tk)(k+1) = 0, it is obvious that the polynomial x(t) = tk

is a principal vector of the transformation A of grade k + 1 corresponding to the
eigenvalue λ = 0.

Definition 5.4 Let e be a principal vector of grade m corresponding to the eigen-
value λ. The subspace M spanned by the vectors

e, (A − λE)(e), . . . , (A − λE)m−1(e), (5.2)

is called the cyclic subspace generated by the vector e.

Example 5.5 If m = 1, then a cyclic subspace is the one-dimensional subspace 〈e〉
generated by the eigenvector e.

Example 5.6 In Example 5.3, the cyclic subspace generated by the principal vector
x(t) = tk consists of all polynomials of degree at most k.

Theorem 5.7 A cyclic subspace M ⊂ L generated by the principal vector e of grade
m is invariant under the transformation A and has dimension m.

Proof Since the cyclic subspace M is spanned by m vectors (5.2), its dimension is
obviously at most m. We shall prove that the vectors (5.2) are linearly independent,
which will imply that dim M = m.

Let

α1e + α2(A − λE)(e) + · · · + αm(A − λE)m−1(e) = 0. (5.3)

Let us apply the linear transformation (A − λE)m−1 to both sides of this equality.
Since by definition (5.1) of a principal vector, we have (A − λE)m(e) = 0, then a
fortiori, (A − λE)k(e) = 0 for every k > m. We therefore obtain that

α1(A − λE)m−1(e) = 0,

and since (A − λE)m−1(e) �= 0, in view of the fact that e is of grade m, we have the
equality α1 = 0. Relationship (5.3) now takes the following form:

α2(A − λE)(e) + · · · + αm(A − λE)m−1(e) = 0. (5.4)
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Applying the linear transformation (A − λE)m−2 to both parts of equality (5.4),
we prove in exactly the same way that α2 = 0. Continuing further in this way, we
obtain that in relationship (5.3), all the coefficients α1, . . . , αm are equal to zero.
Consequently, the vectors (5.2) are linearly independent, and so we have dim M = m.

We shall now prove the invariance of the cyclic subspace M associated with the
transformation A. Let us set

e1 = e, e2 = (A − λE)(e), . . . , em = (A − λE)m−1(e). (5.5)

Since all vectors of the subspace M can be expressed as linear combinations of the
vectors e1, . . . , em, it suffices to prove that the vectors A(e1), . . . ,A(em) can be
expressed as linear combinations of e1, . . . , em. But from relationships (5.1) and
(5.5), it is clear that

(A − λE)(e1) = e2, (A − λE)(e2) = e3, . . . , (A − λE)(em) = 0,

that is,

A(e1) = λe1 + e2, A(e2) = λe2 + e3, . . . , A(em) = λem, (5.6)

which establishes the assertion of the theorem. �

Corollary 5.8 The vectors e1, . . . , em defined by formula (5.5) form a basis of the
cyclic subspace M generated by the principal vector e. The matrix of the restriction
of the linear transformation A to the subspace M in this basis has the form

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ 0 0 · · · · · · 0
1 λ 0 0

0 1 λ
...

...
. . .

. . .
...

...
. . . λ 0

0 0 · · · · · · 1 λ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.7)

This is an obvious consequence of (5.6).

Theorem 5.9 Let M be a cyclic subspace generated by the principal vector e of
grade m with eigenvalue λ. Then an arbitrary vector y ∈ M can be written in the
form

y = f (A)(e),

where f is a polynomial of degree at most m−1. If the polynomial f (t) is not divis-
ible by t − λ, then the vector y is also a principal vector of grade m and generates
the same cyclic subspace M.
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Proof The first assertion of the theorem follows at once from the fact that by the
definition of a cyclic subspace, every vector y ∈ M has the form

y = α1e + α2(A − λE)(e) + · · · + αm(A − λE)m−1(e), (5.8)

that is, y = f (A)(e), where the polynomial f (t) is given by

f (t) = α1 + α2(t − λ) + · · · + αm(t − λ)m−1.

Let us prove the second assertion. Let y = f (A)(e). Then (A − λE)m(y) = 0.
Indeed, from the relationships y = f (A)(e) and (5.1) and taking into account the
property established earlier that two arbitrary polynomials in one and the same linear
transformation commute (a consequence of Lemma 4.16 in Sect. 4.1; see p. 142),
we obtain the equality

(A − λE)m(y) = (A − λE)mf (A)(e) = f (A)(A − λE)m(e) = 0.

Let us assume that the polynomial f (t) is not divisible by t − λ. This implies
that the coefficient α1 is nonzero. We shall show that we then must have (A −
λE)m−1(y) �= 0. Applying the linear transformation (A − λE)m−1 to the vectors on
both sides of equality (5.8), we obtain

(A − λE)m−1(y)

= α1(A − λE)m−1(e) + α2(A − λE)m(e) + · · · + αm(A − λE)2m−2(e)

= α1(A − λE)m−1(e),

since we have (A − λE)k(e) = 0 for every k ≥ m. From this last relationship and
taking into account the conditions α1 �= 0 and (A − λE)m−1(e) �= 0, it follows that
(A − λE)m−1(y) �= 0. Therefore, the vector y is also a principal vector of the linear
transformation A of grade m.

Finally, we shall prove that the cyclic subspaces M and M′ generated by principal
vectors e and y coincide. It is clear that M′ ⊂ M, since y ∈ M, and in view of the
invariance of the cyclic subspace M, the vector (A − λE)k(y) for arbitrary k is
also contained in M. But from Theorem 5.7, it follows that dim M = dim M′ = m,
and therefore, by Theorem 3.24, the inclusion M′ ⊂ M implies simply the equality
M′ = M. �

Corollary 5.10 In the notation of Theorem 5.9, for an arbitrary vector y ∈ M and
scalar μ �= λ, we have the representation y = (A − μE)(z) for some vector z ∈ M.
Furthermore, we have the following: either y is a principal vector of grade m that
generates the cyclic subspace M, or else y = (A − λE)(z) for some vector z ∈ M.

Proof The matrix of the restriction of the linear transformation A to the subspace M
in the basis e1, . . . , em from (5.5) has the form (5.7). From this, it is easily seen that
for arbitrary μ �= λ, the determinant of the restriction of the linear transformation
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A−μE to M is nonzero. From Theorems 3.69 and 3.70, it follows that the restriction
of A − μE to M is an isomorphism M→̃M, and its image is (A − μE)(M) = M;
that is, for an arbitrary vector y ∈ M, there exists a vector z ∈ M such that y =
(A − μE)(z).

By Theorem 5.9, a vector y can be represented in the form y = f (A)(e), and
moreover, if the polynomial f (t) is not divisible by t − λ, then y is a principal
vector of grade m generating the cyclic subspace M. But if f (t) is divisible by t −λ,
that is, f (t) = (t − λ)g(t) for some polynomial g(t), then setting z = g(A)(e), we
obtain the required representation y = (A − λE)(z). �

5.2 Jordan Normal Form (Decomposition)

For the proof of the major result of this section and indeed of the entire chapter—the
theorem on the decomposition of a complex vector space as a direct sum of cyclic
subspaces—we require the following lemma.

Lemma 5.11 For an arbitrary linear transformation A : L → L of a complex vector
space, there exist a scalar λ and an (n − 1)-dimensional subspace L′ ⊂ L invariant
with respect to the transformation A such that for every vector x ∈ L, we have the
equality

A(x) = λx + y, where y ∈ L′. (5.9)

Proof By Theorem 4.18, every linear transformation of a complex vector space has
an eigenvector and associated eigenvalue. Let λ be an eigenvalue of the transforma-
tion A. Then the transformation B = A − λE is singular (it annihilates the eigen-
vector), and by Theorem 3.72, its image B(L) is a subspace M ⊂ L of dimension
m < n.

Let e1, . . . , em be a basis of M. We shall extend it arbitrarily to a basis of L by
means of the vectors em+1, . . . , en. It is clear that the subspace

L′ = 〈e1, . . . , em, em+1, . . . , en−1〉
has dimension n − 1 and includes M, since e1, . . . , em ∈ M.

Let us now prove equality (5.9). Consider an arbitrary vector x ∈ L. Then we
have B(x) ∈ B(L) = M, which implies that B(x) ∈ L′, since M ⊂ L′. Recalling that
A = B+λE , we obtain that A(x) = B(x)+λx, and moreover, by our construction,
the vector y = B(x) is in L′. From this, the invariance of the subspace L′ easily
follows. Indeed, if x ∈ L′, then in equality (5.9), we have not only y ∈ L′, but also
λx ∈ L′, which yields that A(x) ∈ L′ as well. �

The main result of this section (the decomposition theorem) is the following.

Theorem 5.12 A finite-dimensional complex vector space L can be decomposed
as a direct sum of cyclic subspaces relative to an arbitrary linear transformation
A : L → L.
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Proof The proof will be by induction on the dimension n = dim L. It is based on the
lemma proved above, and we shall use the same notation. Let L′ ⊂ L be the same
(n − 1)-dimensional subspace invariant with respect to the transformation A that
was discussed in Lemma 5.11.

We choose any vector e′ /∈ L′. If f 1, . . . ,f n−1 is any basis of the subspace L′,
then the vectors f 1, . . . ,f n−1, e

′ form a basis of L. Indeed, there are n = dim L
vectors, and so it suffices to prove their linear independence. Let us suppose that

α1f 1 + · · · + αn−1f n−1 + βe′ = 0. (5.10)

If β �= 0, then from this equality, it would follow that e′ ∈ L′. Therefore, β = 0, and
then from equality (5.10), by the linear independence of the vectors f 1, . . . ,f n−1
it follows that α1 = · · · = αn−1 = 0.

We shall rely on the fact that the vector e′ ∈ L can be chosen arbitrarily. Till
now, it satisfied only the single condition e′ /∈ L′, but it is not difficult to see that
every vector e′′ = e′ + x, where x ∈ L′, satisfies the same condition, and this means
that any such vector could have been chosen in place of e′. Indeed, if e′′ ∈ L′, then
considering that x ∈ L′, we would have e′ ∈ L′, contradicting the assumption.

It is obvious that Theorem 5.12 is true for n = 1. Therefore, by the induction
hypothesis, we may assume that it holds as well for the subspace L′. Let

L′ = L1 ⊕ · · · ⊕ Lr (5.11)

be the decomposition of L′ as a sum of cyclic subspaces, and moreover, suppose that
each cyclic subspace Li is generated by its principal vector ei of grade mi associated
with the eigenvalue λi and has the basis

ei , (A − λiE)(ei ), . . . , (A − λiE)mi−1(ei ). (5.12)

By Theorem 5.7, it follows that dim Li = mi and n − 1 = m1 + · · · + mr .
For the vector e′ chosen at the start of the proof, we have, by the lemma, the

equality

A
(
e′) = λe′ + y, where y ∈ L′.

In view of the decomposition (5.11), this vector y can be written in the form

y = y1 + · · · + yr , (5.13)

where yi ∈ Li . Thanks to Corollary 5.10, we may assert that the vector yi either can
be written in the form (A − λE)(zi ) for some zi ∈ Li , or is a principal vector of
grade mi associated with the eigenvalue λ. Changing if necessary the numeration of
the vectors yi , we may write

(A − λE)
(
e′) = (A − λE)(z) + ys + · · · + yr , (5.14)

where z = z1 + · · · + zs−1, zi ∈ Li , for all i = 1, . . . , s − 1, and each of the vectors
yj with indices j = s, . . . , r generates the cyclic subspace Lj .
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Here there are two possible cases.

Case 1. In formula (5.14), we have s − 1 = r , that is,

(A − λE)
(
e′) = (A − λE)(z), z ∈ L′.

Choosing the vector e′ arbitrarily, as discussed above, we set e′′ = e′ −z. Then from
the previous relationship, we obtain

(A − λE)
(
e′′) = 0.

By definition, this implies that e′′ is an eigenvector with eigenvalue λ. Consider the
one-dimensional subspace Lr+1 = 〈e′′〉. It is clear that it is cyclic, and moreover,

L = L′ ⊕ Lr+1 = L1 ⊕ · · · ⊕ Lr ⊕ Lr+1.

Theorem 5.12 has been proved in this case.

Case 2. In formula (5.14), we have s − 1 < r . We again set e′′ = e′ − z. Then from
(5.14), we obtain that

(A − λE)
(
e′′) = ys + · · · + yr , (5.15)

where by construction, each yj , j = s, . . . , r , is a principal vector of grade mj

corresponding to the eigenvalue λ generating the cyclic subspace Lj .
It is clear that we can always order the vectors ys , . . . ,yr in such a way that

ms ≤ · · · ≤ mr . Let us assume that this condition is satisfied. We shall prove that the
vector e′′ is a principal vector of grade mr + 1 with associated eigenvalue λ, and we
shall show that we then have the following decomposition:

L = L1 ⊕ · · · ⊕ Lr−1 ⊕ L′
r , (5.16)

where L′
r is a cyclic subspace generated by the vector e′′. It is clear that from this

will follow the assertion of Theorem 5.12. From the equality (5.15), it follows that

(A − λE)mr+1(e′′) = (A − λE)mr (ys) + · · · + (A − λE)mr (yr ). (5.17)

Since the principal vectors yi , i = s, . . . , r , have grades mi , and since by our as-
sumption, all the mi are less than or equal to mr , it follows that (A−λE)mr (yi ) = 0
for all i = s, . . . , r . From this, taking into account (5.17), it follows that (A −
λE)mr+1(e′′) = 0. In just the same way, we obtain that

(A − λE)mr
(
e′′) = (A − λE)mr−1(ys) + · · · + (A − λE)mr−1(yr ). (5.18)

The terms on the right-hand side of this sum belong to the subspaces Ls , . . . ,Lr . If
we had the equality

(A − λE)mr
(
e′′) = 0,
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then it would follow that all the terms on the right-hand side of (5.18) would be
equal to zero, since the subspaces Ls , . . . ,Lr form a direct sum. In particular, we
would obtain that (A − λE)mr−1(yr ) = 0, and this would contradict that the prin-
cipal vector yr has grade mr . We therefore conclude that (A − λE)mr (e′′) �= 0, and
consequently, the principal vector e′′ has grade mr + 1.

It remains to prove relationship (5.16). We observe that the dimensions of the
spaces L1, . . . ,Lr−1 are equal to m1, . . . ,mr−1, while the dimension of L′

r is equal
to mr + 1. Therefore, from equality (5.12), it follows that the sum of the dimensions
of the terms on the right-hand side of (5.16) equals the dimension of the left-hand
side. Therefore, in order to prove the relationship (5.16), it suffices by Corollary 3.40
(p. 96) to prove that an arbitrary vector in the space L can be represented as the sum
of vectors from the subspaces L1, . . . ,Lr−1,L′

r .
It suffices to prove this last assertion for all vectors in a certain basis of the

space L. Such a basis is obtained in particular if we combine the vector e′′ and the
vectors of certain bases of the subspaces L1, . . . ,Lr . For the vector e′′, this assertion
is obvious, since e′′ ∈ L′

r . In just the same way, the assertion is clear for any vector
in the basis of one of the subspaces L1, . . . ,Lr−1. It remains to prove this for vectors
in some basis of the subspace Lr . Such a basis, for example, comprises the vectors

yr , (A − λE)(yr ), . . . , (A − λE)mr−1(yr ).

From (5.15), it follows that

yr = −(ys + · · · + yr−1) + (A − λE)
(
e′′),

and this means that

(A − λE)k(yr ) = −(A − λE)k(ys) − · · · − (A − λE)k(yr−1) + (A − λE)k+1(e′′)

for all k = 1, . . . ,mr − 1. And this establishes what we needed to show: since

ys ∈ Ls , . . . , yr−1 ∈ Lr−1, e′′ ∈ L′
r ,

and since the spaces Ls , . . . ,Lr−1 and L′
r are invariant, it follows that

(A − λE)k(ys) ∈ Ls , . . . , (A − λE)k(yr−1) ∈ Lr−1,

(A − λE)k+1(e′′) ∈ L′
r .

This completes the proof of Theorem 5.12. �

Let us note that in the passage from the subspace L′ to L for a given λ, the de-
composition into cyclic subspaces changes in the following way: either in the de-
composition there appears one more one-dimensional subspace (case 1), or else the
dimension of one of the cyclic subspaces increases by 1 (case 2).

Let the decomposition into a direct sum of subspaces, whose existence is estab-
lished by Theorem 5.12, have the form

L = L1 ⊕ · · · ⊕ Lr .
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In each of the subspaces Li , we will select a basis of the form (5.5) and combine
them into a single basis e1, . . . , en of the space L. In this basis, the matrix A of the
transformation A has the block-diagonal form

A =

⎛

⎜⎜⎜
⎝

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ar

⎞

⎟⎟⎟
⎠

, (5.19)

where the matrices Ai have (by Corollary 5.8) the form

Ai =

⎛

⎜
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λi 0 0 · · · · · · 0
1 λi 0 0

0 1 λi

...
...

. . .
. . .

...
...

. . . λi 0
0 0 · · · · · · 1 λi

⎞

⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.20)

The matrix A given by formulas (5.19) and (5.20) is said to be in Jordan normal
form, while the matrices Ai are called Jordan blocks. We therefore have the follow-
ing result, which is nothing more than a reformulation of Theorem 5.12.

Theorem 5.13 For every linear transformation of a finite-dimensional complex vec-
tor space, there exists a basis of that space in which the matrix of the transformation
is in Jordan normal form.

Corollary 5.14 Every complex matrix is similar to a matrix in Jordan normal form.

Proof As we saw in Chap. 3, an arbitrary square matrix A of order n is the matrix of
some linear transformation A : L → L in some basis e1, . . . , en. By Theorem 5.13,
in some other basis e′

1, . . . , e
′
n, the matrix A′ of the transformation A is in Jordan

normal form. As established in Sect. 3.4, the matrices A and A′ are related by the
relationship (3.43), for some nonsingular matrix C (the transition matrix from the
first basis to the second). This implies that the matrices A and A′ are similar. �

5.3 Jordan Normal Form (Uniqueness)

We shall now explore the extent to which the decomposition of the vector space L as
a direct sum of cyclic subspaces relative to a given linear transformation A : L → L
is unique. First of all, let us remark that in such a decomposition

L = L1 ⊕ · · · ⊕ Lr , (5.21)
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the subspaces Li themselves are in no way uniquely determined. The simplest ex-
ample of this is the identity transformation A = E . For this transformation, every
nonnull vector is an eigenvector, which means that every one-dimensional subspace
is a cyclic subspace generated by a principal vector of grade 1. Therefore, any de-
composition of the space L as a direct sum of one-dimensional subspaces is a de-
composition as a direct sum of cyclic subspaces, and such a decomposition exists
for every basis of the space L; that is, there are infinitely many of them.

However, we shall prove that eigenvalues λi and the dimensions of the cyclic
subspaces associated with these numbers coincide for every possible decomposition
(5.21). As we have seen, the Jordan normal form is determined solely by the eigen-
values λi and the dimensions of the associated subspaces (see formulas (5.19) and
(5.20)). This will give us the uniqueness of the Jordan normal form.

Theorem 5.15 The Jordan normal form of a linear transformation is completely
determined by the transformation itself up to the ordering of the Jordan blocks. In
other words, for the decomposition (5.21) of a vector space L as a direct sum of
subspaces that are cyclic for some linear transformation A : L → L, the eigenvalues
λi and dimensions mi of the associated cyclic subspaces Li depend only on the
transformation A and are the same for all decompositions (5.21).

Proof Let λ be some eigenvalue of the linear transformation A and let (5.21) be one
possible decomposition. Let us denote by lm (m = 1,2, . . .) the integer that indicates
how many m-dimensional cyclic subspaces associated with λ are encountered in
(5.21).

We shall give a method for calculating lm, based on λ and A only. This will prove
that this number in fact does not depend on the decomposition (5.21).

Let us apply to both sides of equality (5.21) the transformation (A − λE)i with
some i ≥ 1. It is clear that

(A − λE)i(L) = (A − λE)i(L1) ⊕ · · · ⊕ (A − λE)i(Lr ). (5.22)

We shall now determine the dimensions of the subspaces (A − λE)i(Lk). In the
course of proving the corollary to Theorem 5.9 (Corollary 5.10), we established that
for arbitrary μ �= λ, the restriction of the linear transformation A − μE to M is an
isomorphism, and its image (A−μE)(M) is equal to M. Therefore, if Lk corresponds
to the number λk �= λ, then

(A − λE)i(Lk) = Lk, λk �= λ. (5.23)

But if λk = λ, then choosing in Lk the basis e, (A − λE)(e), . . . , (A − λE)mk−1(e),
where mk = dim Lk , that is, it is equal to the grade of the principal vector e, we
obtain that if i ≥ mk , then the subspace (A − λE)i(Lk) consists solely of the null
vector, while if i < mk , then

(A − λE)i(Lk) = 〈
(A − λE)i(e), . . . , (A − λE)mk−1(e)

〉
,
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and moreover, the vectors (A − λE)i(e), . . . , (A − λE)mk−1(e) are linearly inde-
pendent. Therefore, in the case λk = λ, we obtain the formula

dim(A − λE)i(Lk) =
{

0, if i ≥ mk,

mk − i, if i < mk.
(5.24)

Let us denote by n′ the sum of the dimensions of those subspaces Lk that corre-
spond to the numbers λk �= λ. Then from formulas (5.22)–(5.24), it follows that

dim(A − λE)i(L) = li+1 + 2li+2 + · · · + (p − i)lp + n′, (5.25)

where p is the maximal dimension of a cyclic subspace associated with the given
value λ in the decomposition (5.21). Indeed, from the equality (5.22), we obtain that

dim(A − λE)i(L) = dim(A − λE)i(L1) + · · · + dim(A − λE)i(Lr ). (5.26)

It follows from formula (5.23) that the terms dim(A − λE)i(Lk) with λk �= λ in the
sum give n′. In view of formula (5.24), the terms dim(A − λE)i(Lk) with λk = λ

and mk ≤ i are equal to zero. Furthermore, from the same formula (5.24), it follows
that if mk = i + 1, then dim(A − λE)i(Lk) = 1, and the number of subspaces Lk

of dimension mk = i + 1 will be equal to li+1 by the definition of the number lm.
Therefore, in formula (5.26), the number of terms equal to 1 will be li+1. Similarly,
the number of subspaces Lk of dimension mk = i+2 will be equal li+2, but with this,
we already have dim(A − λE)i(Lk) = 2, whence on the right-hand side of (5.25),
there appears the term 2li+2, and so on. From this follows the equality (5.25).

Let us recall that in Sect. 3.6, we defined the notion of the rank rkB of an ar-
bitrary linear transformation B : L → L. Here, rkB coincides with the dimension
of the image B(L) and is equal to the rank of the matrix B of this transformation,
regardless of the basis e1, . . . , en in terms of which the matrix of the transformation
is written.

Let us now set ri = rk(A − λE)i for i = 1, . . . , p. Let us write the relationships
(5.25) for i = 1, . . . , p by taking into account the fact that

dim(A − λE)i(L) = rk(A − λE)i = ri and ls = 0 for s > p,

and let us consider also the equality

n = l1 + 2l2 + · · · + plp + n′,
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which follows from formula (5.21) or from (5.25) for i = 0. As a result, we obtain
the relationships

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

l1 + 2l2 + 3l3 + · · · · · · · · + plp + n′ = n,

l2 + 2l3 + · · · + (p − 1)lp + n′ = r1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
lp + n′ = rp−1,

n′ = rp,

from which it is possible to express l1, . . . , lp in terms of r1, . . . , rp .
Indeed, subtracting from each equation the one following it, we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

l1 + · · · · · · · · · · · + lp = n − r1,

l2 + · · · · · · · + lp = r1 − r2,

· · · · · · · · · · · · · · · · · · · · ·
lp = rp−1 − rp.

(5.27)

Repeating this same operation, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

l1 = n − 2r1 + r2,

l2 = r1 − 2r2 + r3,

· · · · · · · · · · · · · · · · · · · · ·
lp−1 = rp−2 − 2rp−1 + rp,

lp = rp−1 − rp.

(5.28)

From these relationships, it follows that the numbers li are determined by the num-
bers ri , which means that they depend only on the transformation A. �

Corollary 5.16 In the decomposition (5.21), the subspace associated with the num-
ber λ occurs if and only if λ is an eigenvalue of the transformation A.

Proof Indeed, if λ is not an eigenvalue, then the transformation A − λE is nonsin-
gular, and this means that the transformations (A − λE)i are nonsingular as well.
In other words, ri = n for all i = 1,2, . . . . From the formulas (5.27), it then fol-
lows that all li are equal to 0, that is, in the decomposition (5.21), there are no
subspaces associated with λ. Conversely, if li = 0, then from (5.28), we obtain that
rn = rn−1 = · · · = r1 = n. But the equality r1 = n means precisely that the transfor-
mation A − λE is nonsingular. �
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Corollary 5.17 Square matrices A and B of order n are similar if and only if their
eigenvalues coincide and for each eigenvalue λ and each i ≤ n, we have

rk(A − λE)i = rk(B − λE)i. (5.29)

Proof The necessity of conditions (5.29) is obvious, since if A and B are similar,
then so are the matrices (A−λE)i and (B −λE)i , which means that their ranks are
the same.

We now prove sufficiency. Suppose that the conditions (5.29) are satisfied. We
shall construct transformations A : L → L and B : L → L having in some basis
e1, . . . , en of the vector space L the matrices A and B . Let the transformation A
be brought into Jordan normal form in some basis f 1, . . . ,f n, and the same for B
in some basis g1, . . . ,gn. In view of equality (5.29) and using formulas (5.25), we
conclude that these Jordan forms coincide. This means that the matrices A and B

are similar to some third matrix, and consequently, by transitivity, they are similar
to each other. �

As an additional application of formulas (5.27), let us determine when a matrix
can be brought into diagonal form, which is a special case of Jordan form in which
all the Jordan blocks are of order 1. In other words, all the cyclic subspaces are
of dimension one. This means that l2 = · · · = ln = 0. From the second equality
in formulas (5.27), it follows that for this, it is necessary and sufficient that the
condition r1 = r2 be satisfied (for sufficiency, we must use the fact that li ≥ 0). We
have thus proved the following criterion.

Theorem 5.18 A linear transformation A can be brought into diagonal form if and
only if for every one of its eigenvalues λ, we have

rk(A − λE) = rk(A − λE)2.

Of course, an analogous criterion holds for matrices.

5.4 Real Vector Spaces

Up to this point, we have been considering linear transformations of complex vector
spaces (this is related to the fact that we have continually relied on the existence
of an eigenvector for every linear transformation, which may not be true in the real
case). However, the theory that we have built up gives us a great deal of information
about the case of transformations of real vector spaces as well, which are especially
important in applications.

Let us assume that the real vector space L0 is embedded in the complex vector
space L, for example its complexification (as was done in Sect. 4.3), while a linear
transformation A0 of the space L0 determines a real linear transformation A of the
space L. In this section and the following one, a bar will denote complex conjuga-
tion.
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Theorem 5.19 In the decomposition of the space L into cyclic subspaces with re-
spect to the real linear transformation A, the number of cyclic m-dimensional
subspaces associated with the eigenvalue λ is equal to the number of cyclic m-
dimensional subspaces associated with the complex-conjugate eigenvalue λ.

Proof Since the characteristic polynomial of a real transformation A has real coef-
ficients, it follows that for each root λ, the number λ̄ is also a root of the character-
istic polynomial. Let us denote, as we did in the proof of Theorem 5.15, the number
of cyclic m-dimensional subspaces for the eigenvalue λ by lm, and the number of
cyclic m-dimensional subspaces for the eigenvalue λ by l′m. In addition, we define
ri = rk(A − λE)i and r ′

i = rk(A − λE)i . Formulas (5.28) express the numbers lm
in terms of rm. Since these formulas hold for every eigenvalue, they also express
the numbers l′m in terms of r ′

m. Consequently, it suffices to show that r ′
i = ri , from

which it will follow that l′i = li , which is the assertion of the theorem.
To this end, we consider some basis of the space L0 (as a real vector space). It

will also be a basis of the space L (as a complex vector space). Let A be the matrix of
the linear transformation A in this basis. By definition, it coincides with the matrix
of the linear transformation A0 in the same basis, and therefore, it consists of real
numbers. Hence the matrix A − λE is obtained from A − λE by replacing all the
elements by their complex conjugates. We shall write this as

A − λE = A − λE.

It is easy to see that from this, it follows that for every i > 0, the equation

(A − λE)i = (A − λE)i

is satisfied. Thus our assertion is reduced to the following: if B is a matrix with
complex elements and the matrix B is obtained from B by replacing all its elements
with their complex conjugates, then rkB = rkB . The proof of this follows at once,
however, from the definition of the rank of a matrix as the maximal order of the
nonzero minors: indeed, it is clear that the minors of the matrix B are obtained
by complex conjugation from the minors of B with the same indices of rows and
columns, which completes the proof of the theorem. �

Thus according to Theorem 5.19, the Jordan normal form (5.19) of a real linear
transformation consists of Jordan blocks (5.20) corresponding to real eigenvalues λi

and pairs of Jordan blocks of the same order corresponding to complex-conjugate
pairs of eigenvalues λi and λi .

Let us see what this gives us for the classification of linear transformations of
a real vector space L0. Let us consider the simple example of the case dim L0 = 2.
By Theorem 5.19, the Jordan normal form of the linear transformation A of the
complex space L can have one of the three following forms:

(a)

(
α 0
0 β

)
, (b)

(
α 0
1 α

)
, (c)

(
λ 0
0 λ

)
,
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where α and β are real, and λ is a complex, not real, number, that is, λ = a + ib,
where i2 = −1 and b �= 0.

In cases (a) and (b), as can be seen from the definition of the linear transformation
A, the matrix of the transformation A0 already has the indicated form in some basis
of the real vector space L0.

As we showed in Sect. 4.3, in case (c), the transformation A0 has in some basis
the matrix

(
a −b

b a

)
.

Thus we see that an arbitrary linear transformation of a two-dimensional real vector
space has in some basis one of three forms:

(a)

(
α 0
0 β

)
, (b)

(
α 0
1 α

)
, (c)

(
a −b

b a

)
, (5.30)

where α,β, a, b are real numbers and b �= 0. By formula (3.43), this implies that an
arbitrary real square matrix of order 2 is similar to a matrix having one of the three
forms of (5.30).

In a completely analogous way, we may study the general case of linear transfor-
mations in a real vector space of arbitrary dimension.1 By the same line of argument,
one can show that every real square matrix is similar to a block-diagonal matrix

A =

⎛

⎜⎜⎜
⎝

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ar

⎞

⎟⎟⎟
⎠

,

where Ai is either a Jordan block (5.20) with a real eigenvalue λi or a matrix of even
order having the block form

Ai =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

Λi 0 0 · · · · · · 0
E Λi 0 · · · · · · 0

0 E Λi

...
...

. . .
. . .

...
...

. . . Λi 0
0 0 · · · · · · E Λi

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

,

1One may find a detailed proof in, for example, the book Lectures on Algebra, by D.K. Faddeev (in
Russian) or in Sect. 3.4 of Matrix Analysis, by Roger Horn and Charles Johnson. See the references
section for details.
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in which the blocks Λi and E are matrices of order 2:

Λi =
(

ai −bi

bi ai

)
, E =

(
1 0
0 1

)
.

5.5 Applications*

For a matrix A in Jordan normal form, it is easy to calculate the value of f (A),
where f (x) is any polynomial of degree n. First of all, let us note that if the matrix
A is in block-diagonal form

A =

⎛

⎜⎜⎜
⎝

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ar

⎞

⎟⎟⎟
⎠

with arbitrary blocks A1, . . . ,Ar , then

f (A) =

⎛

⎜⎜⎜
⎝

f (A1) 0 · · · 0
0 f (A2) · · · 0
...

...
. . .

...

0 0 · · · f (Ar)

⎞

⎟⎟⎟
⎠

.

This follows immediately from the decomposition of the space L as L = L1 ⊕ · · · ⊕
Lr , a direct sum of invariant subspaces, and from the fact that a linear transformation
with matrix A defines on Li a linear transformation with matrix Ai .

Thus it remains only to consider the case that A is a Jordan block, that is,

A =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

λ 0 0 · · · · · · 0
1 λ 0 0

0 1 λ
...

...
. . .

. . .
...

...
. . . λ 0

0 0 · · · · · · 1 λ

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

. (5.31)
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It will be convenient to represent it in the form A = λE + B , where

B =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

0 0 0 · · · · · · 0
1 0 0 0

0 1 0
...

...
. . .

. . .
...

...
. . . 0 0

0 0 · · · · · · 1 0

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

. (5.32)

Let us now write down Taylor’s formula for a polynomial of degree n:

f (x + y) = f (x) + f ′(x)y + f ′′(x)

2! y2 + · · · + f (n)(x)

n! yn. (5.33)

We note that for the derivation of formula (5.33), we have to compute the binomial
expansion of (x + y)k , k = 2, . . . , n, and then, of course, use commutativity of mul-
tiplication of numbers. If the commutative property did not hold, then we would not
be able to obtain, for example, the expression (x + y)2 = y2 + 2xy + x2, but only
(x + y)2 = y2 + yx + xy + x2. Therefore, in formula (5.33), we may replace x and
y by numbers, but not by arbitrary matrices, instead only those that commute.

Let us substitute in formula (5.33) the arguments x = λE and y = B , since the
matrices λE and B obviously commute. As is easily verified, for an arbitrary poly-
nomial f (λE) = f (λ)E, we obtain the expression

f (A) = f (λ)E + f ′(λ)B + f ′′(λ)

2! B2 + · · · + f (n)(λ)

n! Bn. (5.34)

We now observe that in the basis e1, . . . , em of the cyclic subspace generated by
the principal vector e of grade m, the transformation B with B of the form (5.32)
assumes the following form:

B(ei ) =
{

ei+1 for i ≤ m − 1,

0 for i > m − 1.

Applying the formula k times, we obtain that

Bk(ei ) =
{

ei+k for i ≤ m − k,

0 for i > m − k.
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From this, it is clear that the matrix Bk has the following very simple form:

Bk =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

0 0 · · · · · · · · · · · · · · · 0
...

...
...

1 0
...

0 1
...

0 0
. . .

...
...

...
. . .

...

0 0 · · · 0 1 0 · · · 0
0 0 · · · 0 0 1 · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.

In order to describe this in words, we shall call the collection of elements aij in the
matrix A = (aij ) with i = j the main diagonal, while the collection of elements aij

with i − j = k (where k is a given number) forming a diagonal parallel to the main
diagonal will be called the diagonal lying k steps from the main diagonal. Thus in
the matrix Bk , the diagonal lying k steps from the main diagonal contains all 1’s,
while the remaining matrix entries are zero.

Formula (5.34) now gives for a Jordan block A of order m the expression

f (A) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ϕ0 0 0 · · · 0 0
ϕ1 ϕ0 0 · · · 0 0

ϕ2 ϕ1 ϕ0
. . . 0

...
. . .

. . .
. . .

. . .
...

ϕm−2 ϕm−3
. . .

. . . ϕ0 0
ϕm−1 ϕm−2 ϕm−3 · · · ϕ1 ϕ0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (5.35)

where ϕk = f (k)(λ)/k!, that is, the numbers ϕk are the coefficients in the Taylor
expansion (5.34).

Let us look at a very simple example. Suppose we wish to raise a matrix A of or-
der 2 to a very high power p (for example, p = 2000). To perform such calculations
by hand seems hopeless. But the theory that we have constructed proves here to be
very useful. Let us find an eigenvalue of the linear transformation A with matrix A,
that is, a root of the second-degree trinomial |A− λE|. Here two cases are possible.

Case 1. The trinomial |A − λE| has distinct roots λ1 and λ2. We can easily find the
associated eigenvectors e1 and e2, for which

(A − λ1E)(e1) = 0, (A − λ2E)(e2) = 0.

As we know, the vectors e1 and e2 are linearly independent, and in the basis e1, e2,
the transformation A has the diagonal matrix

( λ1 0
0 λ2

)
. If C is the transition matrix
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from the original basis in which the transformation A has matrix A to the basis
e1, e2, then

A = C−1
(

λ1 0
0 λ2

)
C, (5.36)

whence is easily obtained for any p (as large as desired), the formula

Ap = C−1
(

λ
p

1 0
0 λ

p

2

)
C. (5.37)

Let us now consider the second case.

Case 2. The trinomial |A−λE| has a multiple root λ (which therefore must be real).
Then the Jordan normal form of the matrix A has the form of a single block

(
λ 0
1 λ

)
or

(
λ 0
0 λ

)
. In the latter variant, the Jordan normal form of the matrix is equal to λE, and

therefore the matrix A is also equal to λE (this follows, for example, from the fact
that if in some basis, a linear transformation has the matrix λE, then it will have the
same matrix in every other basis as well). Thus in this last variant we are dealing
with the previous case, in which λ1 = λ2 = λ, and the calculation of Ap is obtained
by formula (5.37), where we have only to substitute λ1 and λ2 for λ. It remains to
consider the first variant. For a Jordan block

(
λ 0
1 λ

)
, by formula (5.35), we obtain

(
λ 0
1 λ

)p

=
(

λp 0
pλp−1 λp

)
.

If e1, e2 are vectors such that

(A − λE)(e1) �= 0, e2 = (A − λE)(e1),

then in the basis e1, e2, the matrix of the transformation A is in Jordan normal form.
We denote by C the transition matrix to this basis, and using the transition formula

A = C−1
(

λ 0
1 λ

)
C,

we obtain

Ap = C−1
(

λp 0
pλp−1 λp

)
C. (5.38)

Formulas (5.37) and (5.38) solve our problem.
We can now apply the same ideas not only to polynomials, but to other functions,

for example those given by a convergent power series. Such functions are called
analytic. To do this, we need the concept of convergence of a sequence of matrices.
Let us recall that the notion of convergence for a sequence of square matrices of
a given order with real coefficients was defined earlier, in Sect. 4.4. Moreover, in
that same section, we introduced on the set of such matrices the metric r(A,B),
after converting it to a metric space, on which the notion of convergence is defined
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automatically (see p. xvii). It is obvious that the metric r(A,B) defined by formulas
(4.36) and (4.37) is also a metric on the set of square matrices of a given order with
complex coefficients, and therefore transforms it into a metric space.

With this definition, the convergence of a sequence of matrices A(k) = (a
(k)
ij ),

k = 1,2, . . . , to a matrix B = (bij ) means that a
(k)
ij → bij for k → ∞ for all i, j .

In this case, we write A(k) → B for k → ∞ or limk→∞ A(k) = B . The matrix B

is called the limit of the sequence A(k), k = 1,2, . . . . Similarly, we can define the
limit of a family of matrices A(h) depending on a parameter h assuming values
that are not necessarily natural numbers (as was the case for a sequence), but real
values, and approaching an arbitrary value h0. By definition, limh→h0 A(h) = B if
limh→h0 r(A(h),B) = 0. In other words, this means that limh→h0 aij (h) = bij for
all i, j .

Just as in the case of numbers, once we have the notion of convergence of a se-
quence of matrices, it is possible to talk about the convergence of series of matrices.
Without any alteration, we can transfer theorems on series known from analysis to
series of matrices. Let the function f (x) be defined by the power series

f (x) = α0 + α1x + · · · + αkx
k + · · · . (5.39)

Then by definition,

f (A) = α0E + α1A + · · · + αkA
k + · · · . (5.40)

Suppose the power series (5.39) converges for |x| < r and the matrix A is in the
form of a Jordan block (5.31) with eigenvalue λ, of absolute value less than r . Then,
examining the sum of the first k terms of the series (5.40) and passing to the limit
k → ∞, we obtain that the series (5.40) converges, and for f (A), formula (5.35)
holds. If we now take a matrix A′ similar to some Jordan block A, that is, related
to it by A′ = C−1AC, where C is some nonsingular matrix, then from the obvious
relationship (C−1AC)k = C−1AkC, we obtain from (5.40) that

f
(
A′) = C−1(α0E + α1A + · · · + αkA

k + · · · )C = C−1f (A)C. (5.41)

Formulas (5.35) and (5.41) allow us to compute f (A) for any analytic function
f (x). Using results from analysis, we can extend the notion of functions of matrices
to a wider class of functions (for example, to continuous functions with the help of
the theorem on uniform approximation of continuous functions by polynomials).
However, we shall not address these questions here.

In applications, of especial importance are exponentials of matrices. We recall
that the exponential function of a number x can be defined by the series summation

ex = 1 + x + 1

2!x
2 + · · · + 1

k!x
k + · · · , (5.42)
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which, as proved in a course in analysis, converges for all real or complex num-
bers x. According to this, the exponential of a matrix A is defined by the series

eA = E + A + 1

2!A
2 + · · · + 1

k!A
k + · · · , (5.43)

which converges for every matrix A with real or complex entries.
Let us verify that if matrices A and B commute, then a basic property of the

numerical exponential function is transferred to the matrix exponential function:

eAeB = eA+B. (5.44)

Indeed, substituting into the left-hand side of (5.44) the expressions (5.43) for eA

and eB , removing parentheses, and collecting like terms, we obtain

eAeB =
(

E + A + 1

2!A
2 + 1

3!A
3 + · · ·

)(
E + B + 1

2!B
2 + 1

3!B
3 + · · ·

)

= E + (A + B) +
(

1

2!A
2 + AB + 1

2!B
2
)

+
(

1

3!A
3 + 1

2! A2B + 1

2! AB2 + 1

3!B
3
)

+ · · ·

= E + (A + B) + 1

2! (A + B)2 + 1

3! (A + B)3 + · · · ,

which coincides with the expression (5.43) for eA+B . As justification for the gener-
alization made above, it is necessary to note that first of all, as is known from anal-
ysis, for the corresponding exponential function (5.43), the numeric series (5.42)
converges absolutely on the entire real axis (this allows the terms to be summed
in arbitrary order), and second, matrices A and B commute (without this, this last
generalization would be impossible, which we know by virtue of what we discussed
earlier on page 177).

In particular, from (5.44) follows the important relationship

eA(t+s) = eAteAs (5.45)

for all numbers t and s and every square matrix A. From this, it is easy to derive
that

d

dt
eAt = AeAt (5.46)

(understanding that differentiation of the matrix function is to be taken element-
wise).

Indeed, by the definition of differentiation,

d

dt
eAt = lim

h→0

eA(t+h) − eAt

h
,
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while from (5.45), it follows that

eA(t+h) − eAt

h
= eAheAt − eAt

h
= eAh − E

h
eAt .

Finally, from (5.43) we easily obtain the equality

lim
h→0

eAh − E

h
= lim

h→0
h−1

(
(Ah) + 1

2! (Ah)2 + · · · + 1

k! (Ah)k + · · ·
)

= A.

All these considerations have numerous applications in the theory of differential
equations. Let us consider a system of n linear homogeneous differential equations

dxi

dt
=

n∑

j=1

aij xj , i = 1, . . . , n, (5.47)

where aij are certain constant coefficients and xi = xi(t) are unknown differentiable
functions of the variable t . Similarly to what was done earlier for systems of linear
algebraic equations (Example 2.49, p. 62), the system of linear differential equa-
tions (5.47) can also be written down compactly in matrix form if we introduce the
column vectors

x =
⎛

⎜
⎝

x1
...

xn

⎞

⎟
⎠ ,

dx

dt
=

⎛

⎜
⎝

dx1/dt
...

dxn/dt

⎞

⎟
⎠

and a square matrix of order n consisting of the coefficients of the system: A = (aij ).
Then system (5.47) can be written in the form

dx

dt
= Ax. (5.48)

The number n is called the order of this system.
For any constant vector x0, let us consider the vector x(t) = eAtx0, depending on

the variable t . This vector satisfies the system (5.48). Indeed, for arbitrary matrices
A(t) and B (possibly rectangular, provided that the number of columns of A(t)

coincides with the number of rows of B), if only the matrix B is constant, one has
the equality

d

dt

(
A(t)B

) = dA(t)

dt
B,

after which it remains to use relationship (5.46). Similarly, for arbitrary matrices
A(t) and B , where B is constant and the number of columns of B coincides with
the number of rows of A(t), we have the formula

d

dt

(
BA(t)

) = B
dA(t)

dt
. (5.49)
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Since with t = 0, the matrix eAt equals E, the solution x(t) = eAtx0 satisfies the
initial condition x(0) = x0. But the uniqueness theorem proved in the theory of
differential equations asserts that for a given x0, such a solution is unique. Thus we
may obtain all solutions of the system (5.48) in the form eAtx0 if we consider the
vector x0 not as fixed, but as taking all possible values in a space of dimension n.

Finally, it is also possible to obtain an explicit formula for the solutions. To this
end, let us make a linear substitution of variables in the system of equations (5.48)
according to the formula y = C−1x, where C is a nonsingular constant square ma-
trix of order n. Then taking into account relationships (5.49), (5.48), and x = Cy,
we obtain

dy

dt
= C−1 dx

dt
= C−1Ax = (

C−1AC
)
y. (5.50)

Formula (5.50) shows that the matrix A of a system of linear differential equations
under a linear replacement of variables changes according to the same law as the
matrix of a linear transformation under a suitable change of basis. In accord with
what we have done in previous sections, we may choose as C a matrix with whose
help, the matrix A is converted to Jordan normal form. As a result, the system (5.48)
can be rewritten in the form

dy

dt
= A′y, (5.51)

where the matrix A′ = C−1AC is in Jordan normal form.
Let

A′ =

⎛

⎜⎜⎜
⎝

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ar

⎞

⎟⎟⎟
⎠

, (5.52)

where the Ai are Jordan blocks. Then system (5.51) is decomposed into r systems

dyi

dt
= Aiyi , i = 1, . . . , r,

and for each of these, we can express the solution in the form eAi tx
(i)
0 and find the

matrix eAi t from the relationship (5.35). Here f (x) = ext , and consequently,

f (k)(x) = dk

dxk
ext = tkext , ϕk = tk

k!e
λt .
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This implies that for blocks Ai of the form (5.31) of order m, formula (5.35) gives
us

eAt = eλt

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 · · · 0 0
t 1 0 · · · 0 0

t2
2 t 1

. . .
...

...
. . .

. . .
. . .

. . .
...

tm−2

(m−2)!
tm−3

(m−3)!
. . .

. . . 1 0

tm−1

(m−1)!
tm−2

(m−2)!
tm−3

(m−3)! · · · t 1

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.53)

This implies that the solutions of the system (5.48) can be decomposed into series
whose lengths are equal to the orders of the Jordan blocks in the representation
(5.52), and for a block of order m, all solutions of the given series can be expressed
as linear combinations (with constant coefficients) of the functions

eλt , teλt , . . . , tm−1eλt . (5.54)

It is easily verified that the collection of solutions of system (5.48) forms a vector
space, where the addition of two vectors and multiplication of a vector by a scalar
are defined just as were addition and multiplication by a scalar of the correspond-
ing functions. The set of functions (5.54) forms a basis of the space of solutions
of the system (5.48). In the theory of differential equations, such a set is called a
fundamental system of solutions.

In conclusion, let us say a few words about linear differential equations with real
coefficients in the plane (n = 2) (that is, assuming that in system (5.48), the matrix
A and vector x are real). Here, we should distinguish four possibilities for the matrix
A and roots of the polynomial |A − λE|:
(a) The roots are real and distinct: (α and β).
(b) There is a multiple root α (necessarily real) and A = αE.
(c) There is a multiple root α, but A �= αE.
(d) The roots are complex conjugate: a + ib and a − ib (here i2 = −1 and b �= 0).

In each of these cases, the matrix A can be brought (by multiplication on the left
by C−1 and on the right by C, where C is some nonsingular real matrix) into the
following normal forms:

(a)

(
α 0
0 β

)
, (b)

(
α 0
0 α

)
, (c)

(
α 0
1 α

)
, (d)

(
a −b

b a

)
.

The solution x(t) of the associated differential equation is obtained in the form
x(t) = eAtx0, where x0 = ( c1

c2

)
is the vector of the original data. Further, we can

use formula (5.53), considering that the matrix A of the system has the normal form
(a), (b), (c), or (d). Here in cases (a)–(c), we will obtain

(a) x(t) =
(

eαt c1

eβt c2

)
, (b) x(t) =

(
eαt c1
eαt c2

)
, (5.55)



5.5 Applications* 185

(c) x(t) =
(

eαt 0
teαt eαt

)
·
(

c1
c2

)
=

(
c1e

αt

c1te
αt + c2e

αt

)
. (5.56)

In case (d), we obtain x(t) = eAt
( c1

c2

)
, where A = (

a −b
b a

)
. In Example 4.2

(p. 134) we established that A is the matrix of a linear transformation of the plane
C with complex variable z that multiplies z by the complex number a + ib. This
means, by the definition of the exponential function, that eAt is the matrix of multi-
plication of z by the complex number e(a+ib)t . By Euler’s formula,

e(a+ib)t = eat (cosbt + i sinbt) = p + iq,

where p = eat cosbt and q = eat sinbt . Thus we obtain a linear transformation of
the real plane C with complex variable z that multiplies each complex number z ∈C

by the given complex number p + iq . As we saw in Example 4.2, the matrix of such
a linear transformation has the form (4.2). Multiplying it by the column vector x0 of
the original data and substituting the expressions p = eat cosbt and q = eat sinbt ,
we obtain our final formula:

(?) x(t) =
(

p −q

q p

)
·
(

c1
c2

)
= eat

(
c1 cosbt − c2 sinbt

c1 sinbt + c2 cosbt

)
. (5.57)

The plane of variables (x1, x2) is called the phase plane of the system (5.48)
for n = 2. Formulas (5.55)–(5.57) define (in parametric form) certain curves in the
phase plane, where to each pair of values c1, c2 there corresponds in general a curve
passing through the point (c1, c2) of the phase plane for t = 0. These oriented curves
(the orientation is given by the direction of motion corresponding to an increase in
the parameter t) are called phase curves of system (5.48), and the collection of
all phase curves corresponding to all possible values of c1, c2 is called the phase
portrait of the system. Let us pose the following question: What does the phase
portrait of the system (5.48) look like in cases (a)–(d)?

First of all, we note that among all solutions x(t) there is always the constant
x(t) ≡ 0. It is obtained by substituting in formulas (5.55)–(5.57) the initial values
c1 = c2 = 0. The phase curve corresponding to this solution is simply the point
x1 = x2 = 0. Constant solutions (and their corresponding phase curves, points in the
phase plane) are called singular points or equilibrium points or fixed points of the
differential equation.2 Similarly, just as the study of a function usually begins with
a search for its extreme points, so a study of a differential equation usually begins
with a search for its singular points.

Are there singular points of system (5.48) other than x1 = x2 = 0? Singular
points are the constant solutions of a system of equations, and since the derivative
of a constant solution is identically equal to zero (that is, the left-hand side of sys-
tem (5.48) is identically zero), this means that the right-hand side of system (5.48)
must also be identically equal to zero. Therefore, singular points are precisely the

2This name comes from the fact that if at some moment in time, a material point whose motion is
described by system (5.48) is located at a singular point, then it will remain there forever.
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solutions of the system of linear homogeneous equations Ax = 0. If the matrix A is
nonsingular, then the system Ax = 0 has no solutions other than the null solution,
and therefore, system (5.48) has no singular points other than x1 = x2 = 0. If the
matrix A is singular and its rank is equal to 1, then system (5.48) has an infinite
number of singular points lying on a line in the phase plane. But in the case that the
rank of the matrix A is equal to 0, all points of the phase plane are singular points.

In the sequel, we will consider that the matrix A is nonsingular and examine what
sorts of phase portraits they correspond to in the cases (a)–(d) presented above. In
all the figures, the x-axis corresponds to the variable x1, while the y-axis represents
the variable x2.

(a) The roots α and β are real and distinct. In this case, there are three possibili-
ties: α and β have different signs, both are negative, or both are positive.

(a.1) If α and β have different signs, then a singular point is called a saddle. For
definiteness, let us assume that α < 0 and β > 0. To the initial value c1 �= 0, c2 = 0
there corresponds the solution x1(t) = c1e

αt , x2(t) = 0, passing through the point
(c1,0) at t = 0. The associated phase curve is the horizontal ray x1 > 0, x2 = 0 (if
c1 > 0) or x1 < 0, x2 = 0 (if c1 < 0) such that the direction along the curve with
increasing t is toward the singular point x1 = x2 = 0.

Similarly, to the initial point c1 = 0, c2 �= 0 corresponds the solution x1(t) = 0,
x2(t) = c2e

βt , passing through the point (0, c2) at t = 0. The associated phase curve
is the vertical ray x1 = 0, x2 > 0 (if c2 > 0) or x1 = 0, x2 < 0 (if c2 < 0) such
that the direction along the curve for increasing t is away from the singular point
x1 = x2 = 0.

Thus there are two phase curves asymptotically approaching the singular point
as t → +∞ (they are called stable separatrices), and two curves approaching it
for t → −∞ (they are called unstable separatrices). Let us make one crucial ob-
servation: from the fact that eαt → 0 for t → +∞ and eβt → 0 for t → −∞, it
follows that stable and unstable separatrices approach a saddle arbitrarily closely as
t → +∞ and t → −∞ respectively but never reach it in finite time.

The stable and unstable separatrices of a saddle partition the phase plane into
four sectors. In our case (in which the matrix of system (5.48) is in Jordan form), the
separatrices lie on the coordinate axes, and therefore, these sectors coincide with the
Cartesian quadrants. Let us see how the remaining phase curves behave with respect
to the initial values c1 �= 0, c2 �= 0. We observe first that if the initial point (c1, c2)

lies in any of the four sectors, then after passing through it for t = 0, the phase curve
remains in that sector for all values of t . This follows obviously from the fact that
the functions x1(t) = c1e

αt and x2(t) = c2e
βt are of fixed sign.

For definiteness, let us consider the first quadrant c1 > 0, c2 > 0 (the other cases
can be obtained from this one by a symmetry transformation with respect to the x-
or y-axis or with respect to the origin). Let us raise the function x1(t) = c1e

αt to the
β power, and the function x2(t) = c2e

βt to the α power. After dividing one by the
other and canceling the factor eαβt , we obtain the relationship

x
β

1

xα
2

= c
β

1

cα
2

= c, (5.58)
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Fig. 5.1 Saddle and nodes

where the constant c is determined by the initial values c1, c2. Since the numbers
α and β have opposite signs, the phase curve in the plane (x1, x2) corresponding
to this equation has a form similar to a hyperbola. This phase curve passes at some
positive distance from the singular point x1 = x2 = 0, asymptotically approaching
one of the unstable separatrices as t → +∞ and to one of the stable separatrices as
t → −∞. Such phase curves are said to be of hyperbolic or saddle type.

Thus in the case of a saddle, we have two stable separatrices approaching the
singular point as t → +∞ and two unstable separatrices approaching it as t → −∞,
and also an infinite number of saddle-type phase curves filling the four sectors into
which the separatrices divide the phase plane. The associated phase portrait is shown
in Fig. 5.1.

(a.2) If α and β have the same sign, then a singular point is called a node. More-
over, if α and β are negative, then the node is said to be stable, while if α and β

are positive, the node is unstable. The reason for this terminology will soon become
clear.

For definiteness, we will restrict our examination to stable nodes (unstable nodes
are studied similarly), that is, we shall assume that the numbers α and β are negative.
As in the case of a saddle, the phase curve corresponding to the initial value c1 �= 0,
c2 = 0 is the horizontal ray x1 > 0, x2 = 0 (if c1 > 0) or x1 < 0, x2 = 0 (if c1 < 0)
such that the direction along the curve for increasing t is toward the singular point.
The phase curve corresponding to the initial value c1 = 0, c2 �= 0 is the vertical ray
x1 = 0, x2 > 0 (if c2 > 0) or x1 = 0, x2 < 0 (if c2 < 0) such that the direction along
the curve for increasing t is also toward the singular point.

As in the case of a saddle, it is clear that if the initial point (c1, c2) lies in one
of the four quadrants, then the phase curve passing through it for t = 0 remains in
that quadrant for all values of t . Let us consider the first quadrant c1 > 0, c2 > 0.
Proceeding as we did in the case of a saddle, we again obtain the equation (5.58). But
now the numbers α and β have the same sign, and the phase curve corresponding
to this equation has quite a different form from that in the case of a saddle. After
a transformation of (5.58), we obtain the exponential function x1 = c1/βx

α/β

2 . If
α > β , then the exponent α/β is greater than 1, and the graph of this function is
similar to a branch of the parabola x1 = x2

2 . However, if α < β , then the exponent
α/β is less than 1, and the graph of the function looks like a branch of the parabola
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Fig. 5.2 Dicritical and Jordan nodes

x2 = x2
1 . Thus in the case of a stable node, all the phase curves approach the singular

point as t → +∞, while for t → −∞, they move away from it (for an unstable node
we must exchange the positions of +∞ and −∞). Such phase curves are called
parabolic. Phase portraits of stable and unstable nodes are depicted in Fig. 5.1.

It is now possible to explain the terminology stable and unstable. If a material
point was located at an equilibrium point that was a stable node and was brought
out from that point by some external action, then moving along the curve depicted
in the phase portrait, it will strive to return to that position. But if it was an unstable
node, then a material point brought out from an equilibrium point not only would
not strive to return to that position, but on the contrary, it would move away from it
with exponentially increasing speed.

(b) If a matrix A is similar to the matrix αE, then a singular point is called a
dicritical node or bicritical node. Proceeding in the same way as before, we obtain
the relationship (5.58) with β = α, from which follows the equation x1/x2 = c1/c2.
All the phase curves are rays with origin at x1 = x2 = 0. Moreover, if α < 0, then
motion along them as t → +∞ proceeds toward the equilibrium point x1 = x2 = 0,
while if α > 0, then away from it. Thus in the case α < 0 (α > 0), we have a stable
(unstable) dicritical node. The phase portrait of a stable dicritical node is depicted
in Fig. 5.2. In the case of an unstable dicritical node, it is necessary only to change
the directions of the arrows to their opposite.

(c) If the solution to the equation is given by formula (5.56), then a singular point
is called a Jordan node. If α < 0, then the Jordan node is stable, and if α > 0, then
it is unstable. For c1 �= 0, c2 = 0, we obtain two phase curves, namely the horizon-
tal rays x1 > 0, x2 = 0 and x1 < 0, x2 = 0, whose motion is in the direction of the
singular point for α < 0 and away from the singular point for α > 0. In the inves-
tigation of phase curves for c2 �= 0, one must study the properties of the functions
x1(t) = c1e

αt and x2(t) = (c1t + c2)e
αt for c1 > 0 and for c1 < 0. As a result, for a

stable (unstable) Jordan node, one obtains the phase portrait depicted in Fig. 5.2. All
the phase curves (except the two vertical rays) look like pieces of a parabola, each
of which lies entirely either in the right or left half-plane and intersects the x-axis in
a single point.

(d) The roots are complex conjugates: a + ib and a − ib, where b �= 0. Here it is
necessary to consider two cases: a �= 0 and a = 0.
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Fig. 5.3 Foci and center

(d.1) If a �= 0, then a singular point is called a focus. In order to visualize the
behavior of phase curves given by formula (5.57), we observe that the vector x(t) is
obtained from the vector x0 with coordinates (c1, c2) by rotating it through the angle
bt and multiplying by eat . Therefore, the phase curves are spirals that “wind” around
the singular point x1 = x2 = 0 as t → +∞ (if a < 0) or as t → −∞ (if a > 0). For
a < 0 and a > 0, a focus is said to be stable or unstable respectively. The direction
of motion along the spirals (clockwise or counterclockwise) is determined by the
sign of the number b. In Fig. 5.3 are shown phase portraits of a stable focus (a < 0)
and an unstable focus (a > 0) in the case b > 0, that is, the case in which the motion
along the spirals is counterclockwise.

(d.2) If a = 0, then the singular point x1 = x2 = 0 is called a center. Relationship
(5.57) defines in this case a rotation of the vector x0 through the angle bt . The
phase curves are concentric circles with common center x1 = x2 = 0 along which
the motion is either clockwise or counterclockwise according to the sign of the
number b. The phase portrait of a center (for the case b > 0) is shown in Fig. 5.3.



Chapter 6
Quadratic and Bilinear Forms

6.1 Basic Definitions

Definition 6.1 A quadratic form in n variables x1, . . . , xn is a homogeneous
second-degree polynomial in these variables. Therefore, only terms of degree two
enter into this polynomial; that is, the terms are monomials of the form ϕij xixj for
all possible values of i, j = 1, . . . , n, and so the polynomial has the form

ψ(x1, . . . , xn) =
n∑

i,j=1

ϕij xixj . (6.1)

We note that in expression (6.1), there are like terms, such as xixj = xjxi . We
shall decide later how to deal with them.

Of course, every quadratic form (6.1) can be viewed as a function of the vector
x = x1e1 + · · ·+ xnen, where e1, . . . , en is some fixed basis of the vector space L of
degree n. We shall write this as

ψ(x) =
n∑

i,j=1

ϕij xixj . (6.2)

The given definition of quadratic form obviously is compatible with the more
general definition of form of arbitrary degree given in Sect. 3.8 (see p. 127). We
recall that in that section, a form of degree k was defined as a function F(x) of the
vector x ∈ L, where F(x) is written as a homogeneous polynomial of degree k in
coordinates x1, . . . , xn in some (and hence any) basis of this vector space. Thus for
k = 2, we obtain the above definition of quadratic form.

By a change in coordinates, that is, by a choice of another basis of the space L, a
quadratic form ψ(x) will be written as previously in the form (6.2) with some other
coordinates ϕij .

Quadratic forms have the property of being very similar to linear functions, and in
the sequel, we shall unite the theory of quadratic forms with that of linear functions
and transformations. The following notion will serve as a foundation for this.
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Definition 6.2 A function ϕ(x,y) that assigns to two vectors x,y ∈ L a scalar value
is called a bilinear form on L if it is linear in each of its arguments, that is, if for
every fixed ỹ ∈ L, the function ϕ(x, ỹ) as a function of x is linear on L and for each
fixed x̃ ∈ L, the function ϕ(̃x,y) as a function of y is linear on L.

In other words, the following conditions must be satisfied for all vectors of the
space L and scalars α:

ϕ(x1 + x2,y) = ϕ(x1,y) + ϕ(x2,y),

ϕ(αx,y) = αϕ(x,y),

ϕ(x,y1 + y2) = ϕ(x,y1) + ϕ(x,y2),

ϕ(x, αy) = αϕ(x,y).

(6.3)

If the space L consists of rows, we have a special case of the notion of multilinear
function, which was introduced in Sect. 2.7 (for m = 2).

If e1, . . . , en is some basis of L, then we can write

x = x1e1 + · · · + xnen, y = y1e1 + · · · + ynen,

and using equations (6.3), we obtain a formula that expresses (in the chosen basis)
the bilinear form ϕ(x,y) in terms of the coordinates of the vectors x and y:

ϕ(x,y) =
n∑

i,j=1

ϕij xiyj , where ϕij = ϕ(ei , ej ). (6.4)

In this case, the square matrix Φ = (ϕij ) is called the matrix of the bilinear form ϕ

in the basis e1, . . . , en. In the case that x and y are rows, this formulation represents
a special way of writing an arbitrary multilinear function as introduced in Sect. 2.7
(Theorem 2.29).

The relationship (6.4) shows that the value of ϕ(x,y) can be expressed in terms
of the elements of the matrix Φ and the coordinates of the vectors x and y in the
basis e1, . . . , en, which means that a bilinear form, as a function of the arguments x

and y, is completely defined by its matrix Φ . This same formula shows that if we
replace the argument y in the bilinear form ϕ(x,y) by x, where x = (x1, . . . , xn),
we obtain the quadratic form ψ(x) = ϕ(x,x), and moreover, any quadratic form
(6.1) can be obtained in this way; to do so, we need only choose a bilinear form
ϕ(x,y) with matrix Φ = (ϕij ) satisfying the condition ϕ(ei , ej ) = ϕij , where ϕij

are the coefficients from (6.1).
It is easily seen that the set of bilinear forms on a vector space L is itself a vector

space if we define on it in a natural way the operations of addition of bilinear forms
and multiplication by a scalar. Clearly, the null vector in such a space is the bilinear
form that is identically equal to zero.

The connection between the notion of bilinear form and that of linear transfor-
mation is based on the following result, which uses the notion of dual space.
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Theorem 6.3 There is an isomorphism between the space of bilinear forms ϕ on
the vector space L and the space L(L,L∗) of linear transformations A : L → L∗.

Proof Let ϕ(x,y) be a bilinear form on L. Let us associate with it the linear transfor-
mation A : L → L∗ as follows. By definition, A should assign to a vector y ∈ L a lin-
ear function ψ(x) on L. We shall make this assignment by setting ψ(x) = ϕ(x,y).
The verification that the transformation A thus defined is linear is trivial.

It is equally trivial to verify that the correspondence ϕ 	→ A is a bijection. We
shall simply point out the inverse transformation of the set L(L,L∗) into the set of
bilinear forms. Let A be a linear transformation from L to L∗ that to each vector
x ∈ L assigns the linear function A(x) ∈ L∗. This function takes the value A(x)(y)

on the vector y, which we shall denote by ϕ(x,y). Using the notation established in
Sect. 3.7 (p. 125) and keeping in mind that in this situation, M = L∗, we may write
ϕ(x,y) = (x,A(y)) for arbitrary vectors x,y ∈ L.

Finally, it is completely obvious that the constructed mapping ϕ 	→ A is an iso-
morphism of vector spaces, that is, it satisfies the conditions ϕ1 + ϕ2 	→ A1 + A2
and λϕ 	→ λA, where ϕi 	→ Ai and λ is an arbitrary scalar. �

It follows from this theorem that the study of bilinear forms is analogous to that
of linear transformations L → L (although somewhat simpler). In mathematics and
physics, a special role is played by two particular types of bilinear form.

Definition 6.4 A bilinear form ϕ(x,y) is said to be symmetric if

ϕ(x,y) = ϕ(y,x), (6.5)

and antisymmetric if

ϕ(x,y) = −ϕ(y,x), (6.6)

for all vectors x,y ∈ L.

We encountered special cases of both these concepts in Chap. 2, when the vectors
x and y were taken to be rows of numbers.

If following Theorem 6.3, we express the bilinear form ϕ(x,y) in the form

ϕ(x,y) = (
x,A(y)

)
(6.7)

with some linear transformation A : L → L∗, then the symmetry condition (6.5)
indicates that (x,A(y)) = (y,A(x)). Since (y,A(x)) = (x,A∗(y)), where A∗ :
L∗∗ → L∗ is the linear transformation dual to A (see p. 125), then it can be rewritten
in the form (x,A(y)) = (x,A∗(y)). Since this relationship must be satisfied for all
vectors x,y ∈ L, it can be rewritten in the form A = A∗. Note that in view of the
equality L∗∗ = L, both A and A∗ are transformations from L to L∗. Similarly, the
asymmetry condition (6.6) of the bilinear form ϕ(x,y) can be written in the form
A = −A∗.
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Let us note that it suffices to verify the symmetry condition (6.5) and antisymme-
try condition (6.6) for vectors x and y belonging to some particular basis e1, . . . , en

of the space L. Indeed, if this condition is satisfied for vectors in the basis e1, . . . , en,
that is, for example, in the case of symmetry, the equations ϕ(ei , ej ) = ϕ(ej , ei ) are
satisfied for all i, j = 1, . . . , n, then from formula (6.4), it follows that the condition
(6.5) is met for all vectors x,y ∈ L. Recalling the definition of a matrix of a bilinear
form, we see that the form ϕ is symmetric if and only if its matrix Φ is symmetric
in some basis of the space L (that is, Φ = Φ∗). Similarly, the antisymmetry of the
bilinear form ϕ is equivalent to the antisymmetry of Φ in some basis (Φ = −Φ∗).

The matrix Φ of a bilinear form depends on the basis e1, . . . , en. We shall now
investigate this dependence. Here, we shall use the formula (3.38) for changing
coordinates that we derived in Sect. 3.4, and moreover, our reasoning will be similar
to what we used then in deriving this formula.

First of all, let us write down the relationship (6.4) in a more compact matrix
form. To this end, we observe that for

rows x = (x1, . . . , xn) and columns [y] =
⎛

⎜
⎝

y1
...

yn

⎞

⎟
⎠ ,

the sum in formula (6.4) can be rewritten in the following form:

n∑

i,j=1

ϕij xiyj =
n∑

i=1

xi

(
n∑

j=1

ϕij yj

)

=
n∑

i=1

xizi, where zi =
n∑

j=1

ϕij yj .

By the rule of matrix multiplication, we obtain the expression

n∑

i,j=1

ϕij xiyj = x[z], where [z] =
⎛

⎜
⎝

z1
...

zn

⎞

⎟
⎠ = Φ[y].

This means that we now have

n∑

i,j=1

ϕij xiyj = xΦ[y].

Let us note that by similar arguments, or by simply taking the transpose of both
sides of the previous equality (on the left-hand side of which stands a scalar, that is,
a matrix of type (1,1), which is invariant under the transpose operation), we obtain
a similar relationship

n∑

i,j=1

ϕij xiyj = yΦ∗[x].
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Thus if in some basis e1, . . . , en, the matrix of the bilinear form ϕ is equal to Φ ,
while the vectors x and y have coordinates xi and yi , then we have the following
formula:

ϕ(x,y) = xΦ[y]. (6.8)

Similarly, for another basis e′
1, . . . , e

′
n, we obtain the equality

ϕ(x,y) = x′Φ ′[y′], (6.9)

where Φ ′ is the matrix of the bilinear form ϕ, while x′
i and y′

i are the coordinates of
the vectors x and y in the basis e′

1, . . . , e
′
n.

Let C be the transition matrix from the basis e′
1, . . . , e

′
n to the basis e1, . . . , en.

Then by the substitution formula (3.36), we obtain the relationships x = x′C∗ and
[y] = C[y′]. Substituting these expressions into (6.8), taking into account formula
(6.9), we obtain the identity

x′C∗ΦC
[
y′] = x′Φ ′[y′],

which is satisfied for all x′ and [y′]. From this, it follows that the matrices Φ and
Φ ′ of the bilinear form ϕ in these bases are related by the equality

Φ ′ = C∗ΦC. (6.10)

This is the substitution formula for the matrix of a bilinear form for a change of
basis.

Since the rank of a matrix is invariant under multiplication on the left or right
by a nonsingular square matrix of appropriate order (Theorem 2.63), it follows that
the rank of the matrix Φ is the same as that of the matrix Φ ′ for any transition
matrix C. Thus the rank r of the matrix of a bilinear form does not depend on the
basis in which the matrix is written, and consequently, we may call it simply the rank
of the bilinear form ϕ. In particular, if r = n, that is, if the rank coincides with the
dimension of the vector space L, then the bilinear form ϕ is said to be nonsingular.

The rank of a bilinear form can be defined in another way. By Theorem 6.3, to
every bilinear form ϕ there corresponds a unique linear transformation A : L → L∗,
and the connection between the two is laid out in (6.7). It is easily verified that if
we choose in the spaces L and L∗ two dual bases, then the matrices of the bilinear
form ϕ and the linear transformation A will coincide. This shows that the rank
of the bilinear form is the same as the rank of the linear transformation A. From
this we derive that in particular, the form ϕ is nonsingular if and only if the linear
transformation A : L → L∗ is an isomorphism.

A given quadratic form ψ can be obtained from different bilinear forms ϕ; this
is related to the presence of similar terms in the expression (6.1) for a quadratic
form, about which we spoke above. In order to obtain uniqueness and agreement
with the properties of linearity, we shall proceed not as in secondary school, where,
for example, one writes the sum of terms a12x1x2 + a21x2x1 = (a12 + a21)x1x2, but
instead using a notation in which we do not collect like terms.
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Remark 6.5 (On elements of fields) Additional refinements in this section are di-
rected at the reader who is interested in the case of vector spaces over an arbitrary
field K. Here we shall introduce a certain limitation that will allow us to provide
a single account for the cases K = R, K = C, and all types of fields that we will
be concerned with. Namely, in what follows we shall assume that K is a field of
characteristic different from 2.1 (We mentioned a similar limitation in the general
concept of field on p. 83.) Using the simplest properties that can be derived from
the definition of a field, it is easy to prove that in a field of characteristic different
from 2, there exists for an arbitrary element a a unique element b such that 2b = a

(where 2b denotes the sum b + b). We then set b = a/2, and so whenever a = 0, it
follows that b = 0.

Theorem 6.6 Every quadratic form ψ(x) on the space L over a field K of charac-
teristic different from 2 can be represented in the form

ψ(x) = ϕ(x,x), (6.11)

where ϕ is a symmetric bilinear form, and moreover, for the given quadratic form
ψ , the bilinear form ϕ is unique.

Proof By what we have said above, an arbitrary quadratic form ψ(x) can be repre-
sented in the form

ψ(x) = ϕ1(x,x), (6.12)

where ϕ1(x,y) is some bilinear form, not necessarily symmetric. Let us set

ϕ(x,y) = ϕ1(x,y) + ϕ1(y,x)

2
.

It is clear that ϕ(x,y) is a bilinear form, and moreover, it is already symmetric.
From formula (6.12) follows the relationship (6.11), as asserted.

We shall now prove that if relationship (6.11) holds for some symmetric bilinear
form ϕ(x,y), then ϕ(x,y) is uniquely determined by the quadratic form ψ(x). To
see this, let us calculate ψ(x + y). By assumption and the properties of the bilinear
form ϕ, we have

ψ(x + y) = ϕ(x + y,x + y) = ϕ(x,x) + ϕ(y,y) + ϕ(x,y) + ϕ(y,x). (6.13)

In view of the symmetry of the form ϕ, we have

ψ(x + y) = ψ(x) + ψ(y) + 2ϕ(x,y),

1Fields of characteristic different from 2 are what are most frequently encountered. However, fields
of characteristic 2, which we are excluding from consideration here, have important applications,
for example in discrete mathematics and cryptography.



6.1 Basic Definitions 197

which implies that

ϕ(x,y) = 1

2

(
ψ(x + y) − ψ(x) − ψ(y)

)
. (6.14)

This last relationship uniquely determines a bilinear form ϕ(x,y) associated with
the given quadratic form ψ(x). �

With the same assumptions, we have the following result for antisymmetric
forms.

Theorem 6.7 For every antisymmetric bilinear form ϕ(x,y) on the space L over a
field K of characteristic different from 2, we have

ϕ(x,x) = 0. (6.15)

Conversely, if equality (6.15) is satisfied for every vector x ∈ L, then the bilinear
form ϕ(x,y) is antisymmetric.

Proof If the form ϕ(x,y) is antisymmetric, then transposing the arguments in
the expression ϕ(x,x) leads to the relationship ϕ(x,x) = −ϕ(x,x), and then
2ϕ(x,x) = 0, from which follows equality (6.15), since by the condition of the
theorem, the field K has characteristic different from 2. Conversely, if ϕ(x,x) = 0
for every vector x ∈ L, then this holds in particular for the vector x + y, that is, we
obtain

ϕ(x + y,x + y) = ϕ(x,x) + ϕ(x,y) + ϕ(y,x) + ϕ(y,y) = 0.

Since we have ϕ(x,x) = ϕ(y,y) = 0 by the hypothesis of the theorem, it follows
that ϕ(x,y) + ϕ(y,x) = 0, which yields that the bilinear form ϕ(x,y) is antisym-
metric. �

Let us note that the way of writing the quadratic form ψ(x) in the form (6.11)
established by Theorem 6.6, where ϕ(x,y) is a symmetric bilinear form, shows us
how to write similar terms in the representation (6.1). Indeed, if we have

x = x1e1 + · · · + xnen, y = y1e1 + · · · + ynen,

and ϕ(x,y) is a bilinear form, then

ϕ(x,y) =
n∑

i,j=1

ϕij xiyj ,

where ϕij = ϕ(ei , ej ). The symmetry of the form ϕ(x,y) implies that ϕij = ϕji for
all i, j = 1, . . . , n. Then the representation

ψ(x1, . . . , xn) =
n∑

i,j=1

ϕij xixj
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contains like terms ϕij xixj and ϕjixj xi for i �= j . Then if i �= j , the term with xixj

occurs in the sum twice: as ϕij xixj and as ϕjixj xi . Since ϕij = ϕji , then collecting
like terms leads to this sum being written in the form 2ϕij xixj .

For example, the coefficients of the quadratic form x2
1 + x1x2 + x2

2 are given
by ϕ11 = 1, ϕ22 = 1, and ϕ12 = ϕ21 = 1

2 . Such a way of writing things may seem
strange at first glance, but as we shall soon see, it offers many advantages.

6.2 Reduction to Canonical Form

The main goal of this section is to transform quadratic forms into the simplest pos-
sible form, called canonical. As in the case of the matrix of a linear transformation,
canonical form is obtained by the selection of a special basis of the given vector
space. Namely, the required basis must possess the property that the matrix of the
symmetric bilinear form corresponding to the given quadratic form assumes diag-
onal form in that basis. This property is directly connected to the important notion
of orthogonality, which will be used repeatedly in this and subsequent chapters. We
note that the notion of orthogonality can be formulated in a way that is well defined
for bilinear forms that are not necessarily symmetric, but it can be most simply
defined for symmetric and antisymmetric bilinear forms. In this section, we shall
consider only symmetric bilinear forms.

Thus let there be given on the finite-dimensional vector space L a symmetric
bilinear form ϕ(x,y).

Definition 6.8 Vectors x and y are said to be orthogonal if ϕ(x,y) = 0.

We observe that in light of the symmetry condition ϕ(y,x) = ϕ(x,y), the equal-
ity ϕ(x,y) = 0 is equivalent to ϕ(y,x) = 0. This is true as well for antisymmetric
bilinear forms. However, if we do not impose a symmetry or antisymmetry condi-
tion on the bilinear form, then the vector x can be orthogonal to the vector y without
y being orthogonal to x. This leads to the concepts of left and right orthogonality
and some very beautiful geometry, but it would take us beyond the scope of this
book. A vector x ∈ L is said to be orthogonal to a subspace L′ ⊂ L relative to ϕ if it
is orthogonal to every vector y ∈ L′, that is, if ϕ(x,y) = 0 for all y ∈ L′.

It follows at once from the definition of bilinearity that the collection of all vec-
tors x orthogonal to a subspace L′ with respect to a given bilinear form ϕ is itself a
subspace of L. It is called the orthogonal complement of the subspace L′ with respect
to the form ϕ and is denoted by (L′)⊥ϕ .

In particular, for L′ = L, the subspace (L)⊥ϕ represents the totality of vectors x ∈ L
for which the equation ϕ(x,y) = 0 is satisfied for all y ∈ L. This subspace is called
the radical of the bilinear form ϕ(x,y). From the definition of a bilinear form, it
follows at once that the radical consists of all vectors x ∈ L such that

ϕ(x, ei ) = 0 for all i = 1, . . . , n, (6.16)
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where e1, . . . , en is some basis of the space L. The equalities (6.16) are linear ho-
mogeneous equations that define the radical as a subspace of L. If we write down
the vector x in the chosen basis, that is, in the form x = x1e1 + · · · + xnen, then in
view of formula (6.4), we obtain from the equalities (6.16) a system of linear homo-
geneous equations in the unknowns x1, . . . , xn. The matrix of this system coincides
with the matrix Φ of the bilinear form ϕ in the basis e1, . . . , en. Thus the space
(L)⊥ϕ satisfies the conditions of Example 3.65 from Sect. 3.5 (p. 114). Consequently,
dim(L)⊥ϕ = n − r , where r is the rank of the matrix of the linear system, that is, the
rank of the bilinear form ϕ. We therefore obtain the equality

r = dim L − dim(L)⊥ϕ . (6.17)

Theorem 6.9 Let L′ ⊂ L be a subspace such that the restriction of the bilinear form
ϕ(x,y) to L′ is a nonsingular bilinear form. We then have the decomposition

L = L′ ⊕ (
L′)⊥

ϕ
. (6.18)

Proof First of all, we note that by the conditions of the theorem, the intersection
L′ ∩ (L′)⊥ϕ is equal to the zero space (0). Indeed, it consists of all vectors x ∈ L′
such that ϕ(x,y) = 0 for all y ∈ L′, and hence only for the null vector, since by the
condition, the restriction of ϕ to the subspace L′ is a nonsingular bilinear form. Thus
it suffices to prove that L′ + (L′)⊥ϕ = L. We shall present two proofs of this fact in
order to demonstrate two different lines of reasoning used in the theory of vector
spaces.

First proof. We shall use the linear transformation A : L → L∗ constructed in
Theorem 6.3 corresponding to the bilinear form ϕ. Assigning to each linear function
on L its restriction to the subspace L′ ⊂ L, we obtain the linear transformation B :
L∗ → (L′)∗. If we apply in sequence the linear transformations A and B, we obtain
the linear transformation C = BA : L → (L′)∗.

The kernel L1 of the transformation C consists of the vectors y ∈ L such that
ϕ(x,y) = 0 for all x ∈ L′, since by definition, ϕ(x,y) = (x,A(y)). This implies
that L1 = (L′)⊥ϕ . Let us show that the image L2 of the transformation C is equal to
the entire subspace (L′)∗. We shall prove an even stronger result: an arbitrary vector
u ∈ (L′)∗ can be represented in the form u = C(v), where v ∈ L′. For this, we must
consider the restriction of the transformation C to the subspace L′. By definition,
it coincides with the transformation A′ : L′ → (L′)∗ constructed in Theorem 6.3,
which corresponds to the restriction of the bilinear form ϕ to L′. By assumption, the
restriction of the form ϕ to L′ is nonsingular, which implies that the transformation
A′ is an isomorphism. From this, it follows in particular that its image is the entire
subspace (L′)∗.

Now we shall make use of Theorem 3.72 and apply relationship (3.47) to the
transformation C. We obtain dim L1 + dim L2 = dim L. Since L2 = (L′)∗, it follows
by Theorem 3.78 that dim L2 = dim L′. Recalling also that L1 = (L′)⊥ϕ , we have fi-
nally the equality

dim
(
L′)⊥

ϕ
+ dim L′ = dim L. (6.19)
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Since L′ ∩ (L′)⊥ϕ = (0), we conclude by Corollary 3.15 (p. 85) that L′ + (L′)⊥ϕ =
L′ ⊕ (L′)⊥ϕ . From Theorems 3.24, 3.38 and the relationship (6.19), it follows that

L′ ⊕ (L′)⊥ϕ = L.
Second proof. We need to represent an arbitrary vector x ∈ L in the form x =

u+v, where u ∈ L′ and v ∈ (L′)⊥ϕ . This is clearly equivalent to the condition x −u ∈
(L′)⊥ϕ , and therefore to the condition ϕ(x − u,y) = 0 for all y ∈ L′. Recalling the
properties of a bilinear form, we see that it suffices that the last equation be satisfied
for vectors y = ei , i = 1, . . . , r , where e1, . . . , er is some basis of the space L′.
In view of the bilinearity of the form ϕ, our relationships can be written in the
form

ϕ(u, ei ) = ϕ(x, ei ) for all i = 1, . . . , r. (6.20)

We now represent the vector u as u = x1e1 + · · · + xrer . Relationship (6.20) gives
a system of r linear equations

ϕ(e1, ei )x1 + · · · + ϕ(er , ei )xr = ϕ(x, ei ), i = 1, . . . , r, (6.21)

with unknowns x1, . . . , xr . The matrix of the system (6.21) has the form

Φ =
⎛

⎜
⎝

ϕ(e1, e1) · · · ϕ(e1, er )
...

. . .
...

ϕ(er , e1) · · · ϕ(er , er )

⎞

⎟
⎠ .

But it is easy to see that Φ is the matrix of the restriction of the bilinear
form ϕ to the subspace L′ written in the basis e1, . . . , er . Since by assump-
tion, such a form is nonsingular, its matrix is also nonsingular, and this implies
that the system of equations (6.20) has a solution. In other words, we can find
a vector u ∈ L′ satisfying all the relationships (6.20), which proves our asser-
tion. �

We shall now apply these ideas related to bilinear forms to the theory of quadratic
forms. Our goal is to find a basis in which the matrix of a given quadratic form ψ(x)

has the simplest form possible.

Theorem 6.10 For every quadratic form ψ(x), there exists a basis in which the
form can be written as

ψ(x) = λ1x
2
1 + · · · + λnx

2
n, (6.22)

where x1, . . . , xn are the coordinates of the vector x in this basis.

Proof Let ϕ(x,y) be a symmetric bilinear form associated with the quadratic form
ψ(x) by the formula (6.11). If ψ(x) is identically equal to zero, then the theorem
clearly is true (for λ1 = · · · = λn = 0). If the quadratic form ψ(x) is not identically
equal to zero, then there exists a vector e1 such that ψ(e1) �= 0, that is, ϕ(e1, e1) �= 0.
This implies that the restriction of the bilinear form ϕ to the subspace L′ = 〈e1〉 is
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nonsingular, and therefore, by Theorem 6.9, for the subspace L′ = 〈e1〉 we have
the decomposition (6.18), that is, L = 〈e1〉 ⊕ 〈e1〉⊥ϕ . Since dim〈e1〉 = 1, then by
Theorem 3.38, we obtain that dim〈e1〉⊥ϕ = n − 1.

Proceeding by induction, we may assume the theorem to have been proved for the
space 〈e1〉⊥ϕ . Thus in this space there exists a basis e2, . . . , en such that ϕ(ei , ej ) = 0
for all i �= j , i, j ≥ 2. Then in the basis e1, . . . , en of the space L, the quadratic form
ψ(x) can be written as (6.22) for some λ1, . . . , λn. �

We observe that one and the same quadratic form ψ can be of the form (6.22) in
various bases, and in this case, the numbers λ1, . . . , λn might differ in various bases.
For example, if in a one-dimensional space whose basis consists of one nonzero
vector e, we define the quadratic form ψ by the relation ψ(xe) = x2, then in the
basis consisting of the vector e′ = λe, λ �= 0, it can be written as ψ(xe′) = (λx)2.

If in a certain basis a quadratic form can be written as in (6.22), then we say that
in that basis, it is in canonical form. Theorem 6.10 is called the theorem on reducing
a quadratic form to canonical form. From what we have said above, it follows that
reducing a quadratic form to canonical form is not unique.

If in the basis e1, . . . , en of the space L, the quadratic form ψ(x) has the form
established in Theorem 6.10, then its matrix in this basis is equal to

Ψ =

⎛

⎜⎜⎜
⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

⎞

⎟⎟⎟
⎠

. (6.23)

It is clear that the rank of the matrix Ψ is equal to the number of nonzero values
among λ1, . . . , λn. As we saw in the previous section, the rank of the matrix Ψ (that
is, the rank of the quadratic form ψ(x)) does not depend on the choice of basis in
which the matrix Ψ is written. Therefore, this number is the same for every basis
for which Theorem 6.10 holds.

It is useful to write down the results we have obtained in matrix form. We may
reformulate Theorem 6.10 using formula (6.10) obtained in the previous section for
replacing the matrix of a bilinear form by a change in basis.

Theorem 6.11 For an arbitrary symmetric matrix Φ , there exists a nonsingular ma-
trix C such that the matrix C∗ΦC is diagonal. If we select a different matrix C, we
may obtain different diagonal matrices C∗ΦC, but the number of nonzero elements
on the main diagonal will always be the same.

A completely analogous argument can be applied to the case of antisymmetric
bilinear forms. The following theorem is an analogue of Theorem 6.10.

Theorem 6.12 For every antisymmetric bilinear form ϕ(x,y), there exists a ba-
sis e1, . . . , en whose first 2r vectors can be combined into pairs (e2i−1, e2i ), i =
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1, . . . , r , such that

ϕ(e2i−1, e2i ) = 1, ϕ(e2i , e2i−1) = −1 for all i = 1, . . . , r,

ϕ(ei , ej ) = 0 if |i − j | > 1 or i > 2r or j > 2r.

Thus in the given basis, the matrix of the bilinear form ϕ takes the form

Φ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

0 1 · · · · · · · · · · · · · · · · · · · · · 0
−1 0 · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · 0 1 · · · · · · · · · · · · · · · · · ·
· · · · · · −1 0 · · · · · · · · · · · · · · · · · ·

. . .

· · · · · · · · · · · · · · · 0 1 · · · · · · · · ·
· · · · · · · · · · · · · · · −1 0 · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · 0 · · · · · ·

. . .

0 · · · · · · · · · · · · · · · · · · · · · · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

. (6.24)

Proof This theorem is an exact parallel to Theorem 6.10. If ϕ(x,y) = 0 for all x
and y, then the assertion of the theorem is obvious (for r = 0). However, if this is not
the case, then there exist two vectors e′

1 and e2 for which ϕ(e′
1, e2) = α �= 0. Setting

e1 = α−1e′
1, we obtain that ϕ(e1, e2) = 1. The matrix of the form ϕ restricted to the

subspace L′ = 〈e1, e2〉 in the basis e1, e2 has the form
(

0 1
−1 0

)
, (6.25)

and consequently, it is nonsingular. Then on the basis of Theorem 6.9, we obtain the
decomposition L = L′ ⊕ (L′)⊥ϕ , where dim(L′)⊥ϕ = n−2, with n = dim L. Proceeding
by induction, we may assume that the theorem has been proved for forms ϕ defined
on the space (L′)⊥ϕ . If f 1, . . . ,f n−2 is such a basis of the space (L′)⊥ϕ , the existence
of which is asserted by Theorem 6.12, then it is obvious that e1, e2,f 1, . . . ,f n−2
is the required basis of the original space L. �

The number n−2r is equal to the dimension of the radical of the bilinear form ϕ,
and therefore, it is the same for all bases in which the matrix of the bilinear form ϕ

is brought into the form (6.24). The rank of the matrix (6.25) is equal to 2, while the
matrix (6.24) contains r such blocks on the main diagonal. Therefore, the rank of
the matrix (6.24) is equal to 2r . Thus from Theorem 6.12, we obtain the following
corollary.

Corollary 6.13 The rank of an antisymmetric bilinear form is an even number.

Let us now translate everything that we have proved for antisymmetric bilinear
forms into the language of matrices. Here our assertions will be the same as for
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symmetric matrices, and they are proved in exactly the same manner. We obtain that
for an arbitrary antisymmetric matrix Φ , there exists a nonsingular matrix C such
that the matrix

Φ ′ = C∗ΦC (6.26)

has the form (6.24).
Matrices Φ and Φ ′ that are related by (6.26) for some nonsingular matrix C are

said to be equivalent. The same term is applied to the quadratic forms associated
with these matrices (for a particular choice of basis).

It is easy to verify that the concept thus introduced is an equivalence relation
on the set of square matrices of a given order or indeed on the set of quadratic
forms. The reflexive property is obvious. It is necessary only to substitute the matrix
C = E into formula (6.26). Multiplying both sides of equality (6.26) on the right by
the matrix B = C−1 and on the left by the matrix B∗, taking into account the rela-
tionship (C−1)∗ = (C∗)−1, we obtain the equality Φ = B∗Φ ′B , which establishes
the symmetric property.

Finally, let us verify the property of transitivity. Suppose we are given the re-
lationships (6.26) and Φ ′′ = D∗Φ ′D for some nonsingular matrices C and D.
Then if we substitute the first of these into the second, we obtain the equality
Φ ′′ = D∗C∗ΦCD. Setting B = CD and taking into account B∗ = D∗C∗, we ob-
tain the equality Φ ′′ = B∗ΦB , which establishes the equivalence of the matrices Φ

and Φ ′′.
It is now possible to reformulate Theorems 6.10 and 6.12 in the following form.

Theorem 6.14 Every symmetric matrix is equivalent to a diagonal matrix.

Theorem 6.15 Every antisymmetric matrix Φ is equivalent to a matrix of the form
(6.24), where the number r is equal to one-half the rank of the matrix Φ .

From Theorems 6.14 and 6.15, it follows that all equivalent symmetric matrices
and all equivalent antisymmetric matrices have the same rank, and for antisymmetric
matrices, equivalence is the same as the equality of their ranks, that is, two antisym-
metric matrices of a given order are equivalent if and only if they have the same
rank.

Let us conclude with the observation that all the concepts investigated in this sec-
tion can be expressed in the language of bilinear forms given by Theorem 6.3. By
this theorem, every bilinear form ϕ(x,y) on a vector space L can be written uniquely
in the form ϕ(x,y) = (x,A(y)), where A : L → L∗ is some linear transformation.
As proved in Sect. 6.1, the symmetry of the form ϕ is equivalent to A∗ = A, while
antisymmetry is equivalent to A∗ = −A. In the first case, the transformation A is
said to be symmetric, and in the second case, antisymmetric. Thus Theorems 6.10
and 6.12 are equivalent to the following assertions. For an arbitrary symmetric trans-
formation A, there exists a basis of the vector space L in which the matrix of this
transformation has the diagonal form (6.23). Similarly, for an arbitrary antisymmet-
ric transformation A, there exists a basis of the space L in which the matrix of this
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transformation has the form (6.24). More precisely, in both these statements, we are
talking about the choice of basis in L and its dual basis in L∗, since the transforma-
tion A maps L to L∗.

6.3 Complex, Real, and Hermitian Forms

We begin this section by examining a quadratic form ψ in a complex vector space L.
By Theorem 6.10, it can be written, in terms of some basis e1, . . . , en, in the form

ψ(x) = λ1x
2
1 + · · · + λnx

2
n,

where x1, . . . , xn are the coordinates of the vector x in this basis. This implies that
for the associated symmetric bilinear form ϕ(x,y), it has the value ϕ(ei , ej ) = 0
for i �= j and ϕ(ei , ei ) = λi . Here, the number of values λi different from zero is
equal to the rank r of the bilinear form ϕ. By changing the numeration of the basis
vectors if necessary, we may assume that λi �= 0 for i ≤ r and λi = 0 for i > r . We
may then introduce a new basis e′

1, . . . , e
′
n by setting

e′
i = √

λiei for i ≤ r, e′
i = ei for i > r,

since
√

λi is again a complex number. In the new basis, ϕ(e′
i , e

′
j ) = 0 for all i �= j

and ϕ(e′
i , e

′
i ) = 1 for i ≤ r , ϕ(e′

i , e
′
i ) = 0 for i > r . This implies that the quadratic

form ψ(x) can be written in this basis in the form

ψ(x) = x2
1 + · · · + x2

r , (6.27)

where x1, . . . , xr are the first r coordinates of the vector x. We see, then, that in
a complex space L, every quadratic form can be brought into the canonical form
(6.27), and all quadratic forms (and therefore also symmetric matrices) of a given
rank are equivalent.

We now consider the case of a real vector space L. By Theorem 6.10, an arbitrary
quadratic form ψ can again be written in the form

ψ(x) = λ1x
2
1 + · · · + λrx

2
r ,

where all the λi are nonzero and r is the rank of the form ψ . But we cannot pro-
ceed so simply as in the complex case by setting e′

i = √
λiei , since for λi < 0, the

number λi does not have a real square root. Therefore, we must consider separately
among the numbers λ1, . . . , λr , those that are positive and those that are negative.
Again changing the numeration of the vectors of the basis as necessary, we may
assume that λ1, . . . , λs are positive, and that λs+1, . . . , λr are negative. Now we can
introduce a new basis by setting

e′
i = √

λi for i ≤ s, e′
i = √−λi for i = s+1, . . . , r, e′

i = ei for i > r.
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In this basis, for a bilinear form ϕ, we have ϕ(e′
i , e

′
j ) = 0 for i �= j , and ϕ(e′

i , e
′
i ) = 1

for i = 1, . . . , s, ϕ(e′
i , e

′
i ) = −1 for i = s + 1, . . . , r , and the quadratic form ψ will

thus be brought into the form

ψ(x) = x2
1 + · · · + x2

s − x2
s+1 − · · · − x2

r . (6.28)

Let us note one important special case.

Definition 6.16 A real quadratic form ψ(x) is said to be positive definite if ψ(x) >

0 for every x �= 0 and negative definite if ψ(x) < 0 for every x �= 0.

It is obvious that these notions are connected by a simple relationship: negative
definite forms ψ(x) are equivalent to positive definite forms −ψ(x), and conversely.
Therefore, in the sequel, it will suffice to establish the basic properties of positive
definite forms only, and the corresponding properties of negative definite forms will
be obtained automatically.

Written in the form (6.28), a quadratic form on an n-dimensional vector space
will be positive definite if s = n, and negative definite if s = 0 and r = n.

The fundamental property of real quadratic forms is stated in the following theo-
rem.

Theorem 6.17 For every basis in terms of which the real quadratic form ψ can be
written in the form (6.28), the number s always has one and the same value.

Proof Let us characterize s in a way that does not depend on reducing the quadratic
form ψ to the form (6.28). Namely, let us prove that s is equal to the largest di-
mension among subspaces L′ ⊂ L such that the restriction of ψ to L′ is a positive
definite quadratic form. To this end, we note first of all that for an arbitrary basis
in which the form takes the form of (6.28), it is possible to find a subspace L′ of
dimension s on which the restriction of the form ψ gives a positive definite form.
Namely, if the form ψ(x) is written in the form (6.28) in the basis e1, . . . , en, then
we set L′ = 〈e1, . . . , es〉. It is obvious that the restriction of the form ψ to L′ gives a
positive definite quadratic form. Similarly, we may consider the set of vectors L′′ for
which in the decomposition (6.28), the first s coordinates are equal to zero: x1 = 0,
. . . , xs = 0. It is clear that this set is the vector subspace L′′ = 〈es+1, es+2, . . . , en〉,
and for an arbitrary vector x ∈ L′′, we have the inequality ψ(x) ≤ 0.

Let us suppose that there exists a subspace M ⊂ L of dimension m > s such that
the restriction of ψ to M gives a positive definite quadratic form. It is then obvious
that dim M + dim L′′ = m + n − s > n. By Corollary 3.42, the subspaces M and
L′′ must have a common vector x �= 0. But since x ∈ L′′, it follows that ψ(x) ≤ 0,
and since x ∈ M, we have ψ(x) > 0. This contradiction completes the proof of the
theorem. �

Definition 6.18 The number s from Theorem 6.17 that is the same no matter how
a quadratic form is brought into the form (6.28) is called the index of inertia of the
quadratic form ψ . In connection with this, Theorem 6.17 is often called the law of
inertia.
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Positive definite quadratic forms play an important role in the theory that we
are expounding. By the theory developed thus far, to establish whether a quadratic
form is positive definite, it is necessary to reduce it to canonical form and verify
whether the relationship s = n is satisfied. However, there is a feature that makes it
possible to determine positive definiteness from the matrix of the associated bilinear
form written in an arbitrary basis. Suppose this matrix in the basis e1, . . . , en has the
form

Φ = (ϕij ), where ϕij = ϕ(ei , ej ).

The minor Δi of the matrix Φ at the intersection of the first i rows and first i

columns is called a leading principal minor.

Theorem 6.19 (Sylvester’s criterion) A quadratic form ψ is positive definite if and
only if all leading principal minors of the matrix of the associated bilinear form are
positive.

Proof We shall show that if a quadratic form is positive definite, then all the Δi

are positive. We note as well that Δn = |Φ| is the determinant of the matrix of the
form ϕ. In some basis, the form ψ is in canonical form, that is, its matrix in this
basis has the form

Φ ′ =

⎛

⎜⎜⎜
⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

⎞

⎟⎟⎟
⎠

.

Since the quadratic form ψ is positive definite, it follows that all the λi are greater
than 0, and clearly, |Φ ′| > 0. In view of formula (6.26) for replacing the matrix of a
bilinear form by a change of basis along with the equality |C∗| = |C|, we obtain the
relationship |Φ ′| = |Φ| · |C|2, from which it follows that Δn = |Φ| > 0. Let us now
consider the subspaces Li = 〈e1, . . . , ei〉 ⊂ L of dimension i ≥ 1. The restriction
of the quadratic form ψ(x) to Li is clearly also a positive definite form. But the
determinant of its matrix in the basis e1, . . . , ei is equal to Δi . Therefore, Δi > 0,
as we have shown.

Let us now show that conversely, from the condition Δi > 0 for all i = 1, . . . , n,
it follows that the quadratic form ψ is positive definite. We shall prove this by in-
duction on the dimension n of the space L.

It is clear that Li ⊂ L for i = 1, . . . , n − 1, and the leading principal minors Δi

in the basis e1, . . . , en of the matrix of the form ψ restricted to the subspace Li are
the same as for the form ϕ in L. Therefore, the restriction of the quadratic form ψ to
Ln−1 may be assumed positive definite by the induction hypothesis. Consequently,
the restriction ϕ(x,y) to the subspace Ln−1 is a nonsingular bilinear form, and so by
Theorem 6.9, we have the decomposition L = Ln−1 ⊕ (Ln−1)

⊥
ϕ , where dim Ln−1 =

n − 1 and dim(Ln−1)
⊥
ϕ = 1. We may therefore express the vector en in the form

en = f n + y, where y ∈ Ln−1,f n ∈ (Ln−1)
⊥
ϕ . (6.29)
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We may represent an arbitrary vector x ∈ L as a linear combination of vectors of the
basis e1, . . . , en, that is, in the form x = x1e1 + · · · + xn−1en−1 + xnen = u + xnen,
where u ∈ Ln−1. Substituting the expression (6.29) and setting u + xny = v, we
obtain

x = v + xnf n, where v ∈ Ln−1,f n ∈ (Ln−1)
⊥
ϕ . (6.30)

This implies that the vectors v and f n are orthogonal with respect to the bilinear
form ϕ, that is, ϕ(v,f n) = 0, and therefore, from the decomposition (6.30), we
derive the equality

ψ(x) = ψ(v) + x2
nψ(f n). (6.31)

We see, then, that in the basis e1, . . . , en−1,f n, the matrix of the bilinear form ϕ

takes the form
⎛

⎜⎜⎜⎜⎜
⎝

0∣
∣∣∣∣

�′
∣
∣∣∣∣

...

0
0 · · · 0 ψ(f n)

⎞

⎟⎟⎟⎟⎟
⎠

,

and for its determinant Dn, we obtain the expression Dn = |Φ ′| · ψ(f n). Since
Dn > 0 and |Φ ′| > 0, it then follows that ψ(f n) > 0. By the induction hypothe-
sis, the term ψ(v) is positive in formula (6.31), and therefore, ψ(x) > 0 for every
x �= 0. �

Example 6.20 Sylvester’s criterion has a beautiful application to the properties of
algebraic equations. Consider a polynomial f (t) of degree n with real coefficients,
about which we shall assume that its roots (real or complex) z1, . . . , zn are distinct.
For each root zk , we consider the linear form

lk(x) = x1 + x2zk + · · · + xnz
n−1
k , (6.32)

and likewise the quadratic form

ψ(x) =
n∑

k=1

l2
k (x1, . . . , xn), (6.33)

where x = (x1, . . . , xn).
Although among the roots zk there may be some that are complex, the quadratic

form (6.33) is always real. This is obvious for the terms l2
k corresponding to the

real roots zk . Now, as regards the complex roots, it is well known that they come
in complex conjugate pairs. Let zk and zj be complex conjugates of each other.
Separating the coefficients lk of the linear form into real and imaginary parts, we
can write it in the form lk = uk + ivk , where uk and vk are linear forms with real
coefficients. Then lj = uk − ivk , and for this pair of complex conjugate roots, we
have the sum l2

k + l2
j = 2u2

k − 2v2
k , which is a real quadratic form.
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Thus the quadratic form (6.33) is real, and we have the following important cri-
terion.

Theorem 6.21 All the roots of a polynomial f (t) are real if and only if the quadratic
form (6.33) is positive definite.

Proof If all the roots zk are real, then all the linear forms lk of (6.32) are real, and
the sum on the right-hand side of (6.33) contains only nonnegative terms. It is clear
that it is equal to zero only if lk = 0 for all k = 1, . . . , n. This condition gives us
a system consisting of n linear homogeneous equations in n unknowns x1, . . . , xn.
From formula (6.32), it is easy to see that the determinant of the matrix of this
system is known to us already as a Vandermonde determinant; see formulas (2.32)
and (2.33). It is different from zero, since all the roots zk are distinct, and hence this
system has only the null solution. This implies that ψ(x) ≥ 0 and ψ(x) = 0 if and
only if x = 0, that is, the quadratic form (6.33) is positive definite.

Let us now prove the converse assertion. Let the quadratic form (6.33) be positive
definite, and suppose the polynomial f (t) has r real roots and p pairs of complex
roots, so that r + 2p = n. Then as we have seen,

ψ(x) =
p∑

k=1

l2
k + 2

p∑

j=1

(
u2

j − v2
j

)
, (6.34)

where the first sum extends over all real roots, and the second sum is over all pairs
of complex conjugate roots.

Let us now show that if p > 0, then there exists a vector x �= 0 such that

l1(x) = 0, . . . , lr (x) = 0, u1(x) = 0, . . . , up(x) = 0.

These equalities represent a system of r + p linear homogeneous equations in n

unknowns x1, . . . , xn. Since the number of equations r + p is less than r + 2p = n,
it follows that this system has a nontrivial solution, x = (x1, . . . , xn), for which the
quadratic form (6.34) takes the form

ψ(x) = −2
p∑

j=1

v2
j ≤ 0,

and moreover, the equality ψ(x) = 0 is possible only if vj (x) = 0 for all j =
1, . . . , p. But then we obtain the equalities lk(x) = 0 in general for all linear forms
(6.32), which in view of the positive definiteness is possible only if x = 0. We have
thus obtained a contradiction to the fact that p > 0, that is, that the polynomial f (t)

has at least one complex root.
The form (6.33) can be calculated explicitly, and then we can apply Sylvester’s

criterion to it. To this end, we observe that the coefficient of the monomial x2
k on

the right-hand side of (6.33) is equal to s2(k−1) = z
2(k−1)
1 + · · · + z

2(k−1)
n , while the
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coefficient of the monomial xixj (where i �= j ) is equal to 2si+j−2 = 2(z
i+j−2
1 +

· · · + z
i+j−2
n ). The sums sk = ∑n

i=1 zk
i are called Newton sums. It is known from

the theory of symmetric functions that they can be expressed as polynomials in the
coefficients of f (t). Thus the matrix of a symmetric bilinear form associated with a
quadratic form (6.33) has the form

⎛

⎜⎜⎜
⎝

s0 s1 · · · sn−1
s1 s2 · · · sn
...

...
. . .

...

sn−1 sn · · · s2n−2

⎞

⎟⎟⎟
⎠

.

Applying Sylvester’s criterion to the form (6.33), we obtain the following result: all
(distinct) roots of the polynomial f (t) are real if and only if the following inequality
holds for all i = 1, . . . , n − 1:

∣∣∣∣∣∣∣
∣∣

s0 s1 · · · si−1
s1 s2 · · · si
...

...
. . .

...

si−1 si · · · s2i−2

∣∣∣∣∣∣∣
∣∣

> 0.

�

To illustrate this assertion, let us consider the simplest case, n = 2. Let f (t) =
t2 + pt + q . Then for the roots of the polynomial f (t) to be real and distinct is
equivalent to the following two inequalities:

s0 > 0,

∣∣∣
∣
s0 s1
s1 s2

∣∣∣
∣ > 0. (6.35)

The first of these is satisfied for every polynomial, since s0 is simply its degree. If
the roots of the polynomial f (t) are α and β , then

s0 = 2, s1 = α + β = −p, s2 = α2 + β2 = (α + β)2 − 2αβ = p2 − 2q,

and inequality (6.35) yields 2(p2 − 2q) − p2 = p2 − 4q > 0. This is a criterion
that one learns in secondary school: the roots of a quadratic trinomial are real and
distinct if and only if the discriminant is positive.

We return now to complex vector spaces and consider certain functions in them
that are more natural analogues of bilinear and quadratic forms than those examined
at the beginning of this section.

Definition 6.22 A function f (x) defined on a complex vector space L and taking
complex values is said to be semilinear if it possesses the following properties:

f (x + y) = f (x) + f (y),

f (αx) = αf (x),
(6.36)
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for arbitrary vectors x and y in the space L and complex scalar α (here and below,
α denotes the complex conjugate of α).

It is clear that for every choice of basis e1, . . . , en of the space L, a semilinear
function can be written in the form

f (x) = x1y1 + · · · + xnyn,

where the vector x is equal to x1e1 + · · · + xnen, and the scalars yi are equal to
f (ei ).

Definition 6.23 A function ϕ(x,y) of two vectors in the complex vector space L is
said to be sesquilinear if it is linear as a function of x for fixed y and semilinear as
a function of y for fixed x.

The terminology “sesquilinear” indicates the “full” linearity of the first argument
and semilinearity of the second. Semilinear and sesquilinear functions are also fre-
quently called forms. In the sequel, we shall also use such a designation.

It is obvious that for an arbitrary choice of basis e1, . . . , en of the space L, a
sesquilinear form can be written in the form

ϕ(x,y) =
n∑

i,j=1

ϕij xiyj , where ϕij = ϕ(ei , ej ), (6.37)

and the vectors x and y are given by x = x1e1 + · · · + xnen and y = y1e1 + · · · +
ynen. As in the case of a bilinear form, the matrix Φ = (ϕij ) with elements ϕij =
ϕ(ei , ej ) as defined above is called the matrix of the sesquilinear form ϕ(x,y) in
the chosen basis.

Definition 6.24 A sesquilinear form ϕ(x,y) is said to be Hermitian if

ϕ(y,x) = ϕ(x,y) (6.38)

for arbitrary choice of vectors x and y.

It is obvious that in the expression (6.37), the Hermitian nature of the form
ϕ(x,y) is expressed by the property ϕij = ϕji of the coefficients ϕij of its ma-
trix Φ , that is, by the relationship Φ = Φ

∗
. A matrix exhibiting these properties is

also called Hermitian.
After separating real and imaginary parts in ϕ(x,y), we obtain

ϕ(x,y) = u(x,y) + iv(x,y), (6.39)

where u(x,y) and v(x,y) are functions of two vectors x and y of the complex
space L taking real values. In the space L, multiplication by a real scalar is also
defined, and so it may be viewed as a real vector space. We shall denote this real
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vector space by LR. Obviously, in the space LR, the functions u(x,y) and v(x,y)

are bilinear, and the property of the complex form ϕ(x,y) being Hermitian implies
that on LR, the bilinear form u(x,y) is symmetric, while v(x,y) is antisymmetric.

Definition 6.25 A function ψ(x) on a complex vector space L is said to be
quadratic Hermitian if it can be expressed in the form

ψ(x) = ϕ(x,x) (6.40)

for some Hermitian form ϕ(x,y).

From the definition of Hermitian form, it follows at once that the values of
quadratic Hermitian functions are real.

Theorem 6.26 A quadratic Hermitian function ψ(x) uniquely determines a Her-
mitian sesquilinear form ϕ(x,y) as presented in (6.40).

Proof By the definition of sesquilinearity, we have

ψ(x + y) = ψ(x) + ψ(y) + ϕ(x,y) + ϕ(x,y). (6.41)

Substituting here the expression (6.39), we obtain that

u(x,y) = 1

2

(
ψ(x + y) − ψ(x) − ψ(y)

)
. (6.42)

Similarly, from the relationship

ψ(x + iy) = ψ(x) + ψ(iy) + ϕ(x, iy) + ϕ(iy,x) (6.43)

we obtain by the properties of being Hermitian and sesquilinearity that

ϕ(x, iy) = −iϕ(x,y), ϕ(iy,x) = ϕ(x, iy),

which yields

v(x,y) = 1

2

(
ψ(x + iy) − ψ(x) − ψ(iy)

)
. (6.44)

The expressions (6.42) and (6.44) thus obtained complete the proof of the theo-
rem. �

Theorem 6.27 A sesquilinear form ϕ(x,y) is Hermitian if and only if the function
ψ(x) associated with it by relationship (6.40) assumes only real values.

Proof If a sesquilinear form ϕ(x,y) is Hermitian, then by definition (6.38), we
have the equality ϕ(x,x) = ϕ(x,x) for all x ∈ L, from which it follows that for an
arbitrary vector x ∈ L, the value ψ(x) is a real number.
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On the other hand, if the values of the function ψ(x) are real, then arguing just
as we did in the proof of Theorem 6.26, we obtain from formula (6.41), taking into
account (6.38), that the value

ψ(x + y) − ψ(x) − ψ(y) = ϕ(x,y) + ϕ(y,x)

is real. Substituting here the expression (6.39), we see that the sum v(x,y)+v(y,x)

is equal to zero, that is, the function v(x,y) is antisymmetric.
Reasoning similarly, from formula (6.43), we conclude that the value

ψ(x + iy) − ψ(x) − ψ(iy) = ϕ(x, iy) + ϕ(iy,x)

is also real. From the definition of semilinearity and sesquilinearity, we have the
relationships ϕ(iy,x) = iϕ(y,x) and ϕ(x, iy) = −iϕ(x,y). We thereby obtain that
the number

i
(
ϕ(y,x) − ϕ(x,y)

)

is real, which by virtue of the expression (6.39) gives the equality u(y,x) −
u(x,y) = 0; that is, the function u(x,y) is symmetric. Consequently, the form
ϕ(x,y) is Hermitian. �

Hermitian forms are the most natural complex analogues of symmetric forms.
They exhibit analogous properties to those that we derived for symmetric forms in
real vector spaces (with completely analogous proofs), namely reduction to canon-
ical form, the law of inertia, the notion of positive definiteness, and Sylvester’s cri-
terion.



Chapter 7
Euclidean Spaces

The notions entering into the definition of a vector space do not provide a way of
formulating multidimensional analogues of the length of a vector, the angle between
vectors, and volumes. Yet such concepts appear in many branches of mathematics
and physics, and we shall study such concepts in this chapter. All the vector spaces
that we shall consider here will be real (with the exception of certain special cases in
which complex vector spaces will be considered as a means of studying real spaces).

7.1 The Definition of a Euclidean Space

Definition 7.1 A Euclidean space is a real vector space on which is defined a fixed
symmetric bilinear form whose associated quadratic form is positive definite.

The vector space itself will be denoted as a rule by L, and the fixed symmetric
bilinear form will be denoted by (x,y). Such an expression is also called the inner
product of the vectors x and y. Let us now reformulate the definition of a Euclidean
space using this terminology.

A Euclidean space is a real vector space L in which to every pair of vectors x
and y there corresponds a real number (x,y) such that the following conditions are
satisfied:

(1) (x1 + x2,y) = (x1,y) + (x2,y) for all vectors x1,x2,y ∈ L.
(2) (αx,y) = α(x,y) for all vectors x,y ∈ L and real number α.
(3) (x,y) = (y,x) for all vectors x,y ∈ L.
(4) (x,x) > 0 for x �= 0.

Properties (1)–(3) show that the function (x,y) is a symmetric bilinear form on
L, and in particular, that (0,y) = 0 for every vector y ∈ L. It is only property (4) that
expresses the specific character of a Euclidean space.

The expression (x,x) is frequently denoted by (x2); it is called the scalar square
of the vector x. Thus property (4) implies that the quadratic form corresponding to
the bilinear form (x,y) is positive definite.
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Let us point out some obvious consequences of these definitions. For a fixed vec-
tor y ∈ L, where L is a Euclidean space, conditions (1) and (2) in the definition can
be formulated in such a way that the function f y(x) = (x,y) with argument x is
linear. Thus we have a mapping y 	→ f y of the vector space L to L∗. Condition (4)
in the definition of Euclidean space shows that the kernel of this mapping is equal
to (0). Indeed, f y �= 0 for every y �= 0, since f y(y) = (y2) > 0. If the dimension
of the space L is finite, then by Theorems 3.68 and 3.78, this mapping is an iso-
morphism. Moreover, we should note that in contrast to the construction used for
proving Theorem 3.78, we have now constructed an isomorphism L ∼→ L∗ without
using the specific choice of a basis in L. Thus we have a certain natural isomor-
phism L ∼→ L∗ defined only by the imposition of an inner product on L. In view of
this, in the case of a finite-dimensional Euclidean space L, we shall in what follows
sometimes identify L and L∗. In other words, as for any bilinear form, for the in-
ner product (x,y) there exists a unique linear transformation A : L → L∗ such that
(x,y) = A(y)(x). The previous reasoning shows that in the case of a Euclidean
space, the transformation A is an isomorphism, and in particular, the bilinear form
(x,y) is nonsingular. Let us give some examples of Euclidean spaces.

Example 7.2 The plane, in which for (x,y) is taken the well-known inner product
of x and y as studied in analytic geometry, that is, the product of the vectors’ lengths
and the cosine of the angle between them, is a Euclidean space.

Example 7.3 The space R
n consisting of rows (or columns) of length n, in which

the inner product of rows x = (α1, . . . , αn) and y = (β1, . . . , βn) is defined by the
relation

(x,y) = α1β1 + α2β2 + · · · + αnβn, (7.1)

is a Euclidean space.

Example 7.4 The vector space L consisting of polynomials of degree at most n

with real coefficients, defined on some interval [a, b], is a Euclidean space. For two
polynomials f (t) and g(t), their inner product is defined by the relation

(f, g) =
∫ b

a

f (t)g(t) dt. (7.2)

Example 7.5 The vector space L consisting of all real-valued continuous functions
on the interval [a, b] is a Euclidean space. For two such functions f (t) and g(t), we
shall define their inner product by equality (7.2).

Example 7.5 shows that a Euclidean space, like a vector space, does not have to
be finite-dimensional.1 In the sequel, we shall be concerned exclusively with finite-
dimensional Euclidean spaces, on which the inner product is sometimes called the

1Infinite-dimensional Euclidean spaces are usually called pre-Hilbert spaces. An especially impor-
tant role in a number of branches of mathematics and physics is played by the so-called Hilbert
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Fig. 7.1 Orthogonal
projection

scalar product (because the inner product of two vectors is a scalar) or dot product
(because the notation x · y is frequently used instead of (x,y)).

Example 7.6 Every subspace L′ of a Euclidean space L is itself a Euclidean space if
we define on it the form (x,y) exactly as on the space L.

In analogy with Example 7.2, we make the following definition.

Definition 7.7 The length of a vector x in a Euclidean space is the nonnegative
value

√
(x2). The length of a vector x is denoted by |x|.

We note that we have here made essential use of property (4), by which the length
of a nonnull vector is a positive number.

Following the same analogy, it is natural to define the angle ϕ between two vec-
tors x and y by the condition

cosϕ = (x,y)

|x| · |y| , 0 ≤ ϕ ≤ π. (7.3)

However, such a number ϕ exists only if the expression on the right-hand side of
equality (7.3) does not exceed 1 in absolute value. Such is indeed the case, and the
proof of this fact will be our immediate objective.

Lemma 7.8 Given a vector e �= 0, every vector x ∈ L can be expressed in the form

x = αe + y, (e,y) = 0, (7.4)

for some scalar α and vector y ∈ L; see Fig. 7.1.

Proof Setting y = x −αe, we obtain α from the condition (e,y) = 0. This is equiv-
alent to (x, e) = α(e, e), which implies that α = (x, e)/|e|2. We remark that |e| �= 0,
since by assumption, e �= 0. �

spaces, which are pre-Hilbert spaces that have the additional property of completeness, just for
the case of infinite dimension. (Sometimes, in the definition of pre-Hilbert space, the condition
(x,x) > 0 is replaced by the weaker condition (x,x) ≥ 0.)
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Definition 7.9 The vector αe from relation (7.4) is called the orthogonal projection
of the vector x onto the line 〈e〉.

Theorem 7.10 The length of the orthogonal projection of a vector x is at most its
length |x|.

Proof Indeed, since by definition, x = αe + y and (e,y) = 0, it follows that

|x|2 = (
x2) = (αe + y, αe + y) = |αe|2 + |y|2 ≥ |αe|2,

and this implies that

|x| ≥ |αe|. (7.5)

�

This leads directly to the following necessary theorem.

Theorem 7.11 For arbitrary vectors x and y in a Euclidean space, the following
inequality holds:

∣
∣(x,y)

∣
∣ ≤ |x| · |y|. (7.6)

Proof If one of the vectors x,y is equal to zero, then the inequality (7.6) is obvious,
and is reduced to the equality 0 = 0. Now suppose that neither vector is the null
vector. In this case, let us denote by αy the orthogonal projection of the vector
x onto the line 〈y〉. Then by (7.4), we have the relationship x = αy + z, where
(y,z) = 0. From this we obtain the equality

(x,y) = (αy + z,y) = (αy,y) = α|y|2.
This means that |(x,y)| = |α| · |y|2 = |αy| · |y|. But by Theorem 7.10, we have

the inequality |αy| ≤ |x|, and consequently, |(x,y)| ≤ |x| · |y|. �

Inequality (7.6) goes by a number of names, but it is generally known as the
Cauchy–Schwarz inequality. From it we can derive the well-known triangle inequal-

ity from elementary geometry. Indeed, suppose that the vectors x = −→
AB , y = −→

BC,
z = −→

CA correspond to the sides of a triangle ABC. Then we have the relationship
x + y + z = 0, from which with the help of (7.6) we obtain the inequality

|z|2 = (x + y,x + y) = |x|2 + 2(x,y) + |y|2 ≤ |x|2 + 2
∣
∣(x,y)

∣
∣+ |y|2

≤ |x|2 + 2|x| · |y| + |y|2 = (|x| + |y|)2
,

from which clearly follows the triangle inequality |z| ≤ |x| + |y|.
Thus from Theorem 7.11 it follows that there exists a number ϕ that satisfies the

equality (7.3). This number is what is called the angle between the vectors x and y.
Condition (7.3) determines the angle uniquely if we assume that 0 ≤ ϕ ≤ π .
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Definition 7.12 Two vectors x and y are said to be orthogonal if their inner product
is equal to zero: (x,y) = 0.

Let us note that this repeats the definition given in Sect. 6.2 for a bilinear form
ϕ(x,y) = (x,y). By the definition given above in (7.3), the angle between orthog-
onal vectors is equal to π

2 .
For a Euclidean space, there is a useful criterion for the linear independence of

vectors. Let a1, . . . ,am be m vectors in the Euclidean space L.

Definition 7.13 The Gram determinant, or Gramian, of a system of vectors
a1, . . . ,am is the determinant

G(a1, . . . ,am) =

∣∣∣∣∣∣∣∣∣

(a1,a1) (a1,a2) · · · (a1,am)

(a2,a1) (a2,a2) · · · (a2,am)
...

...
. . .

...

(am,a1) (am,a2) · · · (am,am)

∣∣∣∣∣∣∣∣∣

. (7.7)

Theorem 7.14 If the vectors a1, . . . ,am are linearly dependent, then the Gram de-
terminant G(a1, . . . ,am) is equal to zero, while if they are linearly independent,
then G(a1, . . . ,am) > 0.

Proof If the vectors a1, . . . ,am are linearly dependent, then as was shown in
Sect. 3.2, one of the vectors can be expressed as a linear combination of the oth-
ers. Let it be the vector am, that is, am = α1a1 + · · · + αm−1am−1. Then from the
properties of the inner product, it follows that for every i = 1, . . . ,m, we have the
equality

(am,ai ) = α1(a1,ai ) + α2(a2,ai ) + · · · + αm−1(am−1,ai ).

From this it is clear that if we subtract from the last row of the determinant (7.7), all
the previous rows multiplied by coefficients α1, . . . , αm−1, then we obtain a deter-
minant with a row consisting entirely of zeros. Therefore, G(a1, . . . ,am) = 0.

Now suppose that vectors a1, . . . ,am are linearly independent. Let us consider in
the subspace L′ = 〈a1, . . . ,am〉, the quadratic form (x2). Setting x = α1a1 + · · · +
αmam, we may write it in the form

(
(α1a1 + · · · + αmam)2) =

m∑

i,j=1

αiαj (ai ,aj ).

It is easily seen that this quadratic form is positive definite, and its determinant coin-
cides with the Gram determinant G(a1, . . . ,am). By Theorem 6.19, it now follows
that G(a1, . . . ,am) > 0. �

Theorem 7.14 is a broad generalization of the Cauchy–Schwarz inequality. In-
deed, for m = 2, inequality (7.6) is obvious (it becomes an equality) if vectors x
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and y are linearly dependent. However, if x and y are linearly independent, then
their Gram determinant is equal to

G(x,y) =
∣
∣∣∣
(x,x) (x,y)

(x,y) (y,y)

∣
∣∣∣ .

The inequality G(x,y) > 0 established in Theorem 7.14 gives us (7.6). In partic-
ular, we see that inequality (7.6) becomes an equality only if the vectors x and y
are proportional. We remark that this is easy to derive if we examine the proof of
Theorem 7.11.

Definition 7.15 Vectors e1, . . . , em in a Euclidean space form an orthonormal sys-
tem if

(ei , ej ) = 0 for i �= j, (ei , ei ) = 1, (7.8)

that is, if these vectors are mutually orthogonal and the length of each of them is
equal to 1. If m = n and the vectors e1, . . . , en form a basis of the space, then such
a basis is called an orthonormal basis.

It is obvious that the Gram determinant of an orthonormal basis is equal to 1.
We shall now use the fact that a quadratic form (x2) is positive definite and

apply to it formula (6.28), in which by the definition of positive definiteness, s = n.
This result can now be reformulated as an assertion about the existence of a basis
e1, . . . , en of the space L in which the scalar square of a vector x = α1e1 +· · ·+αnen

is equal to the sum of the squares of its coordinates, that is, (x2) = α2
1 + · · · + α2

n.
In other words, we have the following result.

Theorem 7.16 Every Euclidean space has an orthonormal basis.

Remark 7.17 In an orthonormal basis, the inner product of x = (α1, . . . , αn) and
y = (β1, . . . , βn) has a particularly simple form, given by formula (7.1). Accord-
ingly, in an orthonormal basis, the scalar square of an arbitrary vector is equal to the
sum of the squares of its coordinates, while its length is equal to the square root of
the sum of the squares.

The lemma establishing the decomposition (7.4) has an important and far-
reaching generalization. To formulate it, we recall that in Sect. 3.7, for every sub-
space L′ ⊂ L we defined its annihilator (L′)a ⊂ L∗, while earlier in this section, we
showed that an arbitrary Euclidean space L of finite dimension can be identified
with its dual space L∗. As a result, we can view (L′)a as a subspace of the original
space L. In this light, we shall call it the orthogonal complement of the subspace
L′ and denote it by (L′)⊥. If we recall the relevant definitions, we obtain that the
orthogonal complement (L′)⊥ of the subspace L′ ⊂ L consists of all vectors y ∈ L
for which the following condition holds:

(x,y) = 0 for all x ∈ L′. (7.9)
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On the other hand, (L′)⊥ is the subspace (L′)⊥ϕ , defined for the case that the bilinear
form ϕ(x,y) is given by ϕ(x,y) = (x,y); see p. 198.

A basic property of the orthogonal complement in a finite-dimensional Euclidean
space is contained in the following theorem.

Theorem 7.18 For an arbitrary subspace L1 of a finite-dimensional Euclidean
space L, the following holds:

L = L1 ⊕ L⊥
1 . (7.10)

In the case L1 = 〈e〉, Theorem 7.18 follows from Lemma 7.8.

Proof of Theorem 7.18 In the previous chapter, we saw that every quadratic form
ψ(x) in some basis of a vector space L can be reduced to the canonical form (6.22),
and in the case of a real vector space, to the form (6.28) for some scalars 0 ≤ s ≤ r ,
where s is the index of inertia and r is the rank of the quadratic form ψ(x), or
equivalently, the rank of the symmetric bilinear form ϕ(x,y) associated with ψ(x)

by the relationship (6.11). We recall that a bilinear form ϕ(x,y) is nonsingular if
r = n, where n = dim L.

The condition of positive definiteness for the form ψ(x) is equivalent to the
condition that all scalars λ1, . . . , λn in (6.22) be positive, or equivalently, that the
equality s = r = n hold in formula (6.28). From this it follows that a symmetric
bilinear form ϕ(x,y) associated with a positive definite quadratic form ψ(x) is
nonsingular on the space L as well as on every subspace L′ ⊂ L. To complete the
proof, it suffices to recall that by definition, the quadratic form (x2) associated with
the inner product (x,y) is positive definite and to use Theorem 6.9 for the bilinear
form ϕ(x,y) = (x,y). �

From relationship (3.54) for the annihilator (see Sect. 3.7) or from Theorem 7.18,
it follows that

dim(L1)
⊥ = dim L − dim L1.

The map that is the projection of the space L onto the subspace L1 parallel to L⊥
1

(see the definition on p. 103) is called the orthogonal projection of L onto L1. Then
the projection of the vector x ∈ L onto the subspace L1 is called its orthogonal
projection onto L1. This is a natural generalization of the notion introduced above
of orthogonal projection of a vector onto a line. Similarly, for an arbitrary subset
X ⊂ L, we can define its orthogonal projection onto L1.

The Gram determinant is connected to the notion of volume in a Euclidean space,
generalizing the notion of the length of a vector.

Definition 7.19 The parallelepiped spanned by vectors a1, . . . ,am is the collection
of all vectors α1a1 +· · ·+αmam for all 0 ≤ αi ≤ 1. It is denoted by Π(a1, . . . ,am).
A base of the parallelepiped Π(a1, . . . ,am) is a parallelepiped spanned by any
m − 1 vectors among a1, . . . ,am, for example, Π(a1, . . . ,am−1).
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Fig. 7.2 Altitude of a
parallelepiped

In the case of the plane (see Example 7.2), we have parallelepipeds Π(a1) and
Π(a1,a2). By definition, Π(a1) is the segment whose beginning and end coincide
with the beginning and end of the vector a1, while Π(a1,a2) is the parallelogram
constructed from the vectors a1 and a2.

We return now to the consideration of an arbitrary parallelepiped

Π(a1, . . . ,am),

and we define the subspace L1 = 〈a1, . . . ,am−1〉. To this case we may apply the
notion introduced above of orthogonal projection of the space L. By the decompo-
sition (7.10), the vector am can be uniquely represented in the form am = x + y,
where x ∈ L1 and y ∈ L⊥

1 . The vector y is called the altitude of the parallelepiped
Π(a1, . . . ,am) dropped to the base Π(a1, . . . ,am−1). The construction we have
described is depicted in Fig. 7.2 for the case of the plane.

Now we can introduce the concept of volume of a parallelepiped

Π(a1, . . . ,am),

or more precisely, its unoriented volume. This is by definition a nonnegative number,
denoted by V (a1, . . . ,am) and defined by induction on m. In the case m = 1, it is
equal to V (a1) = |a1|, and in the general case, V (a1, . . . ,am) is the product of
V (a1, . . . ,am−1) and the length of the altitude of the parallelepiped Π(a1, . . . ,am)

dropped to the base Π(a1, . . . ,am−1).
The following is a numerical expression for the unoriented volume:

V 2(a1, . . . ,am) = G(a1, . . . ,am). (7.11)

This relationship shows the geometric meaning of the Gram determinant.
Formula (7.11) is obvious for m = 1, and in the general case, it is proved by

induction on m. According to (7.10), we may represent the vector am in the form
am = x + y, where x ∈ L1 = 〈a1, . . . ,am−1〉 and y ∈ L⊥

1 . Then am = α1a1 + · · · +
αm−1am−1 + y. We note that y is the altitude of our parallelepiped dropped to the
base Π(a1, . . . ,am−1). Let us recall formula (7.7) for the Gram determinant and
subtract from its last column, each of the other columns multiplied by α1, . . . , αm−1.
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As a result, we obtain

G(a1, . . . ,am) =

∣∣
∣∣∣∣∣∣∣∣∣

(a1,a1) (a1,a2) · · · 0
(a2,a1) (a2,a2) · · · 0

...
...

. . .
...

(am−1,a1) (am−1,a2) · · · 0
(am,a1) (am,a2) · · · (y,am)

∣∣
∣∣∣∣∣∣∣∣∣

, (7.12)

and moreover, (y,am) = (y,y) = |y|2, since y ∈ L⊥
1 .

Expanding the determinant (7.12) along its last column, we obtain the equality

G(a1, . . . ,am) = G(a1, . . . ,am−1)|y|2.
Let us recall that by construction, y is the altitude of the parallelepiped Π(a1, . . . ,

am) dropped to the base Π(a1, . . . ,am−1). By the induction hypothesis, we have
G(a1, . . . ,am−1) = V 2(a1, . . . ,am−1), and this implies

G(a1, . . . ,am) = V 2(a1, . . . ,am−1)|y|2 = V 2(a1, . . . ,am).

Thus the concept of unoriented volume that we have introduced differs from the
volume and area about which we spoke in Sects. 2.1 and 2.6, since the unoriented
volume cannot assume negative values. This explains the term “unoriented.” We
shall now formulate a second way of looking at the volume of a parallelepiped,
one that generalizes the notions of volume and area about which we spoke earlier
and differs from unoriented volume by the sign ±1. By Theorem 7.14, of interest
is only the case in which the vectors a1, . . . ,am are linearly independent. Then we
may consider the space L = 〈a1, . . . ,am〉 with basis a1, . . . ,am.

Thus we are given n vectors a1, . . . ,an, where n = dim L. We consider the matrix
A, whose j th column consists of the coordinates of the vector aj relative to some
orthonormal basis e1, . . . , en:

A =

⎛

⎜
⎜⎜
⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎞

⎟
⎟⎟
⎠

.

An easy verification shows that in the matrix A∗A, the intersection of the ith row
and j th column contains the element (ai ,aj ). This implies that the determinant of
the matrix A∗A is equal to G(a1, . . . ,an), and in view of the equalities |A∗A| =
|A∗| · |A| = |A|2, we obtain |A|2 = G(a1, . . . ,an). On the other hand, from formula
(7.11), it follows that G(a1, . . . ,an) = V 2(a1, . . . ,an), and this implies that

|A| = ±V (a1, . . . ,an).

The determinant of the matrix A is called the oriented volume of the n-dimensional
parallelepiped Π(a1, . . . ,an). It is denoted by v(a1, . . . ,an). Thus the oriented and
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unoriented volumes are related by the equality

V (a1, . . . ,an) = ∣∣v(a1, . . . ,an)
∣∣.

Since the determinant of a matrix does not change under the transpose operation,
it follows that v(a1, . . . ,an) = |A∗|. In other words, for computing the oriented
volume, one may write the coordinates of the generators of the parallelepiped ai not
in the columns of the matrix, but in the rows, which is sometimes more convenient.

It is obvious that the sign of the oriented volume depends on the choice of or-
thonormal basis e1, . . . , en. This dependence is suggested by the term “oriented.”
We shall have more to say about this in Sect. 7.3.

The volume possesses some important properties.

Theorem 7.20 Let C : L → L be a linear transformation of the Euclidean space L
of dimension n. Then for any n vectors a1, . . . ,an in this space, one has the rela-
tionship

v
(
C(a1), . . . ,C(an)

) = |C|v(a1, . . . ,an). (7.13)

Proof We shall choose an orthonormal basis of the space L. Suppose that the trans-
formation C has matrix C in this basis and that the coordinates α1, . . . , αn of an
arbitrary vector a are related to the coordinates β1, . . . , βn of its image C(a) by
the relationship (3.25), or in matrix notation, (3.27). Let A be the matrix whose
columns consist of the coordinates of the vectors a1, . . . ,an, and let A′ be the ma-
trix whose columns consist of the coordinates of the vectors C(a1), . . . ,C(an). Then
it is obvious that we have the relationship A′ = CA, from which it follows that
|A′| = |C| · |A|.

To complete the proof, it remains to note that |C| = |C|, and by the def-
inition of oriented volume, we have the equalities v(a1, . . . ,an) = |A| and
v(C(a1), . . . ,C(an)) = |A′|. �

It follows from this theorem, of course, that

V
(
C(a1), . . . ,C(an)

) = ∣∣|A|∣∣V (a1, . . . ,an), (7.14)

where ||A|| denotes the absolute value of the determinant of the matrix A.
Using the concepts introduced thus far, we may define an analogue of the volume

V (M) for a very broad class of sets M containing all the sets actually encountered
in mathematics and physics. This is the subject of what is called measure theory, but
since it is a topic that is rather far removed from linear algebra, it will not concern
us here. Let us note only that the important relationship (7.14) remains valid here:

V
(
C(M)

) = ∣
∣|A|∣∣V (M). (7.15)

An interesting example of a set in an n-dimensional Euclidean space is the ball B(r)

of radius r , namely the set of all vectors x ∈ L such that |x| ≤ r . The set of vectors
x ∈ L for which |x| = r is called the sphere S(r) of radius r . From the relationship
(7.15) it follows that V (B(r)) = Vnr

n, where Vn = V (B(1)). The calculation of the
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interesting geometric constant Vn is a question from analysis, related to the theory
of the gamma function Γ . Here we shall simply quote the result:

Vn = πn/2

Γ (n/2 + 1)
.

It follows from the theory of the gamma function that if n is an even number
(n = 2m), then Vn = πm/m!, and if n is odd (n = 2m + 1), then Vn = 2m+1πm/(1 ·
3 · · · (2m + 1)).

7.2 Orthogonal Transformations

Let L1 and L2 be Euclidean spaces of the same dimension with inner products
(x,y)1 and (x,y)2 defined on them. We shall denote the length of a vector x in
the spaces L1 and L2 by |x|1 and |x|2, respectively.

Definition 7.21 An isomorphism of Euclidean spaces L1 and L2 is an isomorphism
A : L1 → L2 of the underlying vector spaces that preserves the inner product, that
is, for arbitrary vectors x,y ∈ L1, the following relationship holds:

(x,y)1 = (
A(x),A(y)

)
2. (7.16)

If we substitute the vector y = x into equality (7.16), we obtain that |x|21 =
|A(x)|22, and this implies that |x|1 = |A(x)|2, that is, the isomorphism A preserves
the lengths of vectors.

Conversely, if A : L1 → L2 is an isomorphism of vector spaces that preserves the
lengths of vectors, then |A(x + y)|22 = |x + y|21, and therefore,

∣∣A(x)
∣∣2
2 + 2

(
A(x),A(y)

)
2 + ∣∣A(y)

∣∣2
2 = |x|21 + 2(x,y)1 + |y|21.

But by assumption, we also have the equalities |A(x)|2 = |x|1 and |A(y)|2 = |y|1,
which implies that (x,y)1 = (A(x),A(y))2. This, strictly speaking, is a conse-
quence of the fact (Theorem 6.6) that a symmetric bilinear form (x,y) is determined
by the quadratic form (x,x), and here we have simply repeated the proof given in
Sect. 4.1.

If the spaces L1 and L2 have the same dimension, then from the fact that the linear
transformation A : L1 → L2 preserves the lengths of vectors, it already follows that
it is an isomorphism. Indeed, as we saw in Sect. 3.5, it suffices to verify that the
kernel of the transformation A is equal to (0). But if A(x) = 0, then |A(x)|2 = 0,
which implies that |x|1 = 0, that is, x = 0.

Theorem 7.22 All Euclidean spaces of a given finite dimension are isomorphic to
each other.
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Proof From the existence of an orthonormal basis, it follows at once that every n-
dimensional Euclidean space is isomorphic to the Euclidean space in Example 7.3.
Indeed, let e1, . . . , en be an orthonormal basis of a Euclidean space L. Assigning to
each vector x ∈ L the row of its coordinates in the basis e1, . . . , en, we obtain an
isomorphism of the space L and the space Rn of rows of length n with inner product
(7.1) (see the remarks on p. 218). It is easily seen that isomorphism is an equivalence
relation (p. xii) on the set of Euclidean spaces, and by transitivity, it follows that all
Euclidean spaces of dimension n are isomorphic to each other. �

Theorem 7.22 is analogous to Theorem 3.64 for vector spaces, and its general
meaning is the same (this is elucidated in detail in Sect. 3.5). For example, using
Theorem 7.22, we could have proved the inequality (7.6) differently from how it
was done in the preceding section. Indeed, it is completely obvious (the inequality
is reduced to an equality) if the vectors x and y are linearly dependent. If, on the
other hand, they are linearly independent, then we can consider the subspace L′ =
〈x,y〉. By Theorem 7.22, it is isomorphic to the plane (Example 7.2 in the previous
section), where this inequality is well known. Therefore, it must also be correct for
arbitrary vectors x and y.

Definition 7.23 A linear transformation U of a Euclidean space L into itself that
preserves the inner product, that is, satisfies the condition that for all vectors x and
y,

(x,y) = (
U(x),U(y)

)
, (7.17)

is said to be orthogonal.

This is clearly a special case of an isomorphism of Euclidean spaces L1 and L2
that coincide.

It is also easily seen that an orthogonal transformation U takes an orthonormal
basis to another orthonormal basis, since from the conditions (7.8) and (7.17), it
follows that U(e1), . . . ,U(en) is an orthonormal basis if e1, . . . , en is. Conversely,
if a linear transformation U takes some orthonormal basis e1, . . . , en to another
orthonormal basis, then for vectors x = α1e1 + · · · + αnen and y = β1e1 + · · · +
βnen, we have

U(x) = α1U(e1) + · · · + αnU(en), U(y) = β1U(e1) + · · · + βnU(en).

Since both e1, . . . , en and U(e1), . . . ,U(en) are orthonormal bases, it follows by
(7.1) that both the left- and right-hand sides of relationship (7.17) are equal to the
expression α1β1 +· · ·+αnβn, that is, relationship (7.17) is satisfied, and this implies
that U is an orthogonal transformation.

We note the following important reformulation of this fact: for any two orthonor-
mal bases of a Euclidean space, there exists a unique orthogonal transformation that
takes the first basis into the second.

Let U = (uij ) be the matrix of a linear transformation U in some orthonormal
basis e1, . . . , en. It follows from what has gone before that the transformation U is
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orthogonal if and only if the vectors U(e1), . . . ,U(en) form an orthonormal basis.
But by the definition of the matrix U , the vector U(ei ) is equal to

∑n
k=1 ukiek , and

since e1, . . . , en is an orthonormal basis, we have

(
U(ei ),U(ej )

) = u1iu1j + u2iu2j + · · · + uniunj .

The expression on the right-hand side is equal to the element cij , where the ma-
trix (cij ) is equal to U∗U . This implies that the condition of orthogonality of the
transformation U can be written in the form

U∗U = E, (7.18)

or equivalently, U∗ = U−1. This equality is equivalent to

UU∗ = E, (7.19)

and can be expressed as relationships among the elements of the matrix U :

ui1uj1 + · · · + uinujn = 0 for i �= j, u2
i1 + · · · + u2

in = 1. (7.20)

The matrix U satisfying the relationship (7.18) or the equivalent relationship (7.19)
is said to be orthogonal.

The concept of an orthonormal basis of a Euclidean space can be interpreted
more graphically using the notion of flag (see the definition on p. 101). Namely, we
associate with an orthonormal basis e1, . . . , en the flag

(0) ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Ln = L, (7.21)

in which the subspace Li is equal to 〈e1, . . . , ei〉, and the pair (Li−1,Li ) is directed
in the sense that L+

i is the half-space of Li containing the vector ei . In the case of a
Euclidean space, the essential fact is that we obtain a bijection between orthonormal
bases and flags.

For the proof of this, we have only to verify that the orthonormal basis e1, . . . , en

is uniquely determined by its associated flag. Let this basis be associated with
the flag (7.21). If we have already constructed an orthonormal system of vectors
e1, . . . , ei−1 such that Li−1 = 〈e1, . . . , ei−1〉, then we should consider the orthogo-
nal complement L⊥

i−1 of the subspace Li−1 in Li . Then dim L⊥
i−1 = 1 and L⊥

i−1 = 〈ei〉,
where the vector ei is uniquely defined up to the factor ±1. This factor can be se-
lected unambiguously based on the condition ei ∈ L+

i .
An observation made earlier can now be interpreted as follows: For any two flags

Φ1 and Φ2 of a Euclidean space L, there exists a unique orthogonal transformation
that maps Φ1 to Φ2.

Our next goal will be the construction of an orthonormal basis in which a given
orthogonal transformation U has the simplest matrix possible. By Theorem 4.22,
the transformation U has a one- or two-dimensional invariant subspace L′. It is clear
that the restriction of U to the subspace L′ is again an orthogonal transformation.
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Let us determine first the sort of transformation that this can be, that is, what sorts
of orthogonal transformations of one- and two-dimensional spaces exist.

If dim L′ = 1, then L′ = 〈e〉 for some nonnull vector e. Then U(e) = αe, where
α is some scalar. From the orthogonality of the transformation U, we obtain that

(e, e) = (αe, αe) = α2(e, e),

from which it follows that α2 = 1, and this implies that α = ±1. Consequently, in
a one-dimensional space L′, there exist two orthogonal transformations: the identity
E , for which E(x) = x for all vectors x, and the transformation U such that U(x) =
−x. It is obvious that U = −E .

Now let dim L′ = 2, in which case L′ is isomorphic to the plane with inner product
(7.1). It is well known from analytic geometry that an orthogonal transformation of
the plane is either a rotation through some angle ϕ about the origin or a reflection
with respect to some line l. In the first case, the orthogonal transformation U in an
arbitrary orthonormal basis of the plane has matrix

(
cosϕ − sinϕ

sinϕ cosϕ

)
. (7.22)

In the second case, the plane can be represented in the form of the direct sum L′ =
l ⊕ l⊥, where l and l⊥ are lines, and for a vector x we have the decomposition
x = y + z, where y ∈ l and z ∈ l⊥, while the vector U(x) is equal to y − z. If we
choose an orthonormal basis e1, e2 in such a way that the vector e1 lies on the line
l, then the transformation U will have matrix

U =
(

1 0
0 −1

)
. (7.23)

But we shall not presuppose this fact from analytic geometry, and instead show
that it derives from simple considerations in linear algebra. Let U have, in some
orthonormal basis e1, e2, the matrix

(
a b

c d

)
, (7.24)

that is, it maps the vector xe1 + ye2 to (ax + by)e1 + (cx + dy)e2. The fact that U
preserves the length of a vector gives the relationship

(ax + by)2 + (cx + dy)2 = x2 + y2

for all x and y. Substituting in turn (1,0), (0,1), and (1,1) for (x, y), we obtain

a2 + c2 = 1, b2 + d2 = 1, ab + cd = 0. (7.25)

From the relationship (7.19), it follows that |UU∗| = 1, and since |U∗| = |U |, it fol-
lows that |U |2 = 1, and this implies that |U | = ±1. We need to consider separately
the cases of different signs.



7.2 Orthogonal Transformations 227

If |U | = −1, then the characteristic polynomial |U − tE| of the matrix (7.24) is
equal to t2 − (a +d)t −1 and has positive discriminant. Therefore, the matrix (7.24)
has two real eigenvalues λ1 and λ2 of opposite signs (since by Viète’s theorem,
λ1λ2 = −1) and two associated eigenvectors e1 and e2. Examining the restriction
of U to the one-dimensional invariant subspaces 〈e1〉 and 〈e2〉, we arrive at the
one-dimensional case considered above, from which, in particular, it follows that
the values λ1 and λ2 are equal to ±1. Let us show that the vectors e1 and e2 are
orthogonal. By the definition of eigenvectors, we have the equalities U(ei ) = λiei ,
from which we have

(
U(e1),U(e2)

) = (λ1e1, λ2e2) = λ1λ2(e1, e2). (7.26)

But since the transformation U is orthogonal, it follows that (U(e1),U(e2)) =
(e1, e2), and from (7.26), we obtain the equality (e1, e2) = λ1λ2(e1, e2). Since λ1
and λ2 have opposite signs, it follows that (e1, e2) = 0. Choosing eigenvectors e1
and e2 of unit length and such that λ1 = 1 and λ2 = −1, we obtain the orthonormal
basis e1, e2 in which the transformation U has matrix (7.23). We then have the de-
composition L = l ⊕ l⊥, where l = 〈e1〉 and l⊥ = 〈e2〉, and the transformation U is
a reflection in the line l.

But if |U | = 1, then by relationship (7.25) for a, b, c, d , it is easy to derive, keep-
ing in mind that ad − bc = 1, that there exists an angle ϕ such that a = d = cosϕ

and c = −b = sinϕ, that is, the matrix (7.24) has the form (7.22).
As a basis for examining the general case, we have the following theorem.

Theorem 7.24 If a subspace L′ is invariant with respect to an orthogonal trans-
formation U, then its orthogonal complement (L′)⊥ is also invariant with respect
to U.

Proof We must show that for every vector y ∈ (L′)⊥, we have U(y) ∈ (L′)⊥. If
y ∈ (L′)⊥, then (x,y) = 0 for all x ∈ L′. From the orthogonality of the transforma-
tion U, we obtain that (U(x),U(y)) = (x,y) = 0. Since U is a bijective mapping
from L to L, its restriction to the invariant subspace L′ is a bijection from L′ to L′. In
other words, every vector x′ ∈ L′ can be represented in the form x′ = U(x), where
x is some other vector in L′. Consequently, (x′,U(y)) = 0 for every vector x′ ∈ L′,
and this implies that U(y) ∈ (L′)⊥. �

Remark 7.25 In the proof of Theorem 7.24, we nowhere used the positive definite-
ness of the quadratic form (x,x) associated with the inner product (x,y). Indeed,
this theorem holds as well for an arbitrary nonsingular bilinear form (x,y). The
condition of nonsingularity is required in order that the restriction of the transfor-
mation U to an invariant subspace be a bijection, without which the theorem would
not be true.

Definition 7.26 Subspaces L1 and L2 of a Euclidean space are said to be mutually
orthogonal if (x,y) = 0 for all vectors x ∈ L1 and y ∈ L2. In such a case, we write
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L1 ⊥ L2. The decomposition of a Euclidean space as a direct sum of orthogonal
subspaces is called an orthogonal decomposition.

If dim L > 2, then by Theorem 4.22, the transformation U has a one- or two-
dimensional invariant subspace. Thus using Theorem 7.24 as many times as neces-
sary (depending on dim L), we obtain the orthogonal decomposition

L = L1 ⊕ L2 ⊕ · · · ⊕ Lk, where Li ⊥ Lj for all i �= j, (7.27)

with all subspaces Li invariant with respect to the transformation U and of dimen-
sion 1 or 2.

Combining the orthonormal bases of the subspaces L1, . . . ,Lk and choosing a
convenient ordering, we obtain the following result.

Theorem 7.27 For every orthogonal transformation there exists an orthonormal
basis in which the matrix of the transformation has the block-diagonal form

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
. . . 0

1
−1

. . .

−1
Aϕ1

0
. . .

Aϕr

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (7.28)

where

Aϕi
=

(
cosϕi − sinϕi

sinϕi cosϕi

)
, (7.29)

ϕi �= πk, k ∈ Z.

Let us note that the determinants of all the matrices (7.29) are equal to 1, and
therefore, for a proper orthogonal transformation (see the definition on p. 135), the
number of −1’s on the main diagonal in (7.28) is even, and for an improper orthog-
onal transformation, that number is odd.

Let us now look at what the theorems we have proved give us in the cases n =
1,2,3 familiar from analytic geometry.

For n = 1, there exist, as we have already seen, altogether two orthogonal trans-
formations, namely E and −E , the first of which is proper, and the second, improper.

For n = 2, a proper orthogonal transformation is a rotation of the plane through
some angle ϕ. In an arbitrary orthonormal basis, its matrix has the form Aϕ from
(7.29), with no restriction on the angle ϕ. For the improper transformation appearing
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Fig. 7.3 Reflection of the
plane with respect to a line

in (7.28), the number −1 must be encountered an odd number of times, that is, once.
This implies that in some orthonormal basis e1, e2, its matrix has the form

(−1 0
0 1

)
.

This transformation is a reflection of the plane with respect to the line 〈e2〉 (Fig. 7.3).
Let us now consider the case n = 3. Since the characteristic polynomial of the

transformation U has odd degree 3, it must have at least one real root. This implies
that in the representation (7.28), the number +1 or −1 must appear on the main
diagonal of the matrix.

Let us consider proper transformations first. In this case, for the matrix (7.28),
we have only one possibility:

⎛

⎝
1 0 0
0 cosϕ − sinϕ

0 sinϕ cosϕ

⎞

⎠ .

If the matrix is written in the basis e1, e2, e3, then the transformation U does not
change the points of the line l = 〈e1〉 and represents a rotation through the angle ϕ

in the plane 〈e2, e3〉. In this case, we say that the transformation U is a a rotation
of the plane through the angle ϕ about the axis l. That every proper orthogonal
transformation of a three-dimensional Euclidean space possesses a “rotational axis”
is a result first proved by Euler. We shall discuss the mechanical significance of this
assertion later, in connection with motions of affine spaces.

Finally, if an orthogonal transformation is improper, then in expression (7.28),
we have only the possibility

⎛

⎝
−1 0 0
0 cosϕ − sinϕ

0 sinϕ cosϕ

⎞

⎠ .

In this case, the orthogonal transformation U reduces to a rotation about the l-axis
with a simultaneous reflection with respect to the plane l⊥.
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7.3 Orientation of a Euclidean Space*

In a Euclidean space, as in any real vector space, there are defined the notions
of equal and opposite orientations of two bases and orientation of the space (see
Sect. 4.4). But in Euclidean spaces, these notions possess certain specific features.

Let e1, . . . , en and e′
1, . . . , e

′
n be two orthonormal bases of a Euclidean space L.

By general definition, they have equal orientations if the transformation from one
basis to the other is proper. This implies that for a transformation U such that

U(e1) = e′
1, . . . , U(en) = e′

n,

the determinant of its matrix is positive. But in the case that both bases under consid-
eration are orthonormal, the mapping U, as we know, is orthogonal, and its matrix
U satisfies the relationship |U | = ±1. This implies that U is a proper transforma-
tion if and only if |U | = 1, and it is improper if and only if |U | = −1. We have the
following analogue to Theorems 4.38–4.40 of Sect. 4.4.

Theorem 7.28 Two orthogonal transformations of a real Euclidean space can be
continuously deformed into each other if and only if the signs of their determinants
coincide.

The definition of a continuous deformation repeats here the definition given in
Sect. 4.4 for the set A, but now consisting only of orthogonal matrices (or trans-
formations). Since the product of any two orthogonal transformations is again or-
thogonal, Lemma 4.37 (p. 159) is also valid in this case, and we shall make use of
it.

Proof of Theorem 7.28 Let us show that an arbitrary proper orthogonal transfor-
mation U can be continuously deformed into the identity. Since the condition of
continuous deformability defines an equivalence relation on the set of orthogonal
transformations, then by transitivity, the assertion of the theorem will follow for all
proper transformations.

Thus we must prove that there exists a family of orthogonal transformations Ut

depending continuously on the parameter t ∈ [0,1] for which U0 = E and U1 = U.
The continuous dependence of Ut implies that when it is represented in an arbitrary
basis, all the elements of the matrices of the transformations Ut are continuous
functions of t . We note that this is a not at all obvious corollary to Theorem 4.38.
Indeed, it did not guarantee us that all the intermediate transformations Ut for 0 <

t < 1 are orthogonal. A possible “bad” deformation At taking us out of the domain
of orthogonal transformations is depicted as the dotted line in Fig. 7.4.

We shall use Theorem 7.27 and examine the orthonormal basis in which the
matrix of the transformation U has the form (7.28). The transformation U is proper
if and only if the number of instances of −1 on the main diagonal of (7.28) is odd.
We observe that the second-order matrix

(−1 0
0 −1

)
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Fig. 7.4 Deformation taking
us outside the domain of
orthogonal transformations

can also be written in the form (7.29) for ϕi = π . Thus a proper orthogonal trans-
formation can be written in a suitable orthonormal basis in block-diagonal form

⎛

⎜⎜⎜
⎝

E

Aϕ1

. . .

Aϕk

⎞

⎟⎟⎟
⎠

, (7.30)

where the arguments ϕi can now be taken to be any values. Formula (7.30) in fact
gives a continuous deformation of the transformation U into E . To maintain agree-
ment with our notation, let us examine the transformations Ut having in this same
basis the matrix

⎛

⎜⎜⎜
⎝

E

Atϕ1

. . .

Atϕk

⎞

⎟⎟⎟
⎠

. (7.31)

Then it is clear first of all that the transformation Ut is orthogonal for every t , and
secondly, that U0 = E and U1 = U. This gives us a proof of the theorem in the case
of a proper transformation.

Let us now consider improper orthogonal transformations and show that any such
transformation V can be continuously deformed into a reflection with respect to a
hyperplane, that is, into a transformation F having in some orthonormal basis the
matrix

F =

⎛

⎜⎜⎜
⎝

−1 0
1

. . .

0 1

⎞

⎟⎟⎟
⎠

. (7.32)

Let us choose an arbitrary orthonormal basis of the vector space and suppose that in
this basis, the improper orthogonal transformation V has matrix V . Then it is obvi-
ous that the transformation U with matrix U = V F in this same basis is a proper
orthogonal transformation. Taking into account the obvious relationship F−1 = F ,
we have V = UF , that is, V = UF . We shall use the family Ut effecting a con-
tinuous deformation of the proper transformation U into E . From the preceding
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Fig. 7.5 Oriented length

equality, with the help of Lemma 4.37, we obtain the continuous family Vt = UtF ,
where V0 = EF = F and V1 = UF = V . Thus the family Vt = UtF effects the
deformation of the improper transformation V into F . �

In analogy to what we did in Sect. 4.4, Theorem 7.28 gives us the following topo-
logical result: the set of orthogonal transformations consists of two path-connected
components: the proper and improper orthogonal transformations.

Exactly as in Sect. 4.4, from what we have proved, it also follows that two equally
oriented orthogonal bases can be continuously deformed into each other. That is, if
e1, . . . , en and e′

1, . . . , e
′
n are orthogonal bases with the same orientation, then there

exists a family of orthonormal bases e1(t), . . . , en(t) depending continuously on
the parameter t ∈ [0,1] such that ei (0) = ei and ei (1) = e′

i . In other words, the
concept of orientation of a space is the same whether we define it in terms of an
arbitrary basis or an orthonormal one. We shall further examine oriented Euclidean
spaces, choosing an orientation arbitrarily. This choice makes it possible to speak of
positively and negatively oriented orthonormal bases.

Now we can compare the concepts of oriented and unoriented volume. These two
numbers differ by the factor ±1 (unoriented volumes are nonnegative by definition).
When the oriented volume of a parallelepiped Π(a1, . . . ,an) in a space L of dimen-
sion n was introduced, we noted that its definition depends on the choice of some
orthonormal basis e1, . . . , en. Since we are assuming that the space L is oriented, we
can include in the definition of oriented volume of a parallelepiped Π(a1, . . . ,an)

the condition that the basis e1, . . . , en used in the definition of v(a1, . . . ,an) be
positively oriented. Then the number v(a1, . . . ,an) does not depend on the choice
of basis (that is, it remains unchanged if instead of e1, . . . , en, we take any other
orthonormal positively oriented basis e′

1, . . . , e
′
n). This follows immediately from

formula (7.13) for the transformation C = U and from the fact that the transforma-
tion U taking one basis to the other is orthogonal and proper, that is, |U| = 1.

We can now say that the oriented volume v(a1, . . . ,an) is positive (and conse-
quently equal to the unoriented volume) if the bases e1, . . . , en and a1, . . . ,an are
equally oriented, and is negative (that is, it differs from the unoriented volume by a
sign) if these bases have opposite orientations. For example, on the line (Fig. 7.5),
the length of the segment OA is equal to 2, while the length of the segment OB is
equal to −2.

Thus, we may say that for the parallelepiped Π(a1, . . . ,an), its oriented volume
is its “volume with orientation.”

If we choose a coordinate origin on the real line, then a basis of it consists of
a single vector, and vectors e1 and αe1 are equally oriented if they lie to one side
of the origin, that is, α > 0. The choice of orientation on the line, one might say,
corresponds to the choice of “right” and “left.”

In the real plane, the orientation given by the basis e1, e2 is determined by the
“direction of rotation” from e1 to e2: clockwise or counterclockwise. Equally ori-
ented bases e1, e2 and e′

1, e
′
2 (Fig. 7.6(a) and (b)) can be continuously transformed
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Fig. 7.6 Oriented bases of
the plane

one into the other, while oppositely oriented bases cannot even if they form equal
figures (Fig. 7.6(a) and (c)), since what is required for this is a reflection, that is, an
improper transformation.

In real three-dimensional space, the orientation is defined by a basis of three
orthonormal vectors. We again meet with two opposite orientations, which are rep-
resented by our right and left hands (see Fig. 7.7(a)). Another method of providing
an orientation in three-dimensional space is defined by a helix (Fig. 7.7(b)). In this
case, the orientation is defined by the direction in which the helix turns as it rises—
clockwise or counterclockwise.2

7.4 Examples*

Example 7.29 By the term “figure” in a Euclidean space L we shall understand an
arbitrary subset S ⊂ L. Two figures S and S′ contained in a Euclidean space M of
dimension n are said to be congruent, or geometrically identical, if there exists an
orthogonal transformation U of the space M taking S to S′. We shall be interested
in the following question: When are figures S and S′ congruent, that is, when do we
have U(S) = S′?

Let us first deal with the case in which the figures S and S′ consist of collections
of m vectors: S = (a1, . . . ,am) and S′ = (a′

1, . . . ,a
′
m) with m ≤ n. For S and S′

to be congruent is equivalent to the existence of an orthogonal transformation U
such that U(ai ) = a′

i for all i = 1, . . . ,m. For this, of course, it is necessary that the

Fig. 7.7 Different orientations of three-dimensional space

2The molecules of amino acids likewise determine a certain orientation of space. In biology, the
two possible orientations are designated by D (right = dexter in Latin) and L (left = laevus). For
some unknown reason, they all determine the same orientation, namely the counterclockwise one.
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following equality holds:

(ai ,aj ) = (
a′

i ,a
′
j

)
, i, j = 1, . . . ,m. (7.33)

Let us assume that vectors a1, . . . ,am are linearly independent, and we shall
then prove that the condition (7.33) is sufficient. By Theorem 7.14, in this case
we have G(a1, . . . ,am) > 0, and by assumption, G(a′

1, . . . ,a
′
m) = G(a1, . . . ,am).

From this same theorem, it follows that the vectors a′
1, . . . ,a

′
m will also be linearly

independent.
Let us set

L = 〈a1, . . . ,am〉, L′ = 〈
a′

1, . . . ,a
′
m

〉
, (7.34)

and consider first the case m = n. Let M = 〈a1, . . . ,am〉. We shall consider the
transformation U : M → M given by the conditions U(ai ) = a′

i for all i = 1, . . . ,m.
Obviously, such a transformation is uniquely determined, and by the relationship
(

U

(
m∑

i=1

αiai

)

,U

(
m∑

j=1

βjaj

))

=
(

m∑

i=1

αia
′
i ,

m∑

j=1

βja
′
j

)

=
m∑

i,j=1

αiβj

(
a′

i ,a
′
j

)

and equality (7.33), it is orthogonal.
Let m < n. Then we have the decomposition M = L ⊕ L⊥ = L′ ⊕ (L′)⊥, where

the subspaces L and L′ of the space M are defined by formula (7.34). By what has
gone before, there exists an isomorphism V : L → L′ such that V(ai ) = a′

i for all
i = 1, . . . ,m. The orthogonal complements L⊥ and (L′)⊥ of these subspaces have
dimension n − m, and consequently, are also isomorphic (Theorem 7.22). Let us
choose an arbitrary isomorphism W : L⊥ → (L′)⊥. As a result of the decomposition
M = L ⊕ L⊥, an arbitrary vector x ∈ M can be uniquely represented in the form x =
y + z, where y ∈ L and z ∈ L⊥. Let us define the linear transformation U : M → M
by the formula U(x) = V(y) + W(z). By construction, U(ai ) = a′

i for all i =
1, . . . ,m, and a trivial verification shows that the transformation U is orthogonal.

Let us now consider the case that S = l and S′ = l′ are lines, and consequently,
consist of an infinite number of vectors. It suffices to set l = 〈e〉 and l′ = 〈e′〉, where
|e| = |e′| = 1, and to use the fact that there exists an orthogonal transformation U
of the space M taking e to e′. Thus any two lines are congruent.

The next case in order of increasing complexity is that in which figures S and
S′ each consist of two lines: S = l1 ∪ l2 and S′ = l′1 ∪ l′2. Let us set li = 〈ei〉 and
l′i = 〈e′

i〉, where |ei | = |e′
i | = 1 for i = 1 and 2. Now, however, vectors e1 and e2

are no longer defined uniquely, but can be replaced by −e1 or −e2. In this case,
their lengths do not change, but the inner product (e1, e2) can change their sign,
that is, what remains unchanged is only their absolute value |(e1, e2)|. Based on
previous considerations, we may say that figures S and S′ are congruent if and only
if |(e1, e2)| = |(e′

1, e
′
2)|. If ϕ is the angle between the vectors e1 and e2, then we

see that the lines l1 and l2 determine | cosϕ|, or equivalently the angle ϕ, for which
0 ≤ ϕ ≤ π

2 . In textbooks on geometry, one often reads about two angles between
straight lines, the “acute” and “obtuse” angles, but we shall choose only the one that
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is acute or a right angle. This angle ϕ is called the angle between the lines l1 and l2.
The previous exposition shows that two pairs of lines l1, l2 and l′1, l′2 are congruent
if and only if the angles between them thus defined coincide.

The case in which a figure S consists of a line l and a plane L (dim l = 1,
dim L = 2) is also related, strictly speaking, to elementary geometry, since dim(l +
L) ≤ 3, and the figure S = l∪L can be embedded in three-dimensional space. But we
shall consider it from a more abstract point of view, using the language of Euclidean
spaces. Let l = 〈e〉 and let f be the orthogonal projection of e onto L. The angle
ϕ between the lines l and l′ = 〈f 〉 is called the angle between l and L (as already
mentioned above, it is acute or right). The cosine of this angle can be calculated
according to the following formula:

cosϕ = |(e,f )|
|e| · |f | . (7.35)

Let us show that if the angle between the line l and the plane L is equal to the
angle between the line l′ and the plane L′, then the figures S = l ∪ L and S′ = l′ ∪ L′
are congruent. First of all, it is obvious that there exists an orthogonal transformation
taking L to L′, so that we may consider that L = L′. Let l = 〈e〉, |e| = 1 and l′ = 〈e′〉,
|e′| = 1, and let us denote by f and f ′ the orthogonal projections e and e′ onto L.
By assumption,

|(e,f )|
|e| · |f | = |(e′,f ′)|

|e′| · |f ′| . (7.36)

Since e and e′ can be represented in the form e = f + x and e′ = f ′ + y,
where x,y ∈ L⊥, it follows that |(e,f )| = |f |2, |(e′,f ′)| = |f ′|2. Moreover, |e| =
|e′| = 1, and the relationship (7.36) shows that |f | = |f ′|.

Since e = x + f , we have |e|2 = |x|2 + 2(x,f ) + |f |2, from which, if we take
into account the equalities |e|2 = 1 and (x,f ) = 0, we obtain |x|2 = 1 − |f |2 and
analogously, |y|2 = 1 − |f ′|2. From this follows the equality |x| = |y|. Let us de-
fine the orthogonal transformation U of the space M = L ⊕ L⊥ whose restriction to
the plane L carries the vector f to f ′ (this is possible because |f | = |f ′|), while
the restriction to its orthogonal complement L⊥ takes the vector x to y (which is
possible on account of the equality |x| = |y|). Clearly, U takes e to e′ and hence l

to l′, and by construction, the plane L in both figures is one and the same, and the
transformation U takes it into itself.

We encounter a new and more interesting situation when we consider the case
in which a figure S consists of a pair of planes L1 and L2 (dim L1 = dim L2 = 2).
If L1 ∩ L2 �= (0), then dim(L1 + L2) ≤ 3, and we are dealing with a question from
elementary geometry (which, however, can be considered simply in the language of
Euclidean spaces). Therefore, we shall assume that L1 ∩ L2 = (0) and similarly, that
L′

1 ∩ L′
2 = (0). When are figures S = L1 ∪ L2 and S′ = L′

1 ∪ L′
2 congruent? It turns

out that for this to occur, it is necessary that there be agreement of not one (as in the
examples considered above) but two parameters, which can be interpreted as two
angles between the planes L1 and L2.
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We shall consider all possible straight lines lying in the plane L1 and the angles
that they form with the plane L2. To this end, we recall the geometric interpretation
of the angle between a line l and a plane L. If l = 〈e〉, where |e| = 1, then the angle
ϕ between l and L is determined by formula (7.35) with the condition 0 ≤ ϕ ≤ π

2 ,
where f is the orthogonal projection of the vector e onto L. From this, it follows that
e = f + x, where x ∈ L⊥, and this implies that (e,f ) = (f ,f ) + (x,f ) = |f |2,
whence the relationship (7.35) gives | cosϕ| = |f |. In other words, to consider all
the angles between lines lying in the plane L1 and the plane L2, we must consider
the circle in L1 consisting of all vectors of length 1 and the lengths of the orthogonal
projections of these vectors onto the plane L2. In order to write down these angles
in a formula, we shall consider the orthogonal projection M → L2 of the space M
onto the plane L2. Let us denote by P the restriction of this linear transformation
to the plane L1. Then the angles of interest to us are given by the formula | cosϕ| =
|P (e)|, where e are all possible vectors in the plane L1 of unit length. We restrict
our attention to the case in which the linear transformation P is an isomorphism.
The case in which this does not occur, that is, when the kernel of the transformation
P is not equal to (0) and the image is not equal to L2, is dealt with similarly.

Since P is an isomorphism, there is an inverse transformation P −1 : L2 → L1.
Let us choose in the planes L1 and L2 orthonormal bases e1, e2 and g1,g2. Let the
vector e ∈ L1 have unit length. We set f = P (e), and assuming that f = x1g1 +
x2g2, we shall obtain equations for the coordinates x1 and x2. Let us set

P −1(g1) = αe1 + βe2, P −1(g2) = γ e1 + δe2.

Since f = P (e), it follows that

e = P −1(f ) = x1P
−1(g1) + x2P

−1(g2) = (αx1 + γ x2)e1 + (βx1 + δx2)e2,

and the condition |P −1(f )| = 1, which we shall write in the form |P −1(f )|2 = 1,
reduces to the equality (αx1 + γ x2)

2 + (βx1 + δx2)
2 = 1, that is,

(
α2 + β2)x2

1 + 2(αγ + βδ)x1x2 + (
γ 2 + δ2)x2

2 = 1. (7.37)

Equation (7.37) with variables x1, x2 defines a second-degree curve in the rect-
angular coordinate system determined by the vectors g1 and g2. This curve is
bounded, since |f | ≤ |e| (f is the orthogonal projection of the vector e), and this
implies that (f 2) ≤ 1, that is, x2

1 + x2
2 ≤ 1. As one learns in a course on analytic

geometry, such a curve is an ellipse. In our case, it has its center of symmetry at the
origin O , that is, it is unchanged by a change of variables x1 → −x1, x2 → −x2
(see Fig. 7.8).

It is known from analytic geometry that an ellipse has two distinguished points A

and A′, symmetric with respect to the origin, such that the length |OA| = |OA′| is
greater than |OC| for all other points C of the ellipse. The segment |OA| = |OA′|
is called the semimajor axis of the ellipse. Similarly, there exist points B and B ′
symmetric with respect to the origin such that the segment |OB| = |OB ′| is shorter
than every other segment |OC|. The segment |OB| = |OB ′| is called the semiminor
axis of the ellipse.
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Fig. 7.8 Ellipse described by
equation (7.37)

Let us recall that the length of an arbitrary line segment |OC|, where C is any
point on the ellipse, gives us the value cosϕ, where ϕ is the angle between a certain
line contained in L1 and the plane L2. From this it follows that cosϕ attains its
maximum for one value of ϕ, while for some other value of ϕ it attains its minimum.
Let us denote these angles by ϕ1 and ϕ2 respectively. By definition, 0 ≤ ϕ1 ≤ ϕ2 ≤
π
2 . It is these two angles that are called the angles between the planes L1 and L2.

The case that we have omitted, in which the transformation P has a nonnull
kernel, reduces to the case in which the ellipse depicted in Fig. 7.8 shrinks to a line
segment.

It now remains for us to check that if both angles between the planes (L1,L2)

are equal to the corresponding angles between the planes (L′
1,L′

2), then the figures
S = L1 ∪ L2 and S′ = L′

1 ∪ L′
2 will be congruent, that is, there exists an orthogonal

transformation U taking the plane Li into L′
i , i = 1,2.

Let ϕ1 and ϕ2 be the angles between L1 and L2, equal, by hypothesis, to the angles
between L′

1 and L′
2. Reasoning as previously (in the case of the angle between a line

and a plane), we can find an orthogonal transformation that takes L2 to L′
2. This

implies that we may assume that L2 = L′
2. Let us denote this plane by L. Here, of

course, the angles ϕ1 and ϕ2 remain unchanged. Let cosϕ1 ≤ cosϕ2 for the pair of
planes L1 and L. This implies that cosϕ1 and cosϕ2 are the lengths of the semiminor
and semimajor axes of the ellipse that we considered above. This is also the case for
the pair of planes L′

1 and L. By construction, this means that cosϕ1 = |f 1| = |f ′
1|

and cosϕ2 = |f 2| = |f ′
2|, where the vectors f i ∈ L are orthogonal projections of

the vectors ei ∈ L1 of length 1. Reasoning similarly, we obtain the vectors f ′
i ∈ L

and e′
i ∈ L′

1, i = 1,2.
Since |f 1| = |f ′

1|, |f 2| = |f ′
2|, and since by well-known properties of the el-

lipse, its semimajor and semiminor axes are orthogonal, we can find an orthogonal
transformation of the space M that takes f 1 to f ′

1 and f 2 to f ′
2, and having done so,

assume that f 1 = f ′
1 and f 2 = f ′

2. But since an ellipse is defined by its semiaxes,
it follows that the ellipses C1 and C′

1 that are obtained in the plane L from the planes
L1 and L′

1 simply coincide. Let us consider the orthogonal projections of the space
M to the plane L. Let us denote by P its restriction to the plane L1, and by P ′ its
restriction to the plane L′

1.
We shall assume, as we did previously, that the transformations P : L1 → L and

P ′ : L′
1 → L are isomorphisms of the corresponding linear spaces, but it is not at all

necessary that they be isomorphisms of Euclidean spaces. Let us represent this with
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arrows in a commutative diagram

L1

P

���
��

��
��

V

��

L

L′
1

P ′

����������

(7.38)

and let us show that the transformations P and P ′ differ from each other by an
isomorphism of Euclidean spaces L1 and L′

1. In other words, we claim that the trans-
formation V = (P ′)−1P is an isomorphism of the Euclidean spaces L1 and L′

1.
As the product of isomorphisms of linear spaces, the transformation V is also an

isomorphism, that is, a bijective linear transformation. It remains for us to verify that
V preserves the inner product. As noted above, to do this, it suffices to verify that
V preserves the lengths of vectors. Let x be a vector in L. If x = 0, then the vector
V(x) is equal to 0 by the linearity of V , and the assertion is obvious. If x �= 0, then
we set e = α−1x, where α = |x|, and then |e| = 1. The vector P (e) is contained
in the ellipse C in the plane L. Since C = C′, it follows that P (e) = P ′(e′), where
e′ is some vector in the plane L′

1 and |e′| = 1. From this we obtain the equality
(P ′)−1P (e) = e′, that is, V(e) = e′ and |e′| = 1, which implies that |V(x)| = α =
|x|, which is what we had to prove.

We shall now consider a basis of the plane L consisting of vectors f 1 and f 2 ly-
ing on the semimajor and semiminor axes of the ellipse C = C′, and augment it with
vectors e1, e2, where P (ei ) = f i . We thereby obtain four vectors e1, e2,f 1,f 2 in
the space L1 + L (it is easily verified that they are linearly independent). Similarly,
in the space L′

1 + L, we shall construct four vectors e′
1, e

′
2,f 1,f 2. We shall show

that there exists an orthogonal transformation of the space M taking the first set of
four vectors into the second. To do so, it suffices to prove that the inner products of
the associated vectors (in the order in which we have written them) coincide. Here
what is least trivial is the relationship (e′

1, e
′
2) = (e1, e2), but it follows from the fact

that e′
i = V(ei ), where V is an isomorphism of the Euclidean spaces L1 and L′

1. The
relationship (e′

1,f 1) = (e1,f 1) is a consequence of the fact that f 1 is an orthog-
onal projection, (e1,f 1) = |f 1|2, and similarly, (e′

1,f 1) = |f 1|2. The remaining
relationships are even more obvious.

Thus the figures S = L1 ∪ L2 and S′ = L′
1 ∪ L′

2 are congruent if and only if both
angles between the planes L1,L2 and L′

1,L′
2 coincide. With the help of theorems

to be proved in Sect. 7.5, it will be easy for the reader to investigate the case of a
pair of subspaces L1,L2 ⊂ M of arbitrary dimension. In this case, the answer to the
question whether two pairs of subspaces S = L1 ∪L2 and S′ = L′

1 ∪L′
2 are congruent

is determined by the agreement of two finite sets of numbers that can be interpreted
as “angles” between the subspaces L1,L2 and L′

1,L′
2.
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Example 7.30 When the senior of the two authors of this textbook gave the course
on which it is based (this was probably in 1952 or 1953) at Moscow State Uni-
versity, he told his students about a question that had arisen in the work of A.N.
Kolmogorov, A.A. Petrov, and N.V. Smirnov, the answer to which in one particular
case had been obtained by A.I. Maltsev. This question was presented by the pro-
fessor as an example of an unsolved problem that had been worked on by noted
mathematicians yet could be formulated entirely in the language of linear algebra.
At the next lecture, that is, a week later, one of the students in the class came up to
him and said that he had found a solution to the problem.3

The question posed by A.N. Kolmogorov et al. was this: In a Euclidean space
L of dimension n, we are given n nonnull mutually orthogonal vectors x1, . . . ,xn,
that is, (xi ,xj ) = 0 for all i �= j , i, j = 1, . . . , n. For what values m < n does there
exist an m-dimensional subspace M ⊂ L such that the orthogonal projections of the
vectors x1, . . . ,xn to it all have the same length? A.I. Maltsev showed that if all
the vectors x1, . . . ,xn have the same length, then there exists such a subspace M of
each dimension m < n.

The general case is approached as follows. Let us set |xi | = αi and assume that
there exists an m-dimensional subspace M such that the orthogonal projections of all
vectors xi to it have the same length α. Let us denote by P the orthogonal mapping
to the subspace M, so that |P (xi )| = α. Let us set f i = α−1

i xi . Then the vectors
f 1, . . . ,f n form an orthonormal basis of the space L. Conversely, let us select in L
an orthonormal basis e1, . . . , en such that the vectors e1, . . . , em form a basis in M,
that is, for the decomposition

L = M ⊕ M⊥, (7.39)

we join the orthonormal basis e1, . . . , em of the subspace M to the orthonormal basis
em+1, . . . , en of the subspace M⊥.

Let f i = ∑n
k=1 ukiek . Then we can interpret the matrix U = (uki) as the ma-

trix of the linear transformation U, written in terms of the basis e1, . . . , en, taking
vectors e1, . . . , en to vectors f 1, . . . ,f n. Since both sets of vectors e1, . . . , en and
f 1, . . . ,f n are orthonormal bases, it follows that U is an orthogonal transforma-
tion, in particular, by formula (7.18), satisfying the relationship

UU∗ = E. (7.40)

From the decomposition (7.39) we see that every vector f i can be uniquely rep-
resented in the form of a sum f i = ui + vi , where ui ∈ M and vi ∈ M⊥. By defi-
nition, the orthogonal projection of the vector f i onto the subspace M is equal to
P (f i ) = ui . By construction of the basis e1, . . . , en, it follows that

P (f i ) =
m∑

k=1

ukiek.

3It was published as L.B. Nisnevich, V.I. Bryzgalov, “On a problem of n-dimensional geometry,”
Uspekhi Mat. Nauk 8:4(56) (1953), 169–172.
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By assumption, we have the equalities |P (f i )|2 = |P (α−1
i xi )|2 = α2α−2

i , which
in coordinates assume the form

m∑

k=1

u2
ki = α2α−2

i , i = 1, . . . , n.

If we sum these relationships for all i = 1, . . . , n and change the order of summation
in the double sum, then taking into account the relationship (7.40) for the orthogonal
matrix U , we obtain the equality

α2
n∑

i=1

α−2
i =

n∑

i=1

m∑

k=1

u2
ki =

m∑

k=1

n∑

i=1

u2
ki = m, (7.41)

from which it follows that α can be expressed in terms of α1, . . . , αn, and m by the
formula

α2 = m

(
n∑

i=1

α−2
i

)−1

. (7.42)

From this, in view of the equalities |P (f i )|2 = |P (α−1
i xi )|2 = α2α−2

i , we ob-
tain the expressions

∣
∣P (f i )

∣
∣2 = m

(

α2
i

n∑

i=1

α−2
i

)−1

, i = 1, . . . , n.

By Theorem 7.10, we have |P (f i )| ≤ |f i |, and since by construction, |f i | = 1, we
obtain the inequalities

m

(

α2
i

n∑

i=1

α−2
i

)−1

≤ 1, i = 1, . . . , n,

from which it follows that

α2
i

n∑

i=1

α−2
i ≥ m, i = 1, . . . , n. (7.43)

Thus the inequalities (7.43) are necessary for the solvability of the problem. Let
us show that they are also sufficient.

Let us consider first the case m = 1. We observe that in this situation, the in-
equalities (7.43) are automatically satisfied for an arbitrary collection of positive
numbers α1, . . . , αn. Therefore, for an arbitrary system of mutually orthogonal vec-
tors x1, . . . ,xn in L, we must produce a line M ⊂ L such that the orthogonal projec-
tions of all these vectors onto it have the same length. For this, we shall take as such
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a line M = 〈y〉 with the vectors

y =
n∑

i=1

(α1 · · ·αn)
2

α2
i

xi ,

where as before, α2
i = (xi ,xi ). Since (xi ,y)

|y|2 y ∈ M and (xi − (xi ,y)

|y|2 y,y) = 0, it fol-
lows that the orthogonal projection of the vector xi onto the line M is equal to

P (xi ) = (xi ,y)

|y|2 y.

Clearly, the length of each such projection

∣
∣P (xi )

∣
∣ = |(xi ,y)|

|y| = (α1 · · ·αn)
2

|y|
does not depend on the index of the vector xi . Thus we have proved that for an
arbitrary system of n nonnull mutually orthogonal vectors in an n-dimensional Eu-
clidean space, there exists a line such that the orthogonal projections of all vectors
onto it have the same length.

To facilitate understanding in what follows, we shall use the symbol P(m,n)

to denote the following assertion: If the lengths α1, . . . , αn of a system of mutu-
ally orthogonal vectors x1, . . . ,xn in an n-dimensional Euclidean space L satisfy
condition (7.43), then there exists an m-dimensional subspace M ⊂ L such that the
orthogonal projections P (x1), . . . ,P (xn) of the vectors x1, . . . ,xn onto it have the
same length α, expressed by the formula (7.42). Using this convention, we may say
that we have proved the assertion P(1, n) for all n > 1.

Before passing to the case of arbitrary m, let us recast the problem in a more
convenient form. Let β1, . . . , βn be arbitrary numbers satisfying the following con-
dition:

β1 + · · · + βn = m, 0 < βi ≤ 1, i = 1, . . . , n. (7.44)

Let us denote by P ′(m,n) the following assertion: In the Euclidean space L there
exist an orthonormal basis g1, . . . ,gn and an m-dimensional subspace L′ ⊂ L such
that the orthogonal projections P ′(gi ) of the basis vectors onto L′ have length

√
βi ,

that is,
∣∣P ′(gi )

∣∣2 = βi, i = 1, . . . , n.

Lemma 7.31 The assertions P(m,n) and P ′(m,n) with a suitable choice of num-
bers α1, . . . , αn and β1, . . . , βn are equivalent.

Proof Let us first prove that the assertion P ′(m,n) follows from the assertion
P(m,n). Here we are given a collection of numbers β1, . . . , βn satisfying the con-
dition (7.44), and it is known that the assertion P(m,n) holds for arbitrary positive
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numbers α1, . . . , αn satisfying condition (7.43). For the numbers β1, . . . , βn and ar-
bitrary orthonormal basis g1, . . . ,gn we define vectors xi = β

−1/2
i gi , i = 1, . . . , n.

It is clear that these vectors are mutually orthogonal, and furthermore, |xi | = β
−1/2
i .

Let us prove that the numbers αi = β
−1/2
i satisfy the inequalities (7.43). Indeed, if

we take into account the condition (7.44), we have

α2
i

n∑

i=1

α−2
i = β−1

i

n∑

i=1

βi = β−1
i m ≥ m.

The assertion P(m,n) says that in the space L there exists an m-dimensional
subspace M such that the lengths of the orthogonal projections of the vectors xi

onto it are equal to

∣∣P (xi )
∣∣ = α =

√√√√m

(
n∑

i=1

α−2
i

)−1

=
√√√√m

(
n∑

i=1

βi

)−1

= 1.

But then the lengths of the orthogonal projections of the vectors gi onto the same
subspace M are equal to |P (gi )| = |P (

√
βixi )| = √

βi .
Now let us prove that the assertion P ′(m,n) yields P(m,n). Here we are given

a collection of nonnull mutually orthogonal vectors x1, . . . ,xn of length |xi | = αi ,
and moreover, the numbers αi satisfy the inequalities (7.43). Let us set

βi = α−2
i m

(
n∑

i=1

α−2
i

)−1

and verify that βi satisfies conditions (7.44). The equality β1 +· · ·+βn = m clearly
follows from the definition of the numbers βi . From the inequalities (7.43) it follows
that

α2
i ≥

(

m

n∑

i=1

α−2
i

)−1

,

and this implies that

βi = α−2
i m

(
n∑

i=1

α−2
i

)−1

≤ 1.

The assertion P ′(m,n) says that there exist an orthonormal basis g1, . . . ,gn of
the space L and an m-dimensional subspace L′ ⊂ L such that the lengths of the
orthogonal projections of the vectors gi onto it are equal to |P ′(gi )| = √

βi . But
then the orthogonal projections of the mutually orthogonal vectors β

−1/2
i gi onto

the same subspace L′ will have the same length, namely 1.
To prove the assertion P(m,n) for given vectors x1, . . . ,xn, it now suffices to

consider the linear transformation U of the space L mapping the vectors gi to
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U(gi ) = f i , where f i = α−1
i xi . Since the bases g1, . . . ,gn and f 1, . . . ,f n are

orthonormal, it follows that U is an orthogonal transformation, and therefore, the
orthogonal projections of the xi onto the m-dimensional subspace M = U(L′) have
the same length. Moreover, by what we have proved above, this length is equal to the
number α determined by formula (7.42). This completes the proof of the lemma. �

Thanks to the lemma, we may prove the assertion P ′(m,n) instead of the asser-
tion P(m,n). We shall do so by induction on m and n. We have already proved the
base case of the induction (m = 1, n > 1). The inductive step will be divided into
three parts:

(1) From assertion P ′(m,n) for 2m ≤ n + 1 we shall derive P ′(m,n + 1).
(2) We shall prove that the assertion P ′(m,n) implies P ′(n,m − n).
(3) We shall prove that the assertion P ′(m+1, n) for all n > m+1 is a consequence

of the assertion P ′(m′, n) for all m′ ≤ m and n > m′.
Part 1: From assertion P ′(m,n) for 2m ≤ n+1, we derive P ′(m,n+1). We shall

consider the collection of positive numbers β1, . . . , βn,βn+1 satisfying conditions
(7.44) with n replaced by n + 1, with 2m ≤ (n + 1). Without loss of generality, we
may assume that β1 ≥ β2 ≥ · · · ≥ βn+1. Since β1 + · · · + βn+1 = m and n + 1 ≥
2m, it follows that βn + βn+1 ≤ 1. Indeed, for example for odd n, the contrary
assumption would give the inequality

β1 + β2 ≥ · · · ≥ βn + βn+1︸ ︷︷ ︸
(n+1)/2 sums

> 1,

from which clearly follows β1 +· · ·+βn+1 > (n + 1)/2 ≥ m, which contradicts the
assumption that has been made.

Let us consider the (n + 1)-dimensional Euclidean space L and decompose it as
a direct sum L = 〈e〉 ⊕ 〈e〉⊥, where e ∈ L is an arbitrary vector of length 1. By the
induction hypothesis, the assertion P ′(m,n) holds for numbers β1, . . . , βn−1 and
β = βn + βn+1 and the n-dimensional Euclidean space 〈e〉⊥. This implies that in
the space 〈e〉⊥, there exist an orthonormal basis g1, . . . ,gn and an m-dimensional
subspace L′ such that the squares of the lengths of the orthogonal projections of the
vectors gi onto L′ are equal to

∣∣P ′(gi )
∣∣2 = βi, i = 1, . . . , n − 1,

∣∣P ′(gn)
∣∣2 = βn + βn+1.

We shall denote by P̄ : L → L′ the orthogonal projection of the space L onto
L′ (in this case, of course, P̄ (e) = 0), and we construct in L an orthonormal basis
ḡ1, . . . , ḡn+1 for which |P̄ (ḡi )|2 = βi for all i = 1, . . . , n + 1.

Let us set ḡi = gi for i = 1, . . . , n − 2 and ḡn = agn + be, ḡn+1 = cgn + de,
where the numbers a, b, c, d are chosen in such a way that the following conditions
are satisfied:

|ḡn| = |ḡn+1| = 1, (ḡn, ḡn+1) = 0,

∣∣P̄ (ḡn)
∣∣2 = βn,

∣∣P̄ (ḡn+1)
∣∣2 = βn+1.

(7.45)



244 7 Euclidean Spaces

Then the system of vectors ḡ1, . . . , ḡn+1 proves the assertion P ′(m,n + 1).
The relationships (7.45) can be rewritten in the form

a2 + b2 = c2 + d2 = 1, ac + bd = 0,

a2(βn + βn+1) = βn, c2(βn + βn+1) = βn+1.

It is easily verified that these relationships will be satisfied if we set

b = ±c, d = ∓a, a =
√

βn

βn + βn+1
, c =

√
βn+1

βn + βn+1
.

Before proceeding to part 2, let us make the following observation.

Proposition 7.32 To prove the assertion P ′(m,n), we may assume that βi < 1 for
all i = 1, . . . , n.

Proof Let 1 = β1 = · · · = βk > βk+1 ≥ · · · ≥ βn > 0. We choose in the n-
dimensional vector space L an arbitrary subspace Lk of dimension k and consider
the orthogonal decomposition L = Lk ⊕ L⊥

k . We note that

1 > βk+1 ≥ · · · ≥ βn > 0 and βk+1 + · · · + βn = m − k.

Therefore, if the assertion P ′(m − k,n − k) holds for the numbers βk+1, . . . , βn,
then in L⊥

k , there exist a subspace L′
k of dimension m − k and an orthonormal basis

gk+1, . . . ,gn such that |P (gi )|2 = βi for i = k + 1, . . . , n, where P : L⊥
k → L′

k is
an orthogonal projection.

We now set L′ = Lk ⊕ L′
k and choose in Lk an arbitrary orthonormal ba-

sis g1, . . . ,gk . Then if P ′ : L → L′ is the orthogonal projection, we have that
|P ′(gi )|2 = 1 for i = 1, . . . , k and |P ′(gi )|2 = βi for i = k + 1, . . . , n. �

Part 2: Assertion P ′(m,n) implies assertion P ′(n,m − n). Let us consider n

numbers β1 ≥ · · · ≥ βn satisfying condition (7.44) in which the number m is re-
placed by n − m. We must construct an orthogonal projection P ′ : L → L′ of the
n-dimensional Euclidean space L onto the (m − n)-dimensional subspace L′ and
an orthonormal basis g1, . . . ,gn in L for which the conditions |P ′(gi )|2 = βi ,
i = 1, . . . , n, are satisfied. By a previous observation, we may assume that all βi are
less than 1. Then the numbers β ′

i = 1−βi satisfy conditions (7.44), and by assertion
P ′(m,n), there exist an orthonormal projection P̄ : L → L̄ of the space L onto the
m-dimensional subspace L̄ and an orthonormal basis g1, . . . ,gn for which the con-
ditions |P̄ (gi )|2 = β ′

i are satisfied. For the desired (m − n)-dimensional subspace
we shall take L′ = L̄⊥ and denote by P ′ the orthogonal projection onto L′. Then for
each i = 1, . . . , n, the equalities

gi = P̄ (gi ) + P ′(gi ), 1 = |gi |2 = ∣∣P̄ (gi )
∣∣2 + ∣∣P ′(gi )

∣∣2 = β ′
i + ∣∣P ′(gi )

∣∣2
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are satisfied, from which it follows that |P ′(gi )|2 = 1 − β ′
i = βi .

Part 3: Assertion P ′(m + 1, n) for all n > m + 1 is a consequence of P ′(m′, n)

for all m′ ≤ m and n > m′. By our assumption, the assertion P ′(m,n) holds in
particular for n = 2m + 1. By part 2, we may assert that P ′(m + 1,2m + 1) holds,
and since 2(m + 1) ≤ (2m + 1) + 1, then by virtue of part 1, we may conclude that
P ′(m+1, n) holds for all n ≥ 2m+1. It remains to prove the assertions P ′(m+1, n)

for m + 2 ≤ n ≤ 2m. But these assertions follow from P ′(n − (m + 1), n) by part 2.
It is necessary only to verify that the inequalities 1 ≤ n − (m + 1) ≤ m are satisfied,
which follows directly from the assumption that m + 2 ≤ n ≤ 2m.

7.5 Symmetric Transformations

As we observed at the beginning of Sect. 7.1, for a Euclidean space L, there exists
a natural isomorphism L ∼→ L∗ that allows us to identify in this case the space L∗
with L. In particular, using the definition given in Sect. 3.7, we may define for an
arbitrary basis e1, . . . , en of the space L the dual basis f 1, . . . ,f n of the space L by
the condition (f i , ei ) = 1, (f i , ej ) = 0 for i �= j . Thus an orthonormal basis is one
that is its own dual.

In the same way, we can assume that for an arbitrary linear transformation
A : L → L, the dual transformation A∗ : L∗ → L∗ defined in Sect. 3.7 is a linear
transformation of the Euclidean space L into itself and is determined by the condi-
tion

(
A∗(x),y

) = (
x,A(y)

)
(7.46)

for all vectors x,y ∈ L. By Theorem 3.81, the matrix of the linear transformation A
in an arbitrary basis of the space L and the matrix of the dual transformation A∗ in
the dual basis are transposes of each other. In particular, the matrices of the trans-
formations A and A∗ in an arbitrary orthonormal basis are transposes of each other.
This is in accord with the notation A∗ that we have chosen for the transpose matrix.
It is easily verified also that conversely, if the matrices of transformations A and B
in some orthonormal basis are transposes of each other, then the transformations A
and B are dual.

As an example, let us consider the orthogonal transformation U, for which
by definition, the condition (U(x),U(y)) = (x,y) is satisfied. By formula
(7.46), we have the equality (U(x),U(y)) = (x,U∗U(y)), from which follows
(x,U∗U(y)) = (x,y). This implies that (x,U∗U(y) − y) = 0 for all vectors x,
from which follows the equality U∗U(y) = y for all vectors y ∈ L. In other words,
the fact that U∗U is equal to E , the identity transformation, is equivalent to the
property of orthogonality of the transformation U. In matrix form, this is the rela-
tionship (7.18).

Definition 7.33 A linear transformation A of a Euclidean space is called symmetric
or self-dual if A∗ = A.
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In other words, for a symmetric transformation A and arbitrary vectors x and y,
the following condition must be satisfied:

(
A(x),y

) = (
x,A(y)

)
, (7.47)

that is, the bilinear form ϕ(x,y) = (A(x),y) is symmetric. As we have seen, from
this it follows that in an arbitrary orthonormal basis, the matrix of the transformation
A is symmetric.

Symmetric linear transformations play a very large role in mathematics and its
applications. Their most essential applications relate to quantum mechanics, where
symmetric transformations of infinite-dimensional Hilbert space (see the note on
p. 214) correspond to what are called observed physical quantities. We shall, how-
ever, restrict our attention to finite-dimensional spaces. As we shall see in the sequel,
even with this restriction, the theory of symmetric linear transformations has a great
number of applications.

The following theorem gives a basic property of symmetric linear transforma-
tions of finite-dimensional Euclidean spaces.

Theorem 7.34 Every symmetric linear transformation of a real vector space has an
eigenvector.

In view of the very large number of applications of this theorem, we shall present
three proofs, based on different principles.

Proof of Theorem 7.34 First proof. Let A be a symmetric linear transformation
of a Euclidean space L. If dim L > 2, then by Theorem 4.22, it has a one- or two-
dimensional invariant subspace L′. It is obvious that the restriction of the transforma-
tion A to the invariant subspace L′ is also a symmetric transformation. If dim L′ = 1,
then we have L′ = 〈e〉, where e �= 0, and this implies that e is an eigenvector. Con-
sequently, to prove the theorem, it suffices to show that a symmetric linear transfor-
mation in the two-dimensional subspace L′ has an eigenvector. Choosing in L′ an
orthonormal basis, we obtain for A a symmetric matrix in this basis:

A =
(

a b

b c

)
.

In order to find an eigenvector of the transformation A, we must find a real root of
the polynomial |A − tE|. This polynomial has the form

(a − t)(c − t) − b2 = t2 − (a + c)t + ac − b2

and has a real root if and only if its discriminant in nonnegative. But the discriminant
of this quadratic trinomial is equal to

(a + c)2 − 4
(
ac − b2) = (a − c)2 + 4b2 ≥ 0,

and the proof is complete.
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Second proof. The second proof is based on the complexification LC of the real
vector space L. Following the construction presented in Sect. 4.3, we may extend
the transformation A to the vectors of the space LC. By Theorem 4.18, the obtained
transformation AC : LC → LC will already have an eigenvector e ∈ LC and eigen-
value λ ∈C, so that AC(e) = λe.

We shall extend the inner product (x,y) from the space L to LC so that it de-
termines there a Hermitian form (see the definition on p. 210). It is clear that this
can be accomplished in only one way: defining two vectors a1 = x1 + iy1 and
a2 = x2 + iy2 of the space LC, we obtain the inner product according to the for-
mula

(a1,a2) = (x1,x2) + (y1,y2) + i
(
(y1,x2) − (x1,y2)

)
. (7.48)

The verification of the fact that the inner product (a1,a2) thus defined actually de-
termines in LC a Hermitian form is reduced to the verification of sesquilinearity (in
this case, it suffices to consider separately the product of a vector a1 and a vector a2

by a real number and by i) and the property of being Hermitian. Here all calculations
are completely trivial, and we shall omit them.

An important new property of the inner product (a1,a2) that we have obtained is
its positive definiteness, that is, like the scalar product (a,a), it is real (this follows
from the Hermitian property) and (a,a) > 0, a �= 0 (this is a direct consequence of
formula (7.48), for x1 = x2, y1 = y2). It is obvious that for the new inner product
we also have an analogue of the relationship (7.47), that is,

(
AC(a1),a2

) = (
a1,AC(a2)

); (7.49)

in other words, the form ϕ(a1,a2) = (AC(a1),a2) is Hermitian. Let us apply (7.49)
to the vectors a1 = a2 = e. Then we obtain (λe, e) = (e, λe). Taking into ac-
count the Hermitian property, we have the equalities (λe, e) = λ(e, e) and (e, λe) =
λ(e, e), from which it follows that λ(e, e) = λ(e, e). Since (e, e) > 0, we derive
from this that λ = λ, that is, the number λ is real. Thus the characteristic polyno-
mial |AC − tE | of the transformation AC has a real root λ. But a basis of the space
L as a space over R is a basis of the space LC over C, and the matrix of the trans-
formation AC in this basis coincides with the matrix of the transformation A. In
other words, |AC − tE | = |A − tE |, which implies that the characteristic polyno-
mial |A − tE | of the transformation A has a real root λ, and this implies that the
transformation A : L → L has an eigenvector in the space L.

Third proof. The third proof rests on certain facts from analysis, which we now
introduce. We first observe that a Euclidean space can be naturally converted into a
metric space by defining the distance r(x,y) between two vectors x and y by the
relationship r(x,y) = |x −y|. Thus in the Euclidean space L we have the notions of
convergence, limit, continuous functions, and closed and bounded sets; see p. xvii.

The Bolzano–Weierstrass theorem asserts that for an arbitrary closed and
bounded set X in a finite-dimensional Euclidean space L and arbitrary continu-
ous function ϕ(x) on X there exists a vector x0 ∈ X at which ϕ(x) assumes its
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maximum value: that is, ϕ(x0) ≥ ϕ(x) for all x ∈ X. This theorem is well known
from real analysis in the case that the set X is an interval of the real line. Its proof in
the general case is exactly the same and is usually presented somewhat later. Here
we shall use the theorem without offering a proof.

Let us apply the Bolzano–Weierstrass theorem to the set X consisting of all vec-
tors x of the space L such that |x| = 1, that is, to the sphere of radius 1, and to the
function ϕ(x) = (x,A(x)). This function is continuous not only on X, but also on
the entire space L. Indeed, it suffices to choose in the space L an arbitrary basis and
to write down in it the inner product (x,A(x)) as a quadratic form in the coordinates
of the vector x. Of importance to us is solely the fact that as a result, we obtain a
polynomial in the coordinates. After this, it suffices to use the well-known theorem
that states that the sum and product of continuous functions are continuous. Then
the question is reduced to a verification of the fact that an arbitrary coordinate of the
vector x is a continuous function of x, but this is completely obvious.

Thus the function (x,A(x)) assumes its maximum over the set X at some x0 = e.
Let us denote this value by λ. Consequently, (x,A(x)) ≤ λ for every x for which
|x| = 1. For every nonnull vector y, we set x = y/|y|. Then |x| = 1, and applying
to this vector the inequality above, we see that (y,A(y)) ≤ λ(y,y) for all y (this
obviously holds as well for y = 0).

Let us prove that the number λ is an eigenvalue of the transformation A. To this
end, let us write the condition that defines λ in the form

(
y,A(y)

) ≤ λ(y,y), λ = (
e,A(e)

)
, |e| = 1, (7.50)

for an arbitrary vector y ∈ L.
Let us apply (7.50) to the vector y = e + εz, where both the scalar ε and vector

z ∈ L are thus far arbitrary. Expanding the expressions (y,A(y)) = (e + εz,A(e)+
εA(z)) and (y,y) = (e + εz, e + εz), we obtain the inequality

(
e,A(e)

)+ ε
(
e,A(z)

)+ ε
(
z,A(e)

)+ ε2(A(z),A(z)
)

≤ λ
(
(e, e) + ε(e,z) + ε(z, e) + ε2(z,z)

)
.

In view of the symmetry of the transformation A, on the basis of the properties of
Euclidean spaces and recalling that (e, e) = 1, (e,A(e)) = λ, after canceling the
common term (e,A(e)) = λ(e, e) on both sides of the above inequality, we obtain

2ε
(
e,A(z) − λz

)+ ε2((A(z),A(z)
)− λ(z,z)

) ≤ 0. (7.51)

Let us now note that every expression aε + bε2 in the case a �= 0 assumes a pos-
itive value for some ε. For this it is necessary to choose a value |ε| sufficiently
small that a + bε has the same sign as a, and then to choose the appropriate sign
for ε. Thus the inequality (7.51) always leads to a contradiction except in the case
(e,A(z) − λz) = 0.

If for some vector z �= 0, we have A(z) = λz, then z is an eigenvector of the
transformation A with eigenvalue λ, which is what we wished to prove. But if
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A(z) − λz �= 0 for all z �= 0, then the kernel of the transformation A − λE is equal
to (0). From Theorem 3.68 it follows that then the transformation A − λE is an
isomorphism, and its image is equal to all of the space L. This implies that for ar-
bitrary u ∈ L, it is possible choose a vector z ∈ L such that u = A(z) − λz. Then
taking into account relationship (e,A(z)−λz) = 0, we obtain that an arbitrary vec-
tor u ∈ L satisfies the equality (e,u) = 0. But this is impossible at least for u = e,
since |e| = 1. �

The further theory of symmetric transformations is constructed on the basis of
some very simple considerations.

Theorem 7.35 If a subspace L′ of a Euclidean space L is invariant with respect
to the symmetric transformation A, then its orthogonal complement (L′)⊥ is also
invariant.

Proof The result is a direct consequence of the definitions. Let y be a vector in
(L′)⊥. Then (x,y) = 0 for all x ∈ L′. In view of the symmetry of the transformation
A, we have the relationship

(
x,A(y)

) = (
A(x),y

)
,

while taking into account the invariance of L′ yields that A(x) ∈ L′. This implies
that (x,A(y)) = 0 for all vectors x ∈ L′, that is, A(y) ∈ (L′)⊥, and this completes
the proof of the theorem. �

Combining Theorems 7.34 and 7.35 yields a fundamental result in the theory of
symmetric transformations.

Theorem 7.36 For every symmetric transformation A of a Euclidean space L of
finite dimension, there exists an orthonormal basis of this space consisting of eigen-
vectors of the transformation A.

Proof The proof is by induction on the dimension of the space L. Indeed, by Theo-
rem 7.34, the transformation A has at least one eigenvector e. Let us set

L = 〈e〉 ⊕ 〈e〉⊥,

where 〈e〉⊥ has dimension n − 1, and by Theorem 7.35, is invariant with respect
to A. By the induction hypothesis, in the space 〈e〉⊥ there exists a required basis. If
we add the vector e to this basis, we obtain the desired basis in L. �

Let us discuss this result. For a symmetric transformation A, we have an or-
thonormal basis e1, . . . , en consisting of eigenvectors. But to what extent is such a
basis uniquely determined? Suppose the vector ei has the associated eigenvalue λi .
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Then in our basis, the transformation A has matrix

A =

⎛

⎜⎜⎜
⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

⎞

⎟⎟⎟
⎠

. (7.52)

But as we saw in Sect. 4.1, the eigenvalues of a linear transformation A coincide
with the roots of the characteristic polynomial

|A − tE | = |A − tE| =
n∏

i=1

(λi − t).

Thus the eigenvalues λ1, . . . , λn of the transformation A are uniquely determined.
Suppose that the distinct values among them are λ1, . . . , λk . If we assemble all the
vectors of the constructed orthonormal basis that correspond to one and the same
eigenvalue λi (from the set λ1, . . . , λk of distinct eigenvalues) and consider the sub-
space spanned by them, then we obviously obtain the eigensubspace Lλi

(see the
definition on p. 138). We then have the orthogonal decomposition

L = Lλ1 ⊕ · · · ⊕ Lλk
, where Lλi

⊥ Lλj
for all i �= j. (7.53)

The restriction of A to the eigensubspace Lλi
gives a transformation λiE , and in this

subspace, every orthonormal basis consists of eigenvectors (with eigenvalue λi ).
Thus we see that a symmetric transformation A uniquely defines only the eigen-

subspace Lλi
, while in each of them, one can choose an orthonormal basis as one

likes. On combining these bases, we obtain an arbitrary basis of the space L satisfy-
ing the conditions of Theorem 7.36.

Let us note that every eigenvector of the transformation A lies in one of the sub-
spaces Lλi

. If two eigenvectors x and y are associated with different eigenvalues
λi �= λj , then they lie in different subspaces Lλi

and Lλj
, and in view of the orthog-

onality of the decomposition (7.53), they must be orthogonal. We thus obtain the
following result.

Theorem 7.37 The eigenvectors of a symmetric transformation corresponding to
different eigenvalues are orthogonal.

We note that this theorem can also be easily proved by direct calculation.

Proof of Theorem 7.37 Let x and y be eigenvectors of a symmetric transformation
A corresponding to distinct eigenvalues λi and λj . Let us substitute the expressions
A(x) = λix and A(y) = λjy into the equality (A(x),y) = (x,A(y)). From this
we obtain (λi − λj )(x,y) = 0, and since λi �= λj , we have (x,y) = 0. �

Theorem 7.36 is often formulated conveniently as a theorem about quadratic
forms using Theorem 6.3 from Sect. 6.1 and the possibility of identifying the space
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L∗ with L if the space L is equipped with an inner product. Indeed, Theorem 6.3
shows that every bilinear form ϕ on a Euclidean space L can be represented in the
form

ϕ(x,y) = (
x,A(y)

)
, (7.54)

where A is the linear transformation of the space L to L∗ uniquely defined by the bi-
linear form ϕ; that is, if we make the identification of L∗ with L, it is a transformation
of the space L into itself.

It is obvious that the symmetry of the transformation A coincides with the sym-
metry of the bilinear form ϕ. Therefore, the bijection between symmetric bilin-
ear forms and linear transformations established above yields the same correspon-
dence between quadratic forms and symmetric linear transformations of a Euclidean
space L. Moreover, in view of relationship (7.54), to the symmetric transformation
A there corresponds the quadratic form

ψ(x) = (
x,A(x)

)
,

and every quadratic form ψ(x) has a unique representation in this form.
If in some basis e1, . . . , en, the transformation A has a diagonal matrix (7.52),

then for the vector x = x1e1 + · · · + xnen, the quadratic form ψ(x) has in this basis
the canonical form

ψ(x) = λ1x
2
1 + · · · + λnx

2
n. (7.55)

Thus Theorem 7.36 is equivalent to the following.

Theorem 7.38 For any quadratic form in a finite-dimensional Euclidean space,
there exists an orthonormal basis in which it has the canonical form (7.55).

Theorem 7.38 is sometimes conveniently formulated as a theorem about arbitrary
vector spaces.

Theorem 7.39 For two quadratic forms in a finite-dimensional vector space, one of
which is positive definite, there exists a basis (not necessarily orthonormal) in which
they both have canonical form (7.55).

In this case, we say that in a suitable basis, these quadratic forms are reduced to
a sum of squares (even if there are negative coefficients λi in formula (7.55)).

Proof of Theorem 7.39 Let ψ1(x) and ψ2(x) be two such quadratic forms, one of
which, let it be ψ1(x), is positive definite. By Theorem 6.10, there exists, in the
vector space L in question, a basis in which the form ψ1(x) has the canonical form
(7.55). Since by assumption, the quadratic form ψ1(x) is positive definite, it follows
that in formula (7.55), all the numbers λi are positive, and therefore, there exists a
basis e1, . . . , en of the space L in which ψ1(x) is brought into the form

ψ(x) = x2
1 + · · · + x2

n. (7.56)
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Let us consider as the scalar product (x,y) in the space L the symmetric bilinear
form ϕ(x,y), associated by Theorem 6.6 with the quadratic form ψ1(x). We thereby
convert L into a Euclidean space.

As can be seen from formulas (6.14) and (7.56), the basis e1, . . . , en for this inner
product is orthonormal. Then by Theorem 7.38, there exists an orthonormal basis
e′

1, . . . , e
′
n of the space L in which the form ψ2(x) has canonical form (7.55). But

since the basis e′
1, . . . , e

′
n is orthonormal with respect to the inner product that we

defined with the help of the quadratic form ψ1(x), then in this basis, ψ1(x) as before
takes the form (7.56), and that completes the proof of the theorem. �

Remark 7.40 It is obvious that Theorem 7.39 remains true if in its formulation we
replace the condition of positive definiteness of one of the forms by the condition
of negative definiteness. Indeed, if ψ(x) is a negative definite quadratic form, then
the form −ψ(x) is positive definite, and both of these assume canonical form in one
and the same basis.

Without the assumption of positive (or negative) definiteness of one of the
quadratic forms, Theorem 7.39 is no longer true. To prove this, let us derive one
necessary (but not sufficient) condition for two quadratic forms ψ1(x) and ψ2(x) to
be simultaneously reduced to a sum of squares. Let A1 and A2 be their matrices in
some basis. If the quadratic forms ψ1(x) and ψ2(x) are simultaneously reducible to
sums of squares, then in some other basis, their matrices A′

1 and A′
2 will be diagonal,

that is,

A′
1 =

⎛

⎜⎜⎜
⎝

α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...

0 0 · · · αn

⎞

⎟⎟⎟
⎠

, A′
2 =

⎛

⎜⎜⎜
⎝

β1 0 · · · 0
0 β2 · · · 0
...

...
. . .

...

0 0 · · · βn

⎞

⎟⎟⎟
⎠

.

Then the polynomial |A′
1t +A′

2| is equal to
∏n

i=1(αi t +βi), that is, it can be factored
as a product of linear factors αit +βi . But by formula (6.10) for replacing the matrix
of a bilinear form through a change of basis, the matrices A1,A

′
1 and A2,A

′
2 are

related by

A′
1 = C∗A1C, A′

2 = C∗A2C,

where C is some nonsingular matrix, that is, |C| �= 0. Therefore,
∣∣A′

1t + A′
2

∣∣ = ∣∣C∗(A1t + A2)C
∣∣ = ∣∣C∗∣∣|A1t + A2||C|,

from which taking into account the equality |C∗| = |C|, we obtain the relationship

|A1t + A2| = |C|−2
∣∣A′

1t + A′
2

∣∣,

from which it follows that the polynomial |A1t + A2| can also be factored into
linear factors. Thus for two quadratic forms ψ1(x) and ψ2(x) with matrices A1 and
A2 to be simultaneously reduced each to a sum of squares, it is necessary that the
polynomial |A1t + A2| be factorable into real linear factors.
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Now for n = 2 we set ψ1(x) = x2
1 −x2

2 and ψ2(x) = x1x2. These quadratic forms
are neither positive definite nor negative definite. Their matrices have the form

A1 =
(

1 0
0 −1

)
, A2 =

(
0 1
1 0

)
,

and it is obvious that the polynomial |A1t +A2| = −(t2 +1) cannot be factored into
real linear factors. This implies that the quadratic forms ψ1(x) and ψ2(x) cannot
simultaneously be reduced to sums of squares.

The question of reducing pairs of quadratic forms with complex coefficients to
sums of squares (with the help of a complex linear transformation) is examined in
detail, for instance, in the book The Theory of Matrices, by F.R. Gantmacher. See
the references section.

Remark 7.41 The last proof of Theorem 7.34 that we gave makes it possible to in-
terpret the largest eigenvalue λ of a symmetric transformation A as the maximum
of the quadratic form (x,A(x)) on the sphere |x| = 1. Let λi be the other eigen-
values, so that (x,A(x)) = λ1x

2
1 + · · · + λnx

2
n . Then λ is the greatest among the

λi . Indeed, let us assume that the eigenvalues are numbered in descending order:
λ1 ≥ λ2 ≥ · · · ≥ λn. Then

λ1x
2
1 + · · · + λnx

2
n ≤ λ1

(
x2

1 + · · · + x2
n

)
,

and the maximum value of the form (x,A(x)) on the sphere |x| = 1 is equal to λ1
(it is attained at the vector with coordinates x1 = 1, x2 = · · · = xn = 0). This implies
that λ1 = λ.

There is an analogous characteristic for the other eigenvalues λi as well, namely
the Courant–Fischer theorem, which we shall present without proof. Let us consider
all possible vector subspaces L′ ⊂ L of dimension k. We restrict the quadratic form
(x,A(x)) to the subspace L′ and examine its values at the intersection of L′ with the
unit sphere, that is, the set of all vectors x ∈ L′ that satisfy |x| = 1. By the Bolzano–
Weierstrass theorem, the restriction of the form (x,A(x)) to L′ assumes a maximum
value λ′ at some point of the sphere, which, of course depends on the subspace L′.
The Courant–Fischer theorem asserts that the smallest number thus obtained (as the
subspace L′ ranges over all subspaces of dimension k) is equal to the eigenvalue
λn−k+1.

Remark 7.42 Eigenvectors are connected with the question of finding maxima and
minima. Let f (x1, . . . , xn) be a real-valued differentiable function of n real vari-
ables. A point at which all the derivatives of the function f with respect to the
variables (x1, . . . , xn), that is, the derivatives in all directions from this point, are
equal to zero is called a critical point of the function. It is proved in real analysis
that with some natural constraints, this condition is necessary (but not sufficient) for
the function f to assume a maximum or minimum value at the point in question.
Let us consider a quadratic form f (x) = (x,A(x)) on the unit sphere |x| = 1. It is
not difficult to show that for an arbitrary point on this sphere, all points sufficiently
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Fig. 7.9 An ellipsoid

close to it can be written in some system of coordinates such that our function f

can be viewed as a function of these coordinates. Then the critical points of the
function (x,A(x)) are exactly those points of the sphere that are eigenvectors of
the symmetric transformation A.

Example 7.43 Let an ellipsoid be given in three-dimensional space with coordinates
x, y, z by the equation

x2

a2
+ y2

b2
+ z2

c2
= 1. (7.57)

The expression on the left-hand side of (7.57) can be written in the form ψ(x) =
(x,A(x)), where

x = (x, y, z), A(x) =
(

x

a2
,

y

b2
,

z

c2

)
.

Let us assume that 0 < a < b < c. Then the maximum value that the quadratic form
ψ(x) takes on the sphere |x| = 1 is λ = 1/a2. It is attained on the vectors (±1,0,0).
If |ψ(x)| ≤ λ for |x| = 1, then for an arbitrary vector y �= 0, setting x = y/|y|, we
obtain |ψ(y)| ≤ λ|y|2. For the vector y = 0, this inequality is obvious. Therefore,
it holds in general for all y. For |ψ(y)| = 1, it then follows that |y|2 ≥ 1/λ. This
implies that the shortest vector y satisfying equation (7.57) is the vector (±a,0,0).
The line segments beginning at the point (0,0,0) and ending at the points (±a,0,0)

are called the semiminor axes of the ellipsoid (sometimes, this same term denotes
their length). Similarly, the smallest value that the quadratic form ψ(x) attains on
the sphere |x| = 1 is equal to 1/c2. It attains this value at vectors (0,0,±1) on the
unit sphere. Line segments corresponding to vectors (0,0,±c) are called semima-
jor axes of the ellipsoid. A vector (0,±b,0) corresponds to a critical point of the
quadratic form ψ(x) that is neither a maximum nor a minimum. Such a point is
called a minimax, that is, as it moves from this point in one direction, the func-
tion ψ(x) will increase, while in moving in another direction it will decrease (see
Fig. 7.9). The line segments corresponding to the vectors (0,±b,0) are called the
median semiaxes of the ellipsoid.

Everything presented thus far in this chapter (with the exception of Sect. 7.3
on the orientation of a real Euclidean space) can be transferred verbatim to complex
Euclidean spaces if the inner product is defined using the positive definite Hermitian
form ϕ(x,y). The condition of positive definiteness means that for the associated
quadratic Hermitian form ψ(x) = ϕ(x,x), the inequality ψ(x) > 0 is satisfied for
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all x �= 0. If we denote, as before, the inner product by (x,y), the last condition can
be written in the form (x,x) > 0 for all x �= 0.

The dual transformation A∗, as previously, is defined by condition (7.46). But
now, the matrix of the transformation A∗ in an orthonormal basis is obtained from
the matrix of the transformation A not simply by taking the transpose, but by taking
the complex conjugate of the transpose. The analogue of a symmetric transforma-
tion is defined as a transformation A whose associated bilinear form (x,A(y)) is
Hermitian.

It is a fundamental fact that in quantum mechanics, one deals with complex space.
We can formulate what was stated earlier in the following form: observed physical
quantities correspond to Hermitian forms in infinite-dimensional complex Hilbert
space.

The theory of Hermitian transformations in the finite-dimensional case is con-
structed even more simply than the theory of symmetric transformations in real
spaces, since there is no need to prove analogues of Theorem 7.34: we know already
that an arbitrary linear transformation of a complex vector space has an eigenvector.
From the definition of being Hermitian, it follows that the eigenvalues of a Her-
mitian transformation are real. The theorems proved in this section are valid for
Hermitian forms (with the same proofs).

In the complex case, a transformation U preserving the inner product is called
unitary. The reasoning carried out in Sect. 7.2 shows that for a unitary transforma-
tion U, there exists an orthonormal basis consisting of eigenvectors, and all eigen-
values of the transformation U are complex numbers of modulus 1.

7.6 Applications to Mechanics and Geometry*

We shall present two examples from two different areas—mechanics and geome-
try—in which the theorems of the previous section play a key role. Since these
questions will be taken up in other courses, we shall allow ourselves to be brief in
both the definitions and the proofs.

Example 7.44 Let us consider the motion of a mechanical system in a small neigh-
borhood of its equilibrium position. One says that such a system possesses n degrees
of freedom if in some region, its state is determined by n so-called generalized co-
ordinates q1, . . . , qn, which we shall consider the coordinates of a vector q in some
coordinate system, and where we will take the origin 0 to be the equilibrium posi-
tion of our system. The motion of the system determines the dependence of a vector
q on time t . We shall assume that the equilibrium position under investigation is
determined by a strict local minimum of its potential energy Π . If this value is
equal to c, and the potential energy is a function Π(q1, . . . , qn) in the generalized
coordinates (it is assumed that it does not depend on time), then this implies that
Π(0, . . . ,0) = c and Π(q1, . . . , qn) > c for all remaining values q1, . . . , qn close to
zero. From the fact that a critical point of the function Π corresponds to the min-
imum value, we may conclude that at the point 0, all partial derivatives ∂Π/∂qi
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become zero. Therefore, for an expansion of the function Π(q1, . . . , qn) as a series
in powers of the variables q1, . . . , qn at the point 0, the linear terms will be equal
to zero, and we obtain the expression Π(q1, . . . , qn) = c + ∑n

i,j=1 bij qiqj + · · · ,
where bij are certain constants, and the ellipsis indicates terms of degree greater
than 2. Since we are considering motions not far from the point 0, we can disregard
those values. It is in this approximation that we shall consider this problem. That is,
we set

Π(q1, . . . , qn) = c +
n∑

i,j=1

bij qiqj .

Since Π(q1, . . . , qn) > c for all values q1, . . . , qn not equal to zero, the quadratic
form

∑n
i,j=1 bij qiqj will be positive definite.

Kinetic energy T is a quadratic form in so-called generalized velocities dq1/dt,

. . . , dqn/dt , which are also denoted by q̇1, . . . , q̇n, that is,

T =
n∑

i,j=1

aij q̇i q̇j , (7.58)

where aij = aji are functions of q (we assume that they do not depend on time t).
Considering as we did for potential energy only those values qi close to zero, we
may replace all the functions aij in (7.58) by constants aij (0), which is what we
shall now assume. Kinetic energy is always positive except in the case that all q̇i are
equal to 0, and therefore, the quadratic form (7.58) is positive definite.

Motion in a broad class of mechanical systems (so-called natural systems) is
described by a rather complex system of differential equations—second-order La-
grange equations:

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi

= −∂Π

∂qi

, i = 1, . . . , n. (7.59)

Application of Theorem 7.39 makes it possible to reduce these equations in the
given situation to much simpler ones. To this end, let us find a coordinate system
in which the quadratic form

∑n
i,j=1 aij xixj can be brought into the form

∑n
i=1 x2

i ,

and the quadratic form
∑n

i,j=1 bij xixj into the form
∑n

i=1 λix
2
i . Then in this case,

the form
∑n

i,j=1 bij xixj is positive definite, which implies that all λi are positive.
In this system of coordinates (we shall again denote them by q1, . . . , qn), the system
of equations (7.59) is decomposed into the independent equations

d2qi

dt2
= −λiqi, i = 1, . . . , n, (7.60)

which have the solutions qi = ci cos
√

λit + di sin
√

λit , where ci and di are arbi-
trary constants. This shows that “small oscillations” are periodic in each coordinate
qi . Since they are bounded, it follows that our equilibrium position 0 is stable. If
we were to examine the state of equilibrium at a point that was a critical point of
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potential energy Π but not a strict minimum, then in the equations (7.60) we would
not be able to guarantee that all the λi were positive. Then for those i for which
λi < 0, we would obtain the solutions qi = ci cosh

√−λit + di sinh
√−λit , which

can grow without bound with the growth of t . Just as for λi = 0, we would obtain
an unbounded solution qi = ci + dit .

Strictly speaking, we have done only the following altogether: we have replaced
the given conditions of our problem with conditions close to them, with the result
that the problem became much simpler. Such a procedure is usual in the theory of
differential equations, where it is proved that solutions to a simplified system of
equations are in a certain sense similar to the solutions of the initial system. And
moreover, the degree of this deviation can be estimated as a function of the values
of the terms that we have ignored. This estimation takes place in a finite interval of
time whose length also depends on the value of the ignored terms. This justifies the
simplifications that we have made.

A beautiful example, which played an important role historically, is given by
lateral oscillations of a string of beads.4

Suppose we have a weightless and ideally flexible thread fixed at the ends. On it
are securely fastened n beads with masses m1, . . . ,mn, and suppose they divide the
thread into segments of lengths l0, l1, . . . , ln. We shall assume that in its initial state,
the thread lies along the x-axis, and we shall denote by y1, . . . , yn the displacements
of the beads along the y-axis. Then the kinetic energy of this system has the form

T = 1

2

n∑

i=1

miẏ
2
i .

Assuming the tension of the thread to be constant (as we may because the displace-
ments are small) and equal to σ , we obtain for the potential energy the expression
Π = σΔl, where Δl = ∑n

i=0 Δli is the change in length of the entire thread, and
Δli is the change in length of the portion of the thread corresponding to li . Then we
know the Δli in terms of the li :

Δli =
√

l2
i + (yi+1 − yi)2 − li , i = 0, . . . , n,

where y0 = yn+1 = 0. Expanding this expression as a sum in yi+1 − yi , we obtain
quadratic terms

∑n
i=0

1
2li

(yi+1 − yi)
2, and we may set

Π = σ

2

n∑

i=0

1

li
(yi+1 − yi)

2, y0 = yn+1 = 0.

4This example is taken from Gantmacher and Krein’s book Oscillation Matrices and Kernels and
Small Vibrations of Mechanical Systems, Moscow 1950, English translation, AMS Chelsea Pub-
lishing, 2002.
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Thus in this case, the problem is reduced to simultaneously expressing two quadratic
forms in the variables y1, . . . , yn as sums of squares:

T = 1

2

n∑

i=0

miẏ
2
i , Π = σ

2

n∑

i=0

1

li
(yi+1 − yi)

2, y0 = yn+1 = 0.

But if the masses of all the beads are equal and they divide the thread into equal
segments, that is, mi = m and li = l/(n + 1), i = 1, . . . , n, then all the formulas can
be written in a more explicit form. In this case, we are speaking about the simulta-
neous representation as the sum of squares of two forms:

T = m

2

n∑

i=1

ẏ2
i , Π = σ(n + 1)

l

(
n∑

i=1

y2
i −

n∑

i=0

yiyi+1

)

, y0 = yn+1 = 0.

Therefore, we must use an orthogonal transformation (preserving the form
∑n

i=1 y2
i )

to express as a sum of squares the form
∑n

i=0 yiyi+1 with matrix

A = 1

2

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

0 1 0 · · · 0 0

1 0 1
. . . 0 0

0 1 0
. . .

. . . 0
...

. . .
. . .

. . .
. . .

...

0 0
. . . 1 0 1

0 0 · · · 0 1 0

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

.

It would have been possible to take the standard route: find the eigenvalues
λ1, . . . , λn as roots of the determinant |A − tE| and eigenvectors y from the system
of equations

Ay = λy, (7.61)

where λ = λi and y is the column of unknowns y1, . . . , yn. But it is simpler to
use equations (7.61) directly. They give a system of n equations in the unknowns
y1, . . . , yn:

y2 = 2λy1, y1 + y3 = 2λy2, . . . ,

yn−2 + yn = 2λyn−1, yn−1 = 2λyn,

which can be written in the form

yk−1 + yk+1 = 2λyk, k = 1, . . . , n, (7.62)

where we set y0 = yn+1 = 0. The system of equations (7.62) is called a recurrence
relation, whereby each value yk+1 is expressed in terms of the two preceding values:
yk and yk−1. Thus if we know two adjacent values, then we can use relationship
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(7.62) to construct all the yk . The condition y0 = yn+1 = 0 is called a boundary
condition.

Let us note that for λ = ±1, the equation (7.62) with boundary condition y0 =
yn+1 = 0 has only the null solution: y0 = · · · = yn+1 = 0. Indeed, for λ = 1, we
obtain

y2 = 2y1, y3 = 3y1, . . . , yn = ny1, yn+1 = (n + 1)y1,

from which by yn+1 = 0 it follows that y1 = 0, and all yk are equal to 0. Similarly,
for λ = −1, we obtain

y2 = −2y1, y3 = 3y1, y4 = −4y1, . . . ,

yn = (−1)n−1ny1, yn+1 = (−1)n(n + 1)y1,

from which by yn+1 = 0 it follows as well that y1 = 0, and again all the yk are equal
to zero. Thus for λ = ±1, the system of equations (7.61) has as its only solution
the vector y = 0, which by definition, cannot be an eigenvector. In other words, this
implies that the numbers ±1 are not eigenvalues of the matrix A.

There is a lovely formula for solving equation (7.62) with boundary condition
y0 = yn+1 = 0. Let us denote by α and β the roots of the quadratic equation
z2 − 2λz + 1 = 0. By the above reasoning, λ �= ±1, and therefore, the numbers
α and β are distinct and cannot equal ±1. Direct substitution shows that then for
arbitrary A and B , the sequence yk = Aαk + Bβk satisfies the relationship (7.62).
The coefficients A and B taken to satisfy y0 = 0, y1 are given. The following yk , as
we have seen, are determined by the relationship (7.62), and this implies that again
they are given by our formula. The conditions y0 = 0, y1 fixed give B = −A and
A(α − β) = y1, whence A = y1/(α − β). Thus we obtain the expression

yk = y1

α − β

(
αk − βk

)
. (7.63)

We now use the condition yn+1 = 0, which gives αn+1 = βn+1. Moreover, since
α and β are roots of the polynomial z2 −2λz+1, we have αβ = 1, whence β = α−1,
which implies that α2(n+1) = 1. From this (taking into account that α �= ±1), we
obtain

α = cos

(
πj

n + 1

)
+ i sin

(
πj

n + 1

)
,

where i is the imaginary unit, and the number j assumes the values 1, . . . , n. Again
using the equation z2 − 2λz + 1 = 0, whose roots are α and β , we obtain n distinct
values for λ:

λj = cos

(
πj

n + 1

)
, j = 1, . . . , n,

since j = n + 2, . . . ,2n + 1 give the same values λj . These are precisely the eigen-
values of the matrix A. For the eigenvector yj of the associated eigenvalue λj , we
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obtain by formula (7.63) its coordinates y1j , . . . , ynj in the form

ykj = sin

(
πkj

n + 1

)
, k = 1, . . . , n.

These formulas were derived by d’Alembert and Daniel Bernoulli. Passing to the
limit as n → ∞, Lagrange derived from these the law of vibrations of a uniform
string.

Example 7.45 Let us consider in an n-dimensional real Euclidean space L the subset
X given by the equation

F(x1, . . . , xn) = 0 (7.64)

in some coordinate system. Such a subset X is called a hypersurface and consists of
all vectors x = (x1, . . . , xn) of the Euclidean space L whose coordinates satisfy the
equation5 (7.64). Using the change-of-coordinates formula (3.36), we see that the
property of the subset X ⊂ L being a hypersurface does not depend on the choice
of coordinates, that is, on the choice of the basis of L. Then if we assume that the
beginning of every vector is located at a single fixed point, then every vector x =
(x1, . . . , xn) can be identified with its endpoint, a point of the given space. In order
to conform to more customary terminology, as we continue with this example, we
shall call the vectors x of which the hypersurface X consists its points.

We shall assume that F(0) = 0 and that the function F(x1, . . . , xn) is differen-
tiable in each of its arguments as many times as necessary. It is easily verified that
this condition also does not depend on the choice of basis. Let us assume in addi-
tion that 0 is not a critical point of the hypersurface X, that is, that not all partial
derivatives ∂F (0)/∂xi are equal to zero. In other words, if we introduce the vector
gradF = (∂F/∂x1, . . . , ∂F/∂xn), called the gradient of the function F , then this
implies that gradF(0) �= 0.

We shall be interested in local properties of the hypersurface X, that is, prop-
erties associated with points close to 0. With the assumptions that we have made,
the implicit function theorem, known from analysis, shows that near 0, the coordi-
nates x1, . . . , xn of each point of the hypersurface X can be represented as a func-
tion of n − 1 arguments u1, . . . , un−1, and furthermore, for each point, the values
u1, . . . , un−1 are uniquely determined. It is possible to choose as u1, . . . , un−1 some
n − 1 of the coordinates x1, . . . , xn, after determining the remaining coordinate xk

from equation (7.64), for which must be satisfied only the condition ∂F
∂xk

(0) �= 0 for
the given k, which holds because of the assumption gradF(0) �= 0. The functions
that determine the dependence of the coordinates x1, . . . , xn of a point of the hyper-
plane X on the arguments u1, . . . , un−1 are differentiable at all arguments as many
times as the original function F(x1, . . . , xn).

5The more customary point of view, when the hypersurface (for example, a curve or surface) con-
sists of points, requires the consideration of an n-dimensional space consisting of points (otherwise
affine space), which will be introduced in the following chapter.
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The hyperplane defined by the equation

n∑

i=1

∂F

∂xi

(0)xi = 0

is called the tangent space or tangent hyperplane to the hypersurface X at the point
0 and is denoted by T0X. In the case that the basis of the Euclidean space L is
orthonormal, this equation can also be written in the form (gradF(0),x) = 0. As a
subspace of the Euclidean space L, the tangent space T0X is also a Euclidean space.

The set of vectors depending on the parameter t taking values on some interval
of the real line, that is, x(t) = (x1(t), . . . , xn(t)), is called a smooth curve if all
functions xi(t) are differentiable a sufficient number of times and if for every value
of the parameter t , not all the derivatives dxi/dt are equal to zero. In analogy to
what was said above about hypersurfaces, we may visualize the curve as consisting
of points A(t), where each A(t) is the endpoint of some vector x(t), while all the
vectors x(t) begin at a certain fixed point O . In what follows, we shall refer to the
vectors x that constitute the curve as its points.

We say that a curve γ passes through the point x0 if x(t0) = x0 for some value
of the parameter t0. It is clear that here we may always assume that t0 = 0. Indeed,
let us consider a different curve x̃(t) = (̃x1(t), . . . , x̃n(t)), where the functions x̃i (t)

are equal to xi(t + t0). This can also be written in the form x̃(τ ) = x(t), where we
have introduced a new parameter τ related to the old one by τ = t − t0.

Generally speaking, for a curve we may make an arbitrary change of parameter
by the formula t = ψ(τ), where the function ψ defines a continuously differentiable
bijective mapping of one interval to another. Under such a change, a curve, consid-
ered as a set of points (or vectors), will remain the same. From this it follows that one
and the same curve can be written in a variety of ways using various parameters.6

We now introduce the vector dx
dt

= ( dx1
dt

, . . . , dxn

dt
). Suppose the curve γ passes

through the point 0 for t = 0. Then the vector p = dx
dt

(0) is called a tangent vector
to the curve γ at the point 0. It depends, of course, on the choice of parameter t

defining the curve. Under a change of parameter t = ψ(τ), we have

dx

dτ
= dx

dt
· dt

dτ
= dx

dt
· ψ ′(τ ), (7.65)

and the tangent vector p is multiplied by a constant equal to the value of the deriva-
tive ψ ′(0). Using this fact, it is possible to arrange things so that | dx

dt
(t)| = 1 for all t

close to 0. Such a parameter is said to be natural. The condition that the curve x(t)

belong to the hyperplane (7.64) gives the equality F(x(t)) = 0, which is satisfied
for all t . Differentiating this relationship with respect to t , we obtain that the vector
p lies in the space T0X. And conversely, an arbitrary vector contained in T0X can

6For example, the circle of radius 1 with center at the origin with Cartesian coordinates x, y can be
defined not only by the formula x = cos t , y = sin t , but also by the formula x = cos τ , y = − sin τ

(with the replacement t = −τ ), or by the formula x = sin τ , y = cos τ (replacement t = π
2 − τ ).
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be represented in the form dx
dt

(0) for some curve x(t). This curve, of course, is not
uniquely determined. Curves whose tangent vectors p are proportional are said to
be tangent at the point 0.

Let us denote by n a unit vector orthogonal to the tangent space T0X. There are
two such vectors, n and −n, and we shall choose one of them. For example, we may
set

n = gradF

|gradF | (0). (7.66)

We define the vector d2x
dt2 as d

dt
( dx

dt
) and set

Q =
(

d2x

dt2
(0),n

)
. (7.67)

Proposition 7.46 The value Q depends only on the vector p; namely, it is a
quadratic form in its coordinates.

Proof It suffices to verify this assertion by substituting in (7.67) for the vector n,
any vector proportional to it, for example, gradF(0). Since by assumption, the curve
x(t) is contained in the hyperplane (7.64), it follows that F(x1(t), . . . , xn(t)) = 0.
Differentiating this equality twice with respect to t , we obtain

n∑

i=1

∂F

∂xi

dxi

dt
= 0,

n∑

i,j=1

∂2F

∂xi ∂xj

dxi

dt

dxj

dt
+

n∑

i=1

∂F

∂xi

d2xi

dt2
= 0.

Setting here t = 0, we see that

(
d2x

dt2
(0),gradF(0)

)
= −

n∑

i,j=1

∂2F

∂xi ∂xj

(0)pipj ,

where p = (p1, . . . , pn). This proves the assertion. �

The form Q(p) is called the second quadratic form of the hypersurface. The
form (p2) is called the first quadratic form when T0X is taken as a subspace of a
Euclidean space L. We observe that the second quadratic form requires the selec-
tion of one of two unit vectors (n or −n) orthogonal to T0X. This is frequently
interpreted as the selection of one side of the hypersurface in a neighborhood of the
point 0.

The first and second quadratic forms give us the possibility to obtain an expres-
sion for the curvature of certain curves x(t) lying in the hypersurface X. Let us
suppose that a curve is the intersection of a plane L′ containing the point 0 and the
hypersurface X (even if only in an arbitrarily small neighborhood of the point 0).
Such a curve is called a plane section of the hypersurface. If we define the curve
x(t) in such a way that t is a natural parameter, then its curvature at the point 0 is
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the number

k =
∣∣∣∣
d2x

dt2
(0)

∣∣∣∣.

We assume that k �= 0 and set

m = 1

k
· d2x

dt2
(0).

The vector m has length 1 by definition. It is said to be normal to the curve x(t) at
the point 0. If the curve x(t) is a plane section of the hypersurface, then x(t) lies in
the plane L′ (for all sufficiently small t), and consequently, the vector

dx

dt
= lim

h→0

x(t + h) − x(t)

h

also lies in the plane L′. Therefore, this holds as well for the vector d2x/dt2, which
implies that it holds as well for the normal m. If the curve γ is defined in terms of
the natural parameter t , then

∣∣∣∣
dx

dt

∣∣∣∣

2

=
(

dx

dt
,
dx

dt

)
= 1.

Differentiating this equality with respect to t , we obtain that the vectors d2x/dt2

and dx/dt are orthogonal. Hence the normal m to the curve γ is orthogonal to an
arbitrary tangent vector (for arbitrary definition of the curve γ in the form x(t) with
natural parameter t), and the vector m is defined uniquely up to sign. It is obvious
that L′ = 〈m,p〉, where p is an arbitrary tangent vector.

By definition (7.67) of the second quadratic form Q and taking into account the
equality |m| = |n| = 1, we obtain the expression

Q(p) = (km,n) = k(m,n) = k cosϕ, (7.68)

where ϕ is the angle between the vectors m and n. The expression k cosϕ is denoted
by k̃ and is called the normal curvature of the hypersurface X in the direction p.
We recall that here n denotes the chosen unit vector orthogonal to the tangent space
T0X, and m is the normal to the curve to which the vector p is tangent. An analo-
gous formula for an arbitrary parametric definition of the curve x(t) (where t is not
necessarily a natural parameter) also uses the first quadratic form. Namely, if τ is
another parameter, while t is a natural parameter, then by formula (7.65), now in-
stead of the vector p, we obtain p′ = pψ ′(0). Since Q is a quadratic form, it follows
that Q(pψ ′(0)) = ψ ′(0)

2
Q(p), and instead of formula (7.68), we now obtain

Q(p)

(p2)
= k cosϕ. (7.69)
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Here the first quadratic form (p2) is already involved as well as the second quadratic
form Q(p), but now (7.69), in contrast to (7.68), holds for an arbitrary choice of
parameter t on the curve γ .

The point of the term normal curvature given above is the following. The section
of the hypersurface X by the plane L′ is said to be normal if n ∈ L′. The vector n
defined by formula (7.66) is orthogonal to the tangent plane T0X. But in the plane L′
there is also the vector p tangent to the curve γ , and the normal vector m orthogonal
to it. Thus in the case of a normal section n = ±m, this means that in formula (7.68),
the angle ϕ is equal to 0 or π . Conversely, from the equality | cosϕ| = 1, it follows
that n ∈ L′. Thus in the case of a normal section, the normal curvature k̃ differs from
k only by the factor ±1 and is defined by the relationship

k̃ = Q(p)

|p|2 .

Since L′ = 〈m,p〉, it follows that all normal sections correspond to straight lines in
the plane L′. For each line, there exists a unique normal section containing this line.
In other words, we “rotate” the plane L′ about the vector m, considering all obtained
planes 〈m,p〉, where p is a vector in the tangent hyperplane T0X. Thus all normal
sections of the hypersurface X are obtained.

We shall now employ Theorem 7.38. In our case, it gives an orthonormal basis
e1, . . . , en−1 in the tangent hyperplane T0X (viewed as a subspace of the Euclidean
space L) in which the quadratic form Q(p) is brought into canonical form. In other
words, for the vector p = u1e1 + · · · + un−1en−1, the second quadratic form takes
the form Q(p) = λ1u

2
1 + · · · + λn−1u

2
n−1. Since the basis e1, . . . , en−1 is orthonor-

mal, we have in this case

ui

|pi | = (p, ei )

|pi | = cosϕi, (7.70)

where ϕi is the angle between the vectors p and ei . From this we obtain for the
normal curvature k̃ of the normal section γ , the formula

k̃ = Q(p)

|p|2 =
n−1∑

i=1

λi

(
ui

|p|
)2

=
n−1∑

i=1

λi cos2 ϕi, (7.71)

where p is an arbitrary tangent vector to the curve γ at the point 0. Relationships
(7.70) and (7.71) are called Euler’s formula. The numbers λi are called principal
curvatures of the hypersurface X at the point 0.

In the case n = 3, the hypersurface (7.64) is an ordinary surface and has two prin-
cipal curvatures λ1 and λ2. Taking into account the fact that cos2 ϕ1 + cos2 ϕ2 = 1,
Euler’s formula takes the form

k̃ = λ1 cos2 ϕ1 + λ2 cos2 ϕ2 = (λ1 − λ2) cos2 ϕ1 + λ2. (7.72)

Suppose λ1 ≥ λ2. Then from (7.72), it is clear that the normal curvature k̃ as-
sumes a maximum (equal to λ1) for cos2 ϕ1 = 1 and a minimum (equal to λ2) for
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Fig. 7.10 Elliptic (a) and hyperbolic (b) points

cos2 ϕ1 = 0. This assertion is called the extremal property of the principal curva-
tures of the surface. If λ1 and λ2 have the same sign (λ1λ2 > 0), then as can be
seen from (7.72), an arbitrary normal section of a surface at a given point 0 has
its curvature of the same sign, and therefore, all normal sections have convexity in
the same direction, and near the point 0, the surface lies on one side of its tangent
plane; see Fig. 7.10(a). Such points are called elliptic. If λ1 and λ2 have differ-
ent signs (λ1λ2 < 0), then as can be seen from formula (7.72), there exist normal
sections with opposite directions of convexity, and at points near 0, the surface is lo-
cated on different sides of its tangent plane; see Fig. 7.10(b). Such points are called
hyperbolic.7

From all this discussion, it is evident that the product of principal curvatures
κ = λ1λ2 characterizes some important properties of a surface (called “internal ge-
ometric properties” of the surface). This product is called the Gaussian or total
curvature of the surface.

7.7 Pseudo-Euclidean Spaces

Many of the theorems proved in the previous sections of this chapter remain valid
if in the definition of Euclidean space we forgo the requirement of positive definite-
ness of the quadratic form (x2) or replace it with something weaker. Without this
condition, the inner product (x,y) does not differ at all from an arbitrary symmetric
bilinear form. As Theorem 6.6 shows, it is uniquely defined by the quadratic form
(x2).

We thus obtain a theory that fully coincides with the theory of quadratic
forms that we presented in Chap. 6. The fundamental theorem (on bringing a
quadratic form into canonical form) consists in the existence of an orthonormal
basis e1, . . . , en, that is, a basis for which (ei , ej ) = 0 for all i �= j . Then for the
vector x1e1 + · · · + xnen, the quadratic form (x2) is equal to λ1x

2
1 + · · · + λnx

2
n .

7Examples of surfaces consisting entirely of elliptic points are ellipsoids, hyperboloids of two
sheets, and elliptic paraboloids, while surfaces consisting entirely of hyperbolic points include
hyperboloids of one sheet and hyperbolic paraboloids.
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Moreover, this is true for vector spaces and bilinear forms over an arbitrary field K

of characteristic different from 2. The concept of an isomorphism of spaces makes
sense also in this case; as previously, it is necessary to require that the scalar product
(x,y) be preserved.

The theory of such spaces (defined up to isomorphism) with a bilinear or
quadratic form is of great interest (for example, in the case K = Q, the field of
rational numbers). But here we are interested in real spaces. In this case, formula
(6.28) and Theorem 6.17 (law of inertia) show that up to isomorphism, a space is
uniquely defined by its rank and the index of inertia of the associated quadratic form.

We shall further restrict attention to an examination of real vector spaces with a
nonsingular symmetric bilinear form (x,y). Let us recall that the nonsingularity of
a bilinear form implies that its rank (that is, the rank of its matrix in an arbitrary
basis of the space) is equal to dim L. In other words, this means that its radical is
equal to (0); that is, if the vector x is such that (x,y) = 0 for all vectors y ∈ L, then
x = 0 (see Sect. 6.2). For a Euclidean space, this condition follows automatically
from property (4) of the definition (it suffices to set there y = x).

Formula (6.28) shows that with these conditions, there exists a basis e1, . . . , en

of the space L for which

(ei , ej ) = 0 for i �= j,
(
e2
i

) = ±1.

Such a basis is called, as it was previously, orthonormal. In it, the form (x2) can be
written in the form

(
x2) = x2

1 + · · · + x2
s − x2

s+1 − · · · − x2
n,

and the number s is called the index of inertia of both the quadratic form (x2) and
the pseudo-Euclidean space L.

A new difficulty appears that was not present for Euclidean spaces if the quadratic
form (x2) is neither positive nor negative definite, that is, if its index of inertia s is
positive but less than n. In this case, the restriction of the bilinear form (x,y) to the
subspace L′ ⊂ L can turn out to be singular, even if the original bilinear form (x,y)

in L was nonsingular. For example, it is clear that in L, there exists a vector x �= 0
for which (x2) = 0, and then the restriction of (x,y) to a one-dimensional subspace
〈x〉 is singular (identically equal to zero).

Thus let us consider a vector space L with a nonsingular symmetric bilinear form
(x,y) defined on it. In this case, we shall use many concepts and much of the nota-
tion used for Euclidean spaces earlier. Hence, vectors x and y are called orthogonal
if (x,y) = 0. Subspaces L1 and L2 are called orthogonal if (x,y) = 0 for all vectors
x ∈ L1 and y ∈ L2, and we express this by writing L1 ⊥ L2. The orthogonal comple-
ment of the subspace L′ ⊂ L with respect to the bilinear form (x,y) is denoted by
(L′)⊥. However, there is an important difference from the case of Euclidean spaces,
in connection with which it will be useful to give the following definition.

Definition 7.47 A subspace L′ ⊂ L is said to be nondegenerate if the bilinear form
obtained by restricting the form (x,y) to L′ is nonsingular. In the contrary case, L′
is said to be degenerate.
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By Theorem 6.9, in the case of a nondegenerate subspace L′ we have the orthog-
onal decomposition

L = L′ ⊕ (
L′)⊥. (7.73)

In the case of a Euclidean space, as we have seen, every subspace L′ is nondegen-
erate, and the decomposition (7.73) holds without any additional conditions. As the
following example will show, in a pseudo-Euclidean space, the condition of nonde-
generacy of a subspace L′ for the decomposition (7.73) is in fact essential.

Example 7.48 Let us consider a three-dimensional space L with a symmetric bilin-
ear form defined in some chosen basis by the formula

(x,y) = x1y1 + x2y2 − x3y3,

where the xi are the coordinates of the vector x, and the yi are the coordinates
of the vector y. Let L′ = 〈e〉, where the vector e has coordinates (0,1,1). Then
as is easily verified, (e, e) = 0, and therefore, the restriction of the form (x,y) to
L′ is identically equal to zero. This implies that the subspace L′ is degenerate. Its
orthogonal complement (L′)⊥ is two-dimensional and consists of all vectors z ∈ L
with coordinates (z1, z2, z3) for which z2 = z3. Consequently, L′ ⊂ (L′)⊥, and the
intersection L′ ∩ (L′)⊥ = L′ contains nonnull vectors. This implies that the sum L′ +
(L′)⊥ is not a direct sum. Furthermore, it is obvious that L′ + (L′)⊥ �= L.

It follows from the nonsingularity of a bilinear form (x,y) that the determinant
of its matrix (in an arbitrary basis) is different from zero. If this matrix is written in
the basis e1, . . . , en, then its determinant is equal to

∣∣∣∣
∣∣∣∣∣

(e1, e1) (e1, e2) · · · (e1, en)

(e2, e1) (e2, e2) · · · (e2, en)
...

...
. . .

...

(en, e1) (en, e2) · · · (en, en)

∣∣∣∣
∣∣∣∣∣

, (7.74)

and just as in the case of a Euclidean space, we shall call this its Gram determi-
nant of the basis e1, . . . , en. Of course, this determinant depends on the choice of
basis, but its sign does not depend on the basis. Indeed, if A and A′ are matrices
of our bilinear form in two different bases, then they are related by the equality
A′ = C∗AC, where C is a nonsingular transition matrix, from which it follows that
|A′| = |A| · |C|2. Thus the sign of the Gram determinant is the same for all bases.

As noted above, for a nondegenerate subspace L′ ⊂ L, we have the decomposition
(7.73), which yields the equality

dim L = dim L′ + dim
(
L′)⊥. (7.75)

But equality (7.75) holds as well for every subspace L′ ⊂ L, although as we saw in
Example 7.48, the decomposition (7.73) may already not hold in the general case.
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Indeed, by Theorem 6.3, we can write an arbitrary bilinear form (x,y) in the
space L in the form (x,y) = (x,A(y)), where A : L → L∗ is some linear transfor-
mation. From the nonsingularity of the bilinear form (x,y) follows the nonsingular-
ity of the transformation A. In other words, the transformation A is an isomorphism,
that is, its kernel is equal to (0), and in particular, for an arbitrary subspace L′ ⊂ L,
we have the equality dimA(L′) = dim L′. On the other hand, we can write the or-
thogonal complement (L′)⊥ in the form (A(L′))a , using the notion of the annihilator
introduced in Sect. 3.7. On the basis of what we have said above and formula (3.54)
for the annihilator, we have the relationship

dim
(
A
(
L′))a = dim L − dimA

(
L′) = dim L − dim L′,

that is, dim(L′)⊥ = dim L − dim L′. We note that this argument holds for vector
spaces L defined not only over the real numbers, but over any field.

The spaces that we have examined are defined (up to isomorphism) by the index
of inertia s, which can take values from 0 to n. By what we have said above, the sign
of the Gram determinant of an arbitrary basis is equal to (−1)n−s . It is obvious that
if we replace the inner product (x,y) in the space L by −(x,y), we shall preserve all
of its essential properties, but the index of inertia s will be replaced by n−s, whence
in what follows, we shall assume that n/2 ≤ s ≤ n. The case s = n corresponds
to a Euclidean space. There exists, however, a phenomenon whose explanation is
at present not completely clear; the most interesting questions in mathematics and
physics were until now connected with two types of spaces: those in which the index
of inertia s is equal to n and those for which s = n − 1. The theory of Euclidean
spaces (s = n) has been up till now the topic of this chapter. In the remaining part,
we shall consider the other case: s = n − 1. In the sequel, we shall call such spaces
pseudo-Euclidean spaces (although sometimes, this term is used when (x,y) is an
arbitrary nonsingular symmetric bilinear form neither positive nor negative definite,
that is, with index of inertia s �= 0, n).

Thus a pseudo-Euclidean space of dimension n is a vector space L equipped with
a symmetric bilinear form (x,y) such that in some basis e1, . . . , en, the quadratic
form (x2) takes the form

x2
1 + · · · + x2

n−1 − x2
n. (7.76)

As in the case of a Euclidean space, we shall, as we did previously, call such bases
orthonormal.

The best-known application of pseudo-Euclidean spaces is related to the special
theory of relativity. According to an idea put forward by Minkowski, in this theory,
one considers a four-dimensional space whose vectors are called space–time events
(we mentioned this earlier, on p. 86). They have coordinates (x, y, z, t), and the
space is equipped with a quadratic form x2 + y2 + z2 − t2 (here the speed of light
is assumed to be 1). The pseudo-Euclidean space thus obtained is called Minkowski
space. By analogy with the physical sense of these concepts in Minkowski space, in
an arbitrary pseudo-Euclidean space, a vector x is said to be spacelike if (x2) > 0,



7.7 Pseudo-Euclidean Spaces 269

Fig. 7.11 A pseudo-
Euclidean plane

while such a vector is said to be timelike if (x2) < 0, and lightlike, or isotropic, if
(x2) = 0.8

Example 7.49 Let us consider the simplest case of a pseudo-Euclidean space L with
dim L = 2 and index of inertia s = 1. By the general theory, in this space there exists
an orthonormal basis, in this case the basis e1, e2, for which

(
e2

1

) = 1,
(
e2

2

) = −1, (e1, e2) = 0, (7.77)

and the scalar square of the vector x = x1e1 + x2e2 is equal to (x2) = x2
1 − x2

2 .
However, it is easier to write the formulas connected with the space L in the basis
consisting of lightlike vectors f 1,f 2, after setting

f 1 = e1 + e2

2
, f 2 = e1 − e2

2
. (7.78)

Then (f 2
1) = (f 2

2) = 0, (f 1,f 2) = 1
2 , and the scalar square of the vector x =

x1f 1 + x2f 2 is equal to (x2) = x1x2. The lightlike vectors are located on the co-
ordinate axes; see Fig. 7.11. The timelike vectors comprise the second and fourth
quadrants, and the spacelike vectors make up the first and third quadrants.

Definition 7.50 The set V ⊂ L consisting of all lightlike vectors of a pseudo-
Euclidean space is called the light cone (or isotropic cone).

That we call the set V a cone suggests that if it contains some vector e, then it
contains the entire straight line 〈e〉, which follows at once from the definition. The
set of timelike vectors is called the interior of the cone V , while the set of spacelike
vectors makes up its exterior. In the space from Example 7.49, the light cone V is
the union of two straight lines 〈f 1〉 and 〈f 2〉. A more visual representation of the
light cone is given by the following example.

8We remark that this terminology differs from what is generally used: Our “spacelike” vectors are
usually called “timelike,” and conversely. The difference is explained by the condition s = n − 1
that we have assumed. In the conventional definition of Minkowski space, one usually considers
the quadratic form −x2 − y2 − z2 + t2, with index of inertia s = 1, and we need to multiply it by
−1 in order that the condition s ≥ n/2 be satisfied.
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Fig. 7.12 The light cone

Example 7.51 We consider the pseudo-Euclidean space L with dim L = 3 and index
of inertia s = 2. With the selection of an orthonormal basis e1, e2, e3 such that

(
e2

1

) = (
e2

2

) = 1,
(
e2

3

) = −1, (ei , ej ) = 0 for all i �= j,

the light cone V is defined by the equation x2
1 + x2

2 − x2
3 = 0. This is an ordinary

right circular cone in three-dimensional space, familiar from a course in analytic
geometry; see Fig. 7.12.

We now return to the general case of a pseudo-Euclidean space L of dimension n

and consider the light cone V in L in greater detail. First of all, let us verify that it is
“completely circular.” By this we mean the following.

Lemma 7.52 Although the cone V contains along with every vector x the entire
line 〈x〉, it contains no two-dimensional subspace.

Proof Let us assume that V contains a two-dimensional subspace 〈x,y〉. We choose
a vector e ∈ L such that (e2) = −1. Then the line 〈e〉 is a nondegenerate subspace of
L, and we can use the decomposition (7.73):

L = 〈e〉 ⊕ 〈e〉⊥. (7.79)

From the law of inertia it follows that 〈e〉⊥ is a Euclidean space. Let us apply the
decomposition (7.79) to our vectors x,y ∈ V . We obtain

x = αe + u, y = βe + v, (7.80)

where u and v are vectors in the Euclidean space 〈e〉⊥, while α and β are some
scalars.

The conditions (x2) = 0 and (y2) = 0 can be written as α2 = (u2) and β2 = (v2).
Using the same reasoning for the vector x + y = (α + β)e + u + v, which by the
assumption 〈x,y〉 ⊂ V is also contained in V , we obtain the equality

(α + β)2 = (u + v,u + v) = (
u2)+ 2(u,v) + (

v2) = α2 + 2(u,v) + β2.

Canceling the terms α2 and β2 on the left- and right-hand sides of the equality, we
obtain that αβ = (u,v), that is, (u,v)2 = α2β2 = (u2) · (v2). Thus for the vectors
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u and v in the Euclidean space 〈e〉⊥, the Cauchy–Schwarz inequality reduces to
an equality, from which it follows that u and v are proportional (see p. 218). Let
v = λu. Then the vector y − λx = (β − λα)e is also lightlike. Since (e2) = −1, it
follows that β = λα. But then from the relationship (7.80), it follows that y = λx,
and this contradicts the assumption dim〈x,y〉 = 2. �

Let us select an arbitrary timelike vector e ∈ L. Then in the orthogonal comple-
ment 〈e〉⊥ of the line 〈e〉, the bilinear form (x,y) determines a positive definite
quadratic form. This implies that 〈e〉⊥ ∩ V = (0), and the hyperplane 〈e〉⊥ divides
the set V \ 0 into two parts, V+ and V−, consisting of vectors x ∈ V such that in
each part, the condition (e,x) > 0 or (e,x) < 0 is respectively satisfied. We shall
call these sets V+ and V− poles of the light cone V . In Fig. 7.12, the plane 〈e1, e2〉
divides V into “upper” and “lower” poles V+ and V− for the vector e = e3.

The partition V \ 0 = V+ ∪ V− that we have constructed rested on the choice of
some timelike vector e, and ostensibly, it must depend on it (for example, a change
in the vector e to −e interchanges the poles V+ and V−). We shall now show that
the decomposition V \ 0 = V+ ∪ V−, without taking into account how we designate
each pole, does not depend on the choice of vector e, that is, it is a property of
the pseudo-Euclidean space itself. To do so, we shall require the following, almost
obvious, assertion.

Lemma 7.53 Let L′ be a subspace of the pseudo-Euclidean space L of dimension
dim L′ ≥ 2. Then the following statements are equivalent:

(1) L′ is a pseudo-Euclidean space.
(2) L′ contains a timelike vector.
(3) L′ contains two linearly independent lightlike vectors.

Proof If L′ is a pseudo-Euclidean space, then statements (2) and (3) obviously fol-
low from the definition of a pseudo-Euclidean space.

Let us show that statement (2) implies statement (1). Suppose L′ contains a time-
like vector e. That is, (e2) < 0, whence the subspace 〈e〉 is nondegenerate, and
therefore, we have the decomposition (7.79), and moreover, as follows from the
law of inertia, the subspace 〈e〉⊥ is a Euclidean space. If the subspace L′ were de-
generate, then there would exist a nonnull vector u ∈ L′ such that (u,x) = 0 for
all x ∈ L′, and in particular, for vectors e and u. The condition (u, e) = 0 implies
that the vector u is contained in 〈e〉⊥, while the condition (u,u) = 0 implies that
the vector u is lightlike. But this is impossible, since the subspace 〈e〉⊥ is a Eu-
clidean space and cannot contain lightlike vectors. This contradiction shows that the
subspace L′ is nondegenerate, and therefore, it exhibits the decomposition (7.73).
Taking into account the law of inertia, it follows from this that the subspace L′ is a
pseudo-Euclidean space.

Let us show that statement (3) implies statement (1). Suppose the subspace L′
contains linearly independent lightlike vectors f 1 and f 2. We shall show that the
plane Π = 〈f 1,f 2〉 contains a timelike vector e. Then obviously, e is contained
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Fig. 7.13 The plane Π in a
three-dimensional
pseudo-Euclidean space

in L′, and by what was proved above, the subspace L′ is a pseudo-Euclidean space.
Every vector e ∈ Π can be represented in the form e = αf 1 + βf 2. From this, we
obtain (e2) = 2αβ(f 1,f 2). We note that (f 1,f 2) �= 0, since in the contrary case,
for each vector e ∈ Π , the equality (e2) = 0 would be satisfied, implying that the
plane Π lies completely in the light cone V , which contradicts Lemma 7.52. Thus
(f 1,f 2) �= 0, and choosing coordinates α and β such that the sign of their product
is opposite to the sign of (f 1,f 2), we obtain the vector e, for which (e2) < 0. �

Example 7.54 Let us consider the three-dimensional pseudo-Euclidean space L
from Example 7.51 and a plane Π in L. The property of a plane Π being a Euclidean
space, a pseudo-Euclidean space, or degenerate is clearly illustrated in Fig. 7.13.

In Fig. 7.13(a), the plane Π intersects the light cone V in two lines, correspond-
ing to two linearly independent lightlike vectors. Clearly, this is equivalent to the
condition that Π also intersects the interior of the light cone, which consists of
timelike vectors, and therefore is a pseudo-Euclidean plane. In Fig. 7.13(c), it is
shown that the plane Π intersects V only in its vertex, that is, Π ∩ V = (0). This
implies that the plane Π is a Euclidean space, since every nonnull vector e ∈ Π lies
outside the cone V , that is, (e2) > 0.

Finally, in Fig. 7.13(b) is shown the intermediate variant: the plane Π intersects
the cone V in a single line, that is, it is tangent to it. Since the plane Π contains
lightlike vectors (lying on this line), it follows that it cannot be a Euclidean space,
and since it does not contain timelike vectors, it follows by Lemma 7.53 that it
cannot be a pseudo-Euclidean space. This implies that Π is degenerate.

This is not difficult to verify in another way if we write down the matrix of the
restriction of the inner product to the plane Π . Suppose that in the orthonormal basis
e1, e2, e3 from Example 7.49, this plane is defined by the equation x3 = αx1 + βx2.
Then the vectors g1 = e1 + αe3 and g2 = e2 + βe3 form a basis of Π in which

the restriction of the inner product has matrix
( 1−α2 −αβ

−αβ 1−β2

)
with determinant Δ =

(1 − α2)(1 − β2) − (αβ)2. On the other hand, the assumption of tangency of the
plane Π and cone V amounts to the discriminant of the quadratic form x2

1 + x2
2 −

(αx1 + βx2)
2 in the variables x1 and x2 being equal to zero. It is easily verified that

this discriminant is equal to −Δ, and this implies that it is zero precisely when the
determinant of this matrix is zero.
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Theorem 7.55 The partition of the light cone V into two poles V+ and V− does
not depend on the choice of timelike vector e. In particular, the linearly independent
lightlike vectors x and y lie in one pole if and only if (x,y) < 0.

Proof Let us assume that for some choice of timelike vector e, the lightlike vectors
x and y lie in one pole of the light cone V , and let us show that then, for any choice
e, they will always belong to the same pole. The case that the vectors x and y are
proportional, that is, y = λx, is obvious. Indeed, since 〈e〉⊥ ∩ V = (0), it follows
that (e,x) �= 0, and this implies that the vectors x and y belong to one pole if and
only if λ > 0, independent of the choice of the vector e.

Now let us consider the case that x and y are linearly independent. Then
(x,y) �= 0, since otherwise, the entire plane 〈x,y〉 would be contained in the light
cone V , which by Lemma 7.52, is impossible. Let us prove that regardless of what
timelike vector e we have chosen for the partition V \ 0 = V+ ∪ V−, the vectors
x,y ∈ V \ 0 belong to one pole if and only if (x,y) < 0. Let us note that this ques-
tion, strictly speaking, relates not to the entire space L, but only to the subspace
〈e,x,y〉, whose dimension, by the assumptions we have made, is equal to 2 or 3,
depending on whether the vector e does or does not lie in the plane 〈x,y〉.

Let us consider first the case dim〈e,x,y〉 = 2, that is, e ∈ 〈x,y〉. Then let us set
e = αx + βy. Consequently, (e,x) = β(x,y) and (e,y) = α(x,y), since x,y ∈ V .
By definition, vectors x and y are in the same pole if and only if (e,x)(e,y) > 0.
But since (e,x)(e,y) = αβ(x,y)2, this condition is equivalent to the inequality
αβ > 0. The vector e is timelike, and therefore, (e2) < 0, and in view of the equality
(e2) = 2αβ(x,y), we obtain that the condition αβ > 0 is equivalent to (x,y) < 0.

Let us now consider the case that dim〈e,x,y〉 = 3. The space 〈e,x,y〉 contains
the timelike vector e. Consequently, by Lemma 7.53, it is a pseudo-Euclidean space,
and its subspace 〈x,y〉 is nondegenerate, since (x,y) �= 0 and (x2) = (y2) = 0.
Thus here the decomposition (7.73) takes the form

〈e,x,y〉 = 〈x,y〉 ⊕ 〈h〉, (7.81)

where the space 〈h〉 = 〈x,y〉⊥ is one-dimensional. On the left-hand side of the
decomposition (7.81) stands a three-dimensional pseudo-Euclidean space, and the
space 〈x,y〉 is a two-dimensional pseudo-Euclidean space; therefore, by the law
of inertia, the space 〈h〉 is a Euclidean space. Thus for the vector e, we have the
representation

e = αx + βy + γh, (h,x) = 0, (h,y) = 0.

From this follows the equality

(e,x) = β(x,y), (e,y) = α(x,y),
(
e2) = 2αβ(x,y) + γ 2(h2).

Taking into account the fact that (e2) < 0 and (h2) > 0, from the last of these re-
lationships, we obtain that αβ(x,y) < 0. The condition that the vectors x and y

lie in one pole can be expressed as the inequality (e,x)(e,y) > 0, that is, αβ > 0.
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Since αβ(x,y) < 0, it follows as in the previous case that this is equivalent to the
condition (x,y) < 0. �

Remark 7.56 As we did in Sect. 3.2 in connection with the partition of a vector
space L by a hyperplane L′, it is possible to ascertain that the partition of the set
V \ 0 coincides with its partition into two path-connected components V+ and V−.
From this we can obtain another proof of Theorem 7.55 without using any formulas.

A pseudo-Euclidean space emerges in the following remarkable relationship.

Theorem 7.57 For every pair of timelike vectors x and y, the reverse of the
Cauchy–Schwarz inequality is satisfied:

(x,y)2 ≥ (
x2) · (y2), (7.82)

which reduces to an equality if and only if x and y are proportional.

Proof Let us consider the subspace 〈x,y〉, in which are contained all the vectors of
interest to us. If the vectors x and y are proportional, that is, y = λx, where λ is
some scalar, then the inequality (7.82) obviously reduces to a tautological equality.
Thus we may assume that dim〈x,y〉 = 2, that is, we may suppose ourselves to be in
the situation considered in Example 7.49.

As we have seen, in the space 〈x,y〉, there exists a basis f 1,f 2 for which the
relationship (f 2

1) = (f 2
2) = 0, (f 1,f 2) = 1

2 holds. Writing the vectors x and y in
this basis, we obtain the expressions

x = x1f 1 + x2f 2, y = y1f 1 + y2f 2,

from which it follows that

(
x2) = x1x2,

(
y2) = y1y2, (x,y) = 1

2
(x1y2 + x2y1).

Substituting these expressions into (7.82), we see that we have to verify the inequal-
ity (x1y2 +x2y1)

2 ≥ 4x1x2y1y2. Having carried out in the last inequality the obvious
transformations, we see that this is equivalent to the inequality

(x1y2 − x2y1)
2 ≥ 0, (7.83)

which holds for all real values of the variables. Moreover, it is obvious that the
inequality (7.83) reduces to an equality if and only if x1y2 − x2y1 = 0, that is, if and
only if the determinant

∣∣ x1 x2
y1 y2

∣∣ equals 0, and this implies that the vectors x = (x1, x2)

and y = (y1, y2) are proportional. �

From Theorem 7.57 we obtain the following useful corollary.

Corollary 7.58 Two timelike vectors x and y cannot be orthogonal.
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Proof Indeed, if (x,y) = 0, then from the inequality (7.82), it follows that (x2) ·
(y2) ≤ 0, and this contradicts the condition (x2) < 0 and (y2) < 0. �

Similar to the partition of the light cone V into two poles, we can also partition
its interior into two parts. Namely, we shall say that timelike vectors e and e′ lie
inside one pole of the light cone V if the inner products (e,x) and (e′,x) have the
same sign for all vectors x ∈ V and lie inside different poles if these inner products
have opposite signs.

A set M ⊂ L is said to be convex if for every pair of vectors e, e′ ∈ M , the vectors
gt = te + (1 − t)e′ are also in M for all t ∈ [0,1]. We shall prove that the interior
of each pole of the light cone V is convex, that is, the vector gt lies in the same
pole as e and e′ for all t ∈ [0,1]. To this end, let us note that in the expression
(gt ,x) = t (e,x) + (1 − t)(e′,x), the coefficients t and 1 − t are nonnegative, and
the inner products (e,x) and (e′,x) have the same sign. Therefore, for every vector
x ∈ V , the inner product (gt ,x) has the same sign as (e,x) and (e′,x).

Lemma 7.59 Timelike vectors e and e′ lie inside one pole of the light cone V if and
only if (e, e′) < 0.

Proof If timelike vectors e and e′ lie inside one pole, then by definition, we have
the inequality (e,x) · (e′,x) > 0 for all x ∈ V . Let us assume that (e, e′) ≥ 0. As we
established above, the vector gt = te + (1 − t)e′ is timelike and lies inside the same
pole as e and e′ for all t ∈ [0,1].

Let us consider the inner product (gt , e) = t (e, e) + (1 − t)(e, e′) as a function
of the variable t ∈ [0,1]. It is obvious that this function is continuous and that it
assumes for t = 0 the value (e, e′) ≥ 0, and for t = 1 the value (e, e) < 0. There-
fore, as is proved in a course in calculus, there exists a value τ ∈ [0,1] such that
(gτ , e) = 0. But this contradicts Corollary 7.58.

Thus we have proved that if vectors e and e′ lie inside one pole of the cone V ,
then (e, e′) < 0. The converse assertion is obvious. Let e and e′ lie inside different
poles, for instance, e is within V+, while e′ is within V−. Then we have by defini-
tion that the vector −e′ lies inside the pole V+, and therefore, (e,−e′) < 0, that is,
(e, e′) > 0. �

7.8 Lorentz Transformations

In this section, we shall examine an analogue of orthogonal transformations for
pseudo-Euclidean spaces called Lorentz transformations. Such transformations have
numerous applications in physics.9 They are also defined by the condition of pre-
serving the inner product.

9For example, a Lorentz transformation of Minkowski space—a four-dimensional pseudo-
Euclidean space—plays the same role in the special theory of relativity (which is where the term
Lorentz transformation comes from) as that played by the Galilean transformations, which describe
the passage from one inertial reference frame to another in classical Newtonian mechanics.



276 7 Euclidean Spaces

Definition 7.60 A linear transformation U of a pseudo-Euclidean space L is called
a Lorentz transformation if the relationship

(
U(x),U(y)

) = (x,y) (7.84)

is satisfied for all vectors x,y ∈ L.

As in the case of orthogonal transformations, it suffices that the condition (7.84)
be satisfied for all vectors x = y of the pseudo-Euclidean space L. The proof of this
coincides completely with the proof of the analogous assertion in Sect. 7.2.

Here, as in the case of Euclidean spaces, we shall make use of the inner product
(x,y) in order to identify L∗ with L (let us recall that for this, we need only the
nonsingularity of the bilinear form (x,y) and not the positive definiteness of the
associated quadratic form (x2)). As a result, for an arbitrary linear transformation
A : L → L, we may consider A∗ also as a transformation of the space L into itself.
Repeating the same arguments that we employed in the case of Euclidean spaces,
we obtain that |A∗| = |A|. In particular, from definition (7.84), it follows that for a
Lorentz transformation U, we have the relationship

U∗AU = A, (7.85)

where U is the matrix of the transformation U in an arbitrary basis e1, . . . , en of the
space L, and A = (aij ) is the Gram matrix of the bilinear form (x,y), that is, the
matrix with elements aij = (ei , ej ).

The bilinear form (x,y) is nonsingular, that is, |A| �= 0, and from the relationship
(7.85) follows the equality |U|2 = 1, from which we obtain that |U| = ±1. As in
the case of a Euclidean space, a transformation with determinant equal to 1 is called
proper, while if the determinant is equal to −1, it is improper.

It follows from the definition that every Lorentz transformation maps the light
cone V into itself. It follows from Theorem 7.55 that a Lorentz transformation either
maps each pole into itself (that is, U(V+) = V+ and U(V−) = V−), or else inter-
changes them (that is, U(V+) = V− and U(V−) = V+). Let us associate with each
Lorentz transformation U the number ν(U) = +1 in the first case, and ν(U) = −1
in the second. Like the determinant |U|, this number ν(U) is a natural character-
istic of the associated Lorentz transformation. Let us denote the pair of numbers
(|U|, ν(U)) by ε(U). It is obvious that

ε
(
U−1) = ε(U), ε(U1U2) = ε(U1)ε(U2),

where on the right-hand side, it is understood that the first and second components
of the pairs are multiplied separately. We shall soon see that in an arbitrary pseudo-
Euclidean space, there exist Lorentz transformations U of all four types, that is,
with ε(U) taking all values

(+1,+1), (+1,−1), (−1,+1), (−1,−1).
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This property is sometimes interpreted as saying that a pseudo-Euclidean space has
not two (as in the case of a Euclidean space), but four orientations.

Like orthogonal transformations of a Euclidean space, Lorentz transformations
are characterized by the fact that they map an orthonormal basis of a pseudo-
Euclidean space to an orthonormal basis. Indeed, suppose that for the vectors of
the orthonormal basis e1, . . . , en, the equalities

(ei , ej ) = 0 for i �= j,
(
e2

1

) = · · · = (
e2
n−1

) = 1,
(
e2
n

) = −1 (7.86)

are satisfied. Then from the condition (7.84), it follows that the images U(e1), . . . ,

U(en) satisfy analogous equalities, that is, they form an orthonormal basis in L.
Conversely, if for the vectors ei , the equality (7.86) is satisfied and analogous equal-
ities hold for the vectors U(ei ), then as is easily verified, for arbitrary vectors x and
y of the pseudo-Euclidean space L, the relationship (7.84) is satisfied.

Two orthonormal bases are said to have the same orientation if for a Lorentz
transformation U taking one basis to the other, ε(U) = (+1,+1). The choice of
a class of bases with the same orientation is called an orientation of the pseudo-
Euclidean space L. Taking for now on faith the fact (which will be proved a lit-
tle later) that there exist Lorentz transformations U with all theoretically possible
ε(U), we see that in a pseudo-Euclidean space, it is possible to introduce exactly
four orientations.

Example 7.61 Let us consider some concepts about pseudo-Euclidean spaces that
we encountered in Example 7.49, that is, for dim L = 2 and s = 1. As we have seen,
in this space, there exists a basis f 1,f 2 for which the relationships (f 2

1) = (f 2
2) =

0, (f 1,f 2) = 1
2 , are satisfied, and the scalar square of the vector x = xf 1 + yf 2 is

equal to (x2) = xy. If U : L → L is a Lorentz transformation given by the formula

x′ = ax + by, y′ = cx + dy,

then the equality (U(x),U(x)) = (x,x) for the vector x = xf 1 + yf 2 takes the
form x′y′ = xy, that is, (ax + by)(cx + dy) = xy for all x and y. From this, we
obtain

ac = 0, bd = 0, ad + bc = 1.

In view of the equality ad + bc = 1, the values a = b = 0 are impossible.
If a �= 0, then c = 0, and this implies that ad = 1, that is, d = a−1 �= 0 and b = 0.

Thus the transformation U has the form

x′ = ax, y′ = a−1y. (7.87)

This is a proper transformation.
On the other hand, if b �= 0, then d = 0, and this implies that c = b−1, a = 0. The

transformation U has in this case the form

x′ = by, y′ = b−1x. (7.88)
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This is an improper transformation.
If we write the transformation U in the form (7.87) or (7.88), depending on

whether it is proper or improper, then the sign of the number a or respectively b

indicates whether U interchanges the poles of the light cone or preserves each of
them. Namely, let us prove that the transformation (7.87) causes the poles to change
places if a < 0, and preserves them if a > 0. And analogously, the transformation
(7.88) interchanges the poles if b < 0 and preserves them if b > 0.

By Theorem 7.55, the partition of the light cone V into two poles V+ and V−
does not depend on the choice of timelike vector, and therefore, by Lemma 7.59, we
need only determine the sign of the inner product (e,U(e)) for an arbitrary timelike
vector e. Let e = xf 1 + yf 2. Then (e2) = xy < 0. In the case that U is a proper
transformation, we have formula (7.87), from which it follows that

U(e) = axf 1 + a−1yf 2,
(
e,U(e)

) = (
a + a−1)xy.

Since xy < 0, the inner product (e,U(e)) is negative if a + a−1 > 0, and positive if
a+a−1 < 0. But it is obvious that a+a−1 > 0 for a > 0, and a+a−1 < 0 for a < 0.
Thus for a > 0, we have (e,U(e)) < 0, and by Lemma 7.59, the vectors e and U(e)
lie inside one pole. Consequently, the transformation U preserves the poles of the
light cone. Analogously, for a < 0, we obtain (e,U(e)) > 0, that is, e and U(e) lie
inside different poles, and therefore, the transformation U interchanges the poles.

The case of an improper transformation can be examined with the help of for-
mula (7.88). Reasoning analogously to what has gone before, we obtain from it the
relationships

U(e) = b−1yf 1 + bxf 2,
(
e,U(e)

) = bx2 + b−1y2,

from which it is clear that now the sign of (e,U(e)) coincides with the sign of the
number b.

Example 7.62 It is sometimes convenient to use the fact that a Lorentz transfor-
mation of a pseudo-Euclidean plane can be written in an alternative form, using
the hyperbolic sine and cosine. We saw earlier (formulas (7.87) and (7.88)) that in
the basis f 1,f 2 defined by the relationship (7.78), proper and improper Lorentz
transformations are given respectively by the equalities

U(f 1) = af 1, U(f 2) = a−1f 2,

U(f 1) = bf 2, U(f 2) = b−1f 1.

From this, it is not difficult to derive that in the orthonormal basis e1, e2, related
to f 1,f 2 by formula (7.78), these transformations are given respectively by the
equalities

U(e1) = a + a−1

2
e1 + a − a−1

2
e2,

U(e2) = a − a−1

2
e1 + a + a−1

2
e2,

(7.89)
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U(e1) = b + b−1

2
e1 − b − b−1

2
e2,

U(e2) = b − b−1

2
e1 − b + b−1

2
e2.

(7.90)

Setting here a = ±eψ and b = ±eψ , where the sign ± coincides with the sign of the
number a or b in formula (7.89) or (7.90) respectively, we obtain that the matrices
of the proper transformations have the form

(
coshψ sinhψ

sinhψ coshψ

)
or

(− coshψ − sinhψ

− sinhψ − coshψ

)
, (7.91)

while the matrices of the improper transformations have the form
(

coshψ sinhψ

− sinhψ − coshψ

)
or

(− coshψ − sinhψ

sinhψ coshψ

)
, (7.92)

where sinhψ = (eψ − e−ψ)/2 and coshψ = (eψ + e−ψ)/2 are the hyperbolic sine
and cosine.

Theorem 7.63 In every pseudo-Euclidean space there exist Lorentz transforma-
tions U with all four possible values of ε(U).

Proof For the case dim L = 2, we have already proved the theorem: In Exam-
ple 7.62, we saw that there exist four distinct types of Lorentz transformation of a
pseudo-Euclidean space having in a suitable orthonormal basis the matrices (7.91),
(7.92). It is obvious that with these matrices, the transformation U gives all possible
values ε(U).

Let us now move on to the general case dim L > 2. Let us choose in the pseudo-
Euclidean space L an arbitrary timelike vector e and any e′ not proportional to it.
By Lemma 7.53, the two-dimensional space 〈e, e′〉 is a pseudo-Euclidean space
(therefore nondegenerate), and we have the decomposition

L = 〈
e, e′〉⊕ 〈

e, e′〉⊥.

From the law of inertia, it follows that the space 〈e, e′〉⊥ is a Euclidean space. In Ex-
ample 7.62, we saw that in the pseudo-Euclidean plane 〈e, e′〉, there exists a Lorentz
transformation U1 with arbitrary value ε(U1). Let us define the transformation
U : L → L as U1 in 〈e, e′〉 and E in 〈e, e′〉⊥, that is, for a vector x = y + z, where
y ∈ 〈e, e′〉 and z ∈ 〈e, e′〉⊥, we shall set U(x) = U1(y) + z. Then U is clearly a
Lorentz transformation, and ε(U) = ε(U1). �

There is an analogue to Theorem 7.24 for Lorentz transformations.

Theorem 7.64 If a space L′ is invariant with respect to a Lorentz transformation
U, then its orthogonal complement (L′)⊥ is also invariant with respect to U.
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Proof The proof of this theorem is an exact repetition of the proof of Theorem 7.24,
since there, we did not use the positive definiteness of the quadratic form (x2) as-
sociated with the bilinear form (x,y), but only its nonsingularity. See Remark 7.25
on p. 227. �

The study of a Lorentz transformation of a pseudo-Euclidean space is reduced to
the analogous question for orthogonal transformations of a Euclidean space, based
on the following result.

Theorem 7.65 For every Lorentz transformation U of a pseudo-Euclidean space
L, there exist nondegenerate subspaces L0 and L1 invariant with respect to U such
that L has the orthogonal decomposition

L = L0 ⊕ L1, L0 ⊥ L1, (7.93)

where the subspace L0 is a Euclidean space, and the dimension of L1 is equal to 1,
2, or 3.

It follows from the law of inertia that if dim L1 = 1, then L1 is spanned by a
timelike vector. If dim L1 = 2 or 3, then the pseudo-Euclidean space L1 can be rep-
resented in turn by a direct sum of subspaces of lower dimension invariant with
respect to U. However, such a decomposition is no longer necessarily orthogonal
(see Example 7.48).

Proof of Theorem 7.65 The proof is by induction on n, the dimension of the space L.
For n = 2, the assertion of the theorem is obvious—in the decomposition (7.93) one
has only to set L0 = (0) and L1 = L.10

Now let n > 2, and suppose that the assertion of the theorem has been proved for
all pseudo-Euclidean spaces of dimension less than n. We shall use results obtained
in Chaps. 4 and 5 on linear transformations of a vector space into itself. Obviously,
one of the following three cases must hold: the transformation U has a complex
eigenvalue, U has two linearly independent eigenvectors, or the space L is cyclic
for U, corresponding to the only real eigenvalue. Let us consider the three cases
separately.

Case 1. A linear transformation U of a real vector space L has a complex eigen-
value λ. As established in Sect. 4.3, then U also has the complex conjugate eigen-
value λ, and moreover, to the pair λ,λ there corresponds the two-dimensional real
invariant subspace L′ ⊂ L, which contains no real eigenvectors. It is obvious that L′
cannot be a pseudo-Euclidean space: for then the restriction of U to L′ would have
real eigenvalues, and L′ would contain real eigenvectors of the transformation U;
see Examples 7.61 and 7.62. Let us show that L′ is nondegenerate.

10The nondegeneracy of the subspace L0 = (0) relative to a bilinear form follows from the defi-
nitions given on pages 266 and 195. Indeed, the rank of the restriction of the bilinear form to the
subspace (0) is zero, and therefore, it coincides with dim(0).
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Suppose that L′ is degenerate. Then it contains a lightlike vector e �= 0. Since U
is a Lorentz transformation, the vector U(e) is also lightlike, and since the subspace
L′ is invariant with respect to U, it follows that U(e) is contained in L′. Therefore,
the subspace L′ contains two lightlike vectors: e and U(e). By Lemma 7.53, these
vectors cannot be linearly independent, since then L′ would be a pseudo-Euclidean
space, but that would contradict our assumption that L′ is degenerate. From this, it
follows that the vector U(e) is proportional to e, and that implies that e is an eigen-
vector of the transformation U, which, as we have observed above, cannot be. This
contradiction means that the subspace L′ is nondegenerate, and as a consequence, it
is a Euclidean space.

Case 2. The linear transformation U has two linearly independent eigenvectors: e1

and e2. If at least one of them is not lightlike, that is, (e2
i ) �= 0, then L′ = 〈ei〉 is

a nondegenerate invariant subspace of dimension 1. And if both eigenvectors e1

and e2 are lightlike, then by Lemma 7.53, the subspace L′ = 〈e1, e2〉 is an invariant
pseudo-Euclidean plane.

Thus in both cases, the transformation U has a nondegenerate invariant subspace
L′ of dimension 1 or 2. This means that in both cases, we have an orthogonal de-
composition (7.73), that is, L = L′ ⊕ (L′)⊥. If L′ is one-dimensional and spanned by
a timelike vector or is a pseudo-Euclidean plane, then this is exactly decomposition
(7.93) with L0 = (L′)⊥ and L1 = L′. In the opposite case, the subspace L′ is a Eu-
clidean space of dimension 1 or 2, and the subspace (L′)⊥ is a pseudo-Euclidean
space of dimension n − 1 or n − 2 respectively. By the induction hypothesis, for
(L′)⊥, we have the orthogonal decomposition (L′)⊥ = L′

0 ⊕ L′
1 analogous to (7.93).

From this, for L we obtain the decomposition (7.93) with L0 = L′ ⊕ L′
0 and L1 = L′

1.

Case 3. The space L is cyclic for the transformation U, corresponding to the unique
real eigenvalue λ and principal vector e of grade m = n. Obviously, for n = 2, this
is impossible: as we saw in Example 7.61, in a suitable basis of a pseudo-Euclidean
plane, a Lorentz transformation has either diagonal form (7.87) or the form (7.88)
with distinct eigenvalues ±1. In both cases, it is obvious that the pseudo-Euclidean
plane L cannot be a cyclic subspace of the transformation U.

Let us consider the case of a pseudo-Euclidean space L of dimension n ≥ 3. We
shall prove that L can be a cyclic subspace of the transformation U only if n = 3.

As we established in Sect. 5.1, in a cyclic subspace L, there is a basis e1, . . . , en

defined by formula (5.5), that is,

e1 = e, e2 = (U − λE)(e), . . . , en = (U − λE)n−1(e), (7.94)

in which relationships (5.6) hold:

U(e1) = λe1 + e2, U(e2) = λe2 + e3, . . . , U(en) = λen. (7.95)
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In this basis, the matrix of the transformation U has the form of a Jordan block

U =

⎛

⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

λ 0 0 · · · · · · 0
1 λ 0 · · · · · · 0
0 1 λ 0
...

. . .
. . .

...
...

. . . λ 0
0 0 0 · · · 1 λ

⎞

⎟
⎟⎟⎟⎟⎟⎟⎟
⎠

. (7.96)

It is easy to see that the eigenvector en is lightlike. Indeed, if we had (e2
n) �= 0,

then we would have the orthogonal decomposition L = 〈en〉 ⊕ 〈en〉⊥, where both
subspaces 〈en〉 and 〈en〉⊥ are invariant. But this contradicts the assumption that the
space L is cyclic.

Since U is a Lorentz transformation, it preserves the inner product of vectors,
and from (7.95), we obtain the equality

(ei , en) = (
U(ei ),U(en)

) = (λei + ei+1, λen)

= λ2(ei , en) + λ(ei+1, en) (7.97)

for all i = 1, . . . , n − 1.
If λ2 �= 1, then from (7.97), it follows that

(ei , en) = λ

1 − λ2
(ei+1, en).

Substituting into this equality the values of the index i = n − 1, . . . ,1, taking into
account that (e2

n) = 0, we therefore obtain step by step that (ei , en) = 0 for all i.
This means that the eigenvector en is contained in the radical of the space L, and
since L is a pseudo-Euclidean space (that is, in particular, nondegenerate), it follows
that en = 0. This contradiction shows that λ2 = 1.

Substituting λ2 = 1 into the equalities (7.97) and collecting like terms, we find
that (ei+1, en) = 0 for all indices i = 1, . . . , n−1, that is, (ej , en) = 0 for all indices
j = 2, . . . , n. In particular, we have the equalities (en−1, en) = 0 for n > 2 and
(en−2, en) = 0 for n > 3. From this it follows that n = 3. Indeed, from the condition
of preservation of the inner product, we have the relationship

(en−2, en−1) = (
U(en−2),U(en−1)

) = (λen−2 + en−1, λen−1 + en)

= λ2(en−2, en−1) + λ(en−2, en) + λ
(
e2
n−1

)+ (en−1, en),

from which, taking into account the relationships λ2 = 1 and (en−1, en) = 0, we
have the equality (en−2, en) + (e2

n−1) = 0. If n > 3, then (en−2, en) = 0, and from
this, we obtain that (e2

n−1) = 0, that is, the vector en−1 is lightlike.
Let us examine the subspace L′ = 〈en, en−1〉. It is obvious that it is invariant

with respect to the transformation U, and since it contains two linearly independent
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lightlike vectors en and en−1, then by Lemma 7.53, the subspace L′ is a pseudo-
Euclidean space, and we obtain the decomposition L = L′ ⊕ (L′)⊥ as a direct sum
of two invariant subspaces. But this contradicts the fact that the space L is cyclic.
Therefore, the transformation U can have cyclic subspaces only of dimension 3.

Putting together cases 1, 2, and 3, and taking into account the induction hypoth-
esis, we obtain the assertion of the theorem. �

Combining Theorems 7.27 and 7.65, we obtain the following corollary.

Corollary 7.66 For every transformation of a pseudo-Euclidean space, there exists
an orthonormal basis in which the matrix of the transformation has block-diagonal
form with blocks of the following types:

1. blocks of order 1 with elements ±1;
2. blocks of order 2 of type (7.29);
3. blocks of order 2 of type (7.91)–(7.92);
4. blocks of order 3 corresponding to a three-dimensional cyclic subspace with

eigenvalue ±1.

It follows from the law of inertia that the matrix of a Lorentz transformation can
contain not more than one block of type 3 or 4.

Let us note as well that a block of type 4 corresponding to a three-dimensional
cyclic subspace cannot be brought into Jordan normal form in an orthonormal basis.
Indeed, as we saw earlier, a block of type 4 is brought into Jordan normal form in the
basis (7.94), where the eigenvector en is lightlike, and therefore, it cannot belong to
any orthonormal basis.

With the proof of Theorem 7.65 we have established necessary conditions for a
Lorentz transformation to have a cyclic subspace—in particular, its dimension must
be 3, corresponding to an eigenvalue equal to ±1, and eigenvector that is lightlike.
Clearly, these necessary conditions are not sufficient, since in deriving them, we
used the equalities (ei , ek) = (U(ei ),U(ek)) for only some of the vectors of the
basis (7.94). Let us show that Lorentz transformations with cyclic subspaces indeed
exist.

Example 7.67 Let us consider a vector space L of dimension n = 3. Let us choose
in L a basis e1, e2, e3 and define a transformation U : L → L using relationships
(7.95) with the number λ = ±1. Then the matrix of the transformation U will take
the form of a Jordan block with eigenvalue λ.

Let us choose the Gram matrix for a basis e1, e2, e3 such that L is given the struc-
ture of a pseudo-Euclidean space. With the proof of Theorem 7.65, we have found
necessary conditions (e2, e3) = 0 and (e2

3) = 0. Let us set (e2
1) = a, (e1, e2) = b,

(e1, e3) = c, and (e2
2) = d . Then the Gram matrix can be written as

A =
⎛

⎝
a b c

b d 0
c 0 0

⎞

⎠ . (7.98)
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On the other hand, as we know (see Example 7.51, p. 270), in L there exists an
orthonormal basis in which the Gram matrix is diagonal and has determinant −1.
Since the sign of the determinant of the Gram matrix is one and the same for all
bases, it follows that |A| = −c2d < 0, that is, c �= 0 and d > 0.

The conditions c �= 0 and d > 0 are also sufficient for the vector space in which
the inner product is given by the Gram matrix A in the form (7.98) to be a pseudo-
Euclidean space. Indeed, choosing a basis g1,g2,g3 in which the quadratic form
associated with the matrix A has canonical form (6.28), we see that the condition
|A| < 0 is satisfied by, besides a pseudo-Euclidean space, only a space in which
(g2

i ) = −1 for all i = 1,2,3. But such a quadratic form is negative definite, that is,
(x2) < 0 for all vectors x �= 0, and this contradicts that (e2

2) = d > 0.
Let us now consider the equalities (ei , ek) = (U(ei ),U(ek)) for all indices i ≤ k

from 1 to 3. Taking into account λ2 = 1, (e2, e3) = 0, and (e2
3) = 0, we see that they

are satisfied automatically except for the cases i = k = 1 and i = 1, k = 2. These
two cases give the relationships 2λb + d = 0 and c + d = 0. Thus we may choose
the number a arbitrarily, the number d to be any positive number, and set c = −d

and b = −λd/2. It is also not difficult to ascertain that linearly independent vectors
e1, e2, e3 satisfying such conditions in fact exist.

Just as in a Euclidean space, the presence of different orientations of a pseudo-
Euclidean space determined by the value of ε(U) for the Lorentz transformation
U is connected with the concept of continuous deformation of a transformation
(p. 230), which defines an equivalence relation on the set of transformations.

Let Ut be a family of Lorentz transformations continuously depending on the pa-
rameter t . Then |Ut | also depends continuously on t , and since the determinant of
a Lorentz transformation is equal to ±1, the value of |Ut | is constant for all t . Thus
Lorentz transformations with determinants having opposite signs cannot be contin-
uously deformed into each other. But in contrast to orthogonal transformations of a
Euclidean space, Lorentz transformations Ut have an additional characteristic, the
number ν(Ut ) (see the definition on p. 276). Let us show that like the determinant
|Ut |, the number ν(Ut ) is also constant.

To this end, let us choose an arbitrary timelike vector e and make use of
Lemma 7.59. The vector Ut (e) is also timelike, and moreover, ν(Ut ) = +1 if e and
Ut (e) lie inside one pole of the light cone, that is, (e,Ut (e)) < 0, and ν(Ut ) = −1
if e and Ut (e) lie inside different poles, that is, (e,Ut (e)) > 0. It then remains to
observe that the function (e,Ut (e)) depends continuously on the argument t , and
therefore can change sign only if for some value of t , it assumes the value zero. But
from inequality (7.82) for timelike vectors x = e and y = Ut (e), there follows the
inequality

(
e,Ut (e)

)2 ≥ (
e2) · (Ut (e)

2) > 0,

showing that (e,Ut (e)) cannot be zero for any value of t .
Thus taking into account Theorem 7.63, we see that the number of equivalence

classes of Lorentz transformations is certainly not less than four. Now we shall
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show that there are exactly four. To begin with, we shall establish this for a pseudo-
Euclidean plane, and thereafter shall prove it for a pseudo-Euclidean space of arbi-
trary dimension.

Example 7.68 The matrices (7.91), (7.92) presenting all possible Lorentz transfor-
mations of a pseudo-Euclidean plane can be continuously deformed into the matri-
ces

E =
(

1 0
0 1

)
, F1 =

(−1 0
0 −1

)
,

F2 =
(

1 0
0 −1

)
, F3 =

(−1 0
0 1

) (7.99)

respectively. Indeed, we obtain the necessary continuous deformation if in the ma-
trices (7.91), (7.92) we replace the parameter ψ by (1 − t)ψ , where t ∈ [0,1]. It is
also clear that none of the four matrices (7.99) can be continuously deformed into
any of the others: any two of them differ either by the signs of their determinants
or in that one of them preserves the poles of the light cone, while the other causes
them to exchange places.

In the general case, we have an analogue of Theorem 7.28.

Theorem 7.69 Two Lorentz transformations U1 and U2 of a real pseudo-
Euclidean space are continuously deformable into each other if and only if ε(U1) =
ε(U2).

Proof Just as in the case of Theorem 7.28, we begin with a more specific assertion:
we shall show that an arbitrary Lorentz transformation U for which

ε(U) = (|U|, ν(U)
) = (+1,+1) (7.100)

holds can be continuously deformed into E . Invoking Theorem 7.65, let us examine
the orthogonal decomposition (7.93), denoting by Ui the restriction of the transfor-
mation U to the invariant subspace Li , where i = 0,1. We shall investigate three
cases in turn.

Case 1. In the decomposition (7.93), the dimension of the subspace L1 is equal to
1, that is, L1 = 〈e〉, where (e2) < 0. Then to the subspace L1, there corresponds
in the matrix of the transformation U a block of order 1 with σ = +1 or −1,
and U0 is an orthogonal transformation that depending on the sign of σ , can be
proper or improper, so that the condition |U| = σ |U0| = 1 is satisfied. However,
it is easy to see that for σ = −1, we have ν(U) = −1 (since (e,U(e)) > 0), and
therefore, the condition (7.100) leaves only the case σ = +1, and consequently, the
orthogonal transformation U0 is proper. Then U1 is the identity transformation (of
a one-dimensional space). By Theorem 7.28, an orthogonal transformation U0 is
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continuously deformable into the identity, and therefore, the transformation U is
continuously deformable into E .

Case 2. In the decomposition (7.93), the dimension of the subspace L1 is equal to
2, that is, L1 is a pseudo-Euclidean plane. Then as we established in Examples 7.62
and 7.68, in some orthonormal basis of the plane L1, the matrix of the transformation
U1 has the form (7.92) and is continuously deformable into one of the four matrices
(7.99). It is obvious that the condition ν(U) = 1 is associated with only the matrix
E and one of the matrices F2, F3, namely the one in which the eigenvalues ±1
correspond to the eigenvectors g± in such a way that (g2+) < 0 and (g2−) > 0. In
this case, it is obvious that we have the orthogonal decomposition L1 = 〈g+〉⊕〈g−〉.

If the matrix of the transformation U1 is continuously deformable into E, then
the orthogonal transformation U0 is proper, and it follows that it is also continuously
deformable into the identity, which proves our assertion.

If the matrix of the transformation U1 is continuously deformable into F2 or
F3, then the orthogonal transformation U0 is improper, and consequently, its matrix
is continuously deformable into the matrix (7.32), which has the eigenvalue −1
corresponding to some eigenvector h ∈ L0. From the orthogonal decomposition L =
L0 ⊕ 〈g+〉 ⊕ 〈g−〉, taking into account (g2+) < 0, it follows that the invariant plane
L′ = 〈g−,h〉 is a Euclidean space. The matrix of the restriction of U to L′ is equal
to −E, and is therefore continuously deformable into E. And this implies that the
transformation U is continuously deformable into E .

Case 3. In the decomposition (7.93), the subspace L1 is a cyclic three-dimensional
pseudo-Euclidean space with eigenvalue λ = ±1. This case was examined in detail
in Example 7.67, and we will use the notation introduced there. It is obvious that the
condition ν(U) = 1 is satisfied only for λ = 1, since otherwise, the transformation
U1 takes the lightlike eigenvector e3 to −e3, that is, it transposes the poles of the
light cone. Thus condition (7.100) corresponds to the Lorentz transformation U1

with the value ε(U1) = (+1,+1) and proper orthogonal transformation U0.
Let us show that such a transformation U1 is continuously deformable into the

identity. Since U0 is obviously also continuously deformable into the identity, this
will give us the required assertion.

Thus let λ = 1. We shall fix in L1 a basis e1, e2, e3 satisfying the following con-
ditions introduced in Example 7.67:

(
e2

1

) = a, (e1, e2) = −d

2
,

(e1, e3) = −d,
(
e2

2

) = d, (e2, e3) = (
e2

3

) = 0

(7.101)

with some numbers a and d > 0. The Gram matrix A in this basis has the form
(7.98) with c = −d and b = −d/2, while the matrix U1 of the transformation U1

has the form of a Jordan block.
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Let Ut be a linear transformation of the space L1 whose matrix in the basis
e1, e2, e3 has the form

Ut =
⎛

⎝
1 0 0
t 1 0

ϕ(t) t 1

⎞

⎠ , (7.102)

where t is a real parameter taking values from 0 to 1, and ϕ(t) is a continuous func-
tion of t that we shall choose in such a way that Ut is a Lorentz transformation. As
we know, for this, the relationship (7.85) with matrix U = Ut must be satisfied. Sub-
stituting in the equality U∗

t AUt = A the matrix A of the form (7.98) with c = −d

and b = −d/2 and matrix Ut of the form (7.102) and equating corresponding el-
ements on the left- and right-hand sides, we obtain that the equality U∗

t AUt = A

holds if ϕ(t) = t (t − 1)/2. For such a choice of function ϕ(t), we obtain a family
of Lorentz transformations Ut depending continuously on the parameter t ∈ [0,1].
Moreover, it is obvious that for t = 1, the matrix Ut has the Jordan block U1, while
for t = 0, the matrix Ut equals E. Thus the family Ut effects a continuous defor-
mation of the transformation U1 into E .

Now let us prove the assertion of Theorem 7.69 in general form. Let W be a
Lorentz transformation with arbitrary ε(W). We shall show that it can be continu-
ously deformed into the transformation F , having in some orthonormal basis the
block-diagonal matrix

F =
(

E 0
0 F ′

)
,

where E is the identity matrix of order n − 2 and F ′ is one of the four matrices
(7.99). It is obvious that by choosing a suitable matrix F ′, we may obtain the Lorentz
transformation F with any desired ε(F ). Let us select the matrix F ′ in such a way
that ε(F ) = ε(W).

Let us select in our space an arbitrary orthonormal basis, and in that basis, let
the transformation W have matrix W . Then the transformation U having in this
same basis the matrix U = WF is a Lorentz transformation, and moreover, by our
choice of ε(F ) = ε(W), we have the equality ε(U) = ε(W)ε(F ) = (+1,+1). Fur-
ther, from the trivially verified relationship F−1 = F , we obtain W = UF , that is,
W = UF . We shall now make use of a family Ut that effects the continuous defor-
mation of the transformation U into E . From the equality W = UF , with the help
of Lemma 4.37, we obtain the relationship Wt = UtF , in which W0 = EF = F
and W1 = UF = W . Thus it is this family Wt = UtF that accomplishes the defor-
mation of the Lorentz transformation W into F .

If U1 and U2 are Lorentz transformations such that ε(U1) = ε(U2), then by
what we showed earlier, each of them is continuously deformable into F with one
and the same matrix F ′. Consequently, by transitivity, the transformations U1 and
U2 are continuously deformable into each other. �

Similarly to what we did in Sects. 4.4 and 7.3 for nonsingular and orthogonal
transformations, we can express the fact established by Theorem 7.69 in topological
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form: the set of Lorentz transformations of a pseudo-Euclidean space of a given
dimension has exactly four path-connected components. They correspond to the four
possible values of ε(U).

Let us note that the existence of four (instead of two) orientations is not a specific
property of pseudo-Euclidean spaces with the quadratic form (7.76), as was the case
with the majority of properties of this section. It holds for all vector spaces with a
bilinear inner product (x,y), provided that it is nonsingular and the quadratic form
(x2) is neither positive nor negative definite. We can indicate (without pretending
to provide a proof) the reason for this phenomenon. If the form (x2), in canonical
form, appears as

x2
1 + · · · + x2

s − x2
s+1 − · · · − x2

n, where s ∈ {1, . . . , n − 1},
then the transformations that preserve it include first of all, the orthogonal trans-
formations preserving the form x2

1 + · · · + x2
s and not changing the coordinates

xs+1, . . . , xn, and secondly, the transformations preserving the quadratic form
x2
s+1 +· · ·+ x2

n and not changing the coordinates x1, . . . , xs . Every type of transfor-
mation is “responsible” for its own orientation.



Chapter 8
Affine Spaces

The usual objects of study in plane and solid geometry are the plane and three-
dimensional space, both of which consist of points. However, vector spaces are
logically simpler, and therefore, we began by studying them. Now we can move
on to “point” (affine) spaces. The theory of such spaces is closely related to that
of vector spaces, and so in this chapter, we shall be concerned only with questions
relating specifically to this case.

8.1 The Definition of an Affine Space

Let us return to the starting point in the theory of vector spaces, namely to Sect. 3.1.
There, we said that two points in the plane (or in space) determine a vector. We shall
make this property the basis of the axiomatic definition of affine spaces.

Definition 8.1 An affine space is a pair (V ,L) consisting of a set V (whose elements
are called points) and a vector space L, on which a rule is defined whereby two points
A,B ∈ V are associated with a vector of the space L, which we shall denote by

−→
AB

(the order of the points A and B is significant). Here the following conditions must
be satisfied:

(1)
−→
AB + −→

BC = −→
AC.

(2) For every three points A,B,C ∈ V , there exists a unique point D ∈ V such that

−→
AB = −→

CD. (8.1)

(3) For every two points A,B ∈ V and scalar α, there exists a unique point C ∈ V

such that
−→
AC = α

−→
AB. (8.2)

Remark 8.2 From condition (2), it follows that we also have
−→
AC = −→

BD. Indeed, in
view of condition (1), we have the equalities

−→
AB + −→

BD = −→
AD and

−→
AC + −→

CD =
I.R. Shafarevich, A.O. Remizov, Linear Algebra and Geometry,
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Fig. 8.1 Equality of vectors

−→
AD. This implies that

−→
AB + −→

BD = −→
AC + −→

CD (see Fig. 8.1). Since
−→
AB = −→

CD by
assumption, and all vectors belong to the space L, it follows that

−→
AC = −→

BD.

From these conditions and the definition of a vector space, it is easy to derive
that for an arbitrary point A ∈ V , the vector

−→
AA is equal to 0, and for every pair of

points A,B ∈ V , we have the equality

−→
BA = −−→

AB.

It is equally easy to verify that if we are given a point A ∈ V and a vector x = −→
AB

in the space L, then the point B ∈ V is thereby uniquely determined.

Theorem 8.3 The totality of all vectors of the form
−→
AB , where A and B are arbi-

trary points of V , forms a subspace L′ of the space L.

Proof Let x = −→
AB , y = −→

CD. By condition (2), there exists a point K such that−→
BK = −→

CD. Then by condition (1), the vector

−→
AK = −→

AB + −→
BK = −→

AB + −→
CD = x + y

is again contained in the subspace L′. Analogously, for any vector x = −→
AB in L′,

condition (3) gives the vector
−→
AC = α

−→
AB = αx, which consequently also is con-

tained in L′. �

In view of Theorem 8.3, we shall require for the study of an affine space (V ,L)

not all the vectors of the space L, but only those that lie in the subspace L′. Therefore,
in what follows, we shall denote the space L′ by L. In other words, we shall assume
that the following condition is satisfied: for every vector x ∈ L, there exist points A

and B in V such that x = −→
AB .

This condition does not impose any additional constraints. It is simply equivalent
to a change of notation: L instead of L′.

Example 8.4 Every vector space L defines an affine space (L,L) if for two vectors

a,b ∈ L considered as points of the set V = L, we set
−→
ab = b − a. In particular, the

totality K
n of all rows of length n defines an affine space.
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Example 8.5 The plane and space studied in a course in elementary or analytic
geometry are examples of affine spaces.

Condition (2) in the definition of an affine space shows that no matter how we
choose the point O in the set V , every vector x ∈ L can be represented as x = −→

OA.
Moreover, from the requirement of the uniqueness of the point D in condition (2),
it follows that for a designated point O and vector x, the point A is uniquely de-
termined by the condition

−→
OA = x. Thus having chosen (arbitrarily) a point O ∈ V

and associating with each point A ∈ V the vector
−→
OA, we obtain a bijection between

the points A of the set V and the vectors x of the space L. In other words, an affine
space is a vector space in which the coordinate origin O is not fixed. This notion is
more natural from a physical point of view; in an affine space, all points are created
equal, or in other words, the space is uniform. Mathematically, such a notion seems
more complex: we need to specify not one, but two sets: V and L. And though we
write an affine space as a pair (V ,L), we shall often denote such a space simply by
V , leaving L implied and assuming that the condition formulated above is satisfied.
In this case, we shall call L the space of vectors of the affine space V .

Definition 8.6 The dimension of an affine space (V ,L) is the dimension of the as-
sociated vector space L. When we wish to focus our attention on the space V , then
we shall denote the dimension by dimV .

In the sequel, we shall consider only spaces of finite dimension. We shall call an
affine space of dimension 1 a line, and an affine space of dimension 2, a plane.

Having selected the point O ∈ V , we obtain a bijection V → L. If dim L = n

and we choose in the space L some basis e1, . . . , en, then we have the isomorphism
L→̃K

n. Thus for an arbitrary choice of a point O ∈ V and basis in L, we obtain a bi-
jection V →K

n and define each point of the affine space V by the set of coordinates
(α1, . . . , αn) of the vector x = −→

OA in the basis e1, . . . , en.

Definition 8.7 The point O and basis e1, . . . , en together are called a frame of ref-
erence in the space V , and we write (O; e1, . . . , en). The n-tuple (α1, . . . , αn) asso-
ciated with the point A ∈ V is called the coordinates of the point A of the associated
frame of reference.

If relative to the frame of reference (O; e1, . . . , en), the point A has coordinates
(α1, . . . , αn), while the point B has coordinates (β1, . . . , βn), then the vector

−→
AB

has, with respect to the basis e1, . . . , en, coordinates (β1 − α1, . . . , βn − αn).
Just as with the selection of a basis in a vector space, every vector of that space is

determined by its coordinates, likewise is every point of an affine space determined
by its coordinates in a given frame of reference. Thus a frame of reference plays the
same role in the theory of affine spaces as that played by a basis in the theory of
vector spaces. We have defined frame of reference as a collection consisting of the
point O and n vectors e1, . . . , en that form a basis of L. Any of these vectors ei can
be written in the form ei = −−→

OAi , and then it is possible to give the frame of reference
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as a collection of n+1 points O,A1, . . . ,An. Here the points O,A1, . . . ,An are not
arbitrary; they must satisfy the property that the vectors

−−→
OA1, . . . ,

−−→
OAn form a basis

of L, that is, they must be linearly independent.
We have seen that the choice of a point O in V determines an isomorphism be-

tween V and L that assigns to each point A ∈ V the vector
−→
OA ∈ L. Let us consider

how this correspondence changes when we change the point O . If we began with the
point O ′, then we will have placed in correspondence with the point A, the vector−−→
O ′A, which, by definition of an affine space, is equal to

−−→
O ′O + −→

OA. Thus if in the
first case, we assign to the point A the vector x, then in the second, we assign the

vector x + a, where a = −−→
O ′O . We obtain a corresponding mapping of the set V if

to the point A, we assign the point B such that
−→
AB = a. Such a point B is uniquely

determined by the choice of A and a.

Definition 8.8 A translation of an affine space (V ,L) by a vector a ∈ L is a mapping
of the set V into itself that assigns to the point A the point B such that

−→
AB = a. (The

existence and uniqueness of such a point B ∈ V for every A ∈ V and a ∈ L follows
from the definition of affine space.)

We shall denote the translation by the vector a by Ta . Thus the definition of a
translation can be written as the formula

Ta(A) = B, where
−→
AB = a.

From the given definition, a translation is an isomorphism of the set V into itself. It
can be depicted with the help of the diagram

V

ψ

Ta L

V

ψ ′

(8.3)

where the bijection ψ between V and L is defined using the point O , while the

bijection ψ ′ uses the point O ′, and Ta is a translation by the vector a = −−→
O ′O . As a

result, the mapping ψ is the product (sequential application, or composition) of the
mappings Ta and ψ ′. This relationship can be more briefly written as ψ ′ = ψ + a.

Proposition 8.9 Translations possess the following properties:

(1) TaTb = Ta+b,
(2) T0 = E ,
(3) T−a = T −1

a .
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Proof In property (1), the left-hand side consists of the product of mappings, which
means that for every point C ∈ V , the equality

Ta

(
Tb(C)

) = Ta+b(C) (8.4)

is satisfied. Let us represent the vector b in the form b = −→
CP (not only is this pos-

sible, but by the definition of affine space, the point P ∈ V is uniquely determined).
Then we have the equality Tb(C) = P . Likewise, let us represent the vector a in the
form a = −→

PQ. Then analogously, Ta(P ) = Q. It follows from these relationships
that

a + b = −→
CP + −→

PQ = −→
CQ,

from which we obviously obtain Ta+b(C) = Q. On the other hand, we have the
equality Ta(Tb(C)) = Ta(P ) = Q, which proves the relationship (8.4).

Properties (2) and (3) can be proved even more easily. �

Let us note that for any two points A,B ∈ V , there exists a unique vector a ∈ L

for which Ta(A) = B , namely, the vector a = −→
AB .

Suppose that we are given a certain frame of reference (O; e1, . . . , en). Relative
to this frame of reference, every point A ∈ V has coordinates (x1, . . . , xn). A func-
tion F(A) defined on the affine space V and taking numeric values is called a poly-
nomial if it can be written as a polynomial in the coordinates x1, . . . , xn.

This definition can be given a different formulation. Let us denote by ψ : V → L
the bijection between V and L determined by the selection of an arbitrary point O .
Then the function F on V is a polynomial if it can be represented in the form
F(A) = G(ψ(A)), where G(x) is a polynomial on the space L (see the definition
on p. 127). To be sure, it is still necessary to verify that this definition does not de-
pend on the choice of frame of reference (O; e1, . . . , en), but this can be done very
easily. If ψ ′ : V → L is a bijection between V and L determined by the choice of
point O ′ (cf. diagram (8.3)), then ψ ′ = ψ + a. As we saw in Sect. 3.8, the property
of a function G(x) being a polynomial does not depend on the choice of basis in L,
and it remains to verify that for a polynomial G(x) and vector a ∈ L, the function
G(x + a) is also a polynomial. It is clearly sufficient to verify this for the monomial
cx

k1
1 · · ·xkn

n . If the vector x has coordinates x1, . . . , xn, and the vector a has coor-

dinates a1, . . . , an, then substituting them into the monomial cx
k1
1 · · ·xkn

n , we obtain
the expression c(x1 + a1)

k1 · · · (xn + an)
kn , which is clearly also a polynomial in the

variables x1, . . . , xn.
Using the same considerations as those employed in Example 3.86 on p. 130, we

may define for an arbitrary polynomial F on an affine space V its differential dOF

at an arbitrary point O ∈ V . Here the differential dOF will be a linear function
on the space of vectors L of the space V , that is, it will be a vector in the dual
space L∗. Indeed, let us consider the bijection ψ : V → L constructed earlier, for
which ψ(O) = 0; let us represent F in the form F(A) = G(ψ(A)), where G(x) is
some polynomial on the vector space L; and let us define dOF = d0G as a linear
function on L.
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Suppose that we are given the frame of reference (O; e1, . . . , en) in the space V .
Then F(A) is a polynomial in the coordinates of the point A with respect to this
frame of reference. Let us write down the expression dOF in these coordinates. By
definition, the differential

dOF = d0G =
n∑

i=1

∂G

∂xi

(0)xi

is a linear function in the coordinates x1, . . . , xn with respect to the basis e1, . . . , en.
Here ∂G/∂xi is a polynomial, and it corresponds to some polynomial Φi on V ,
that is, it has the form Φi(A) = ∂G

∂xi
(ψ(A)). By definition, we set Φi = ∂F/∂xi . It is

easy to verify that if we express F and Φi as polynomials in x1, . . . , xn, then Φi will
indeed be the partial derivative of F with respect to the variable xi . Since ψ(O) = 0,
it follows that ∂G

∂xi
(0) = ∂F

∂xi
(O). Consequently, we obtain for the differential dOF ,

the expression

dOF =
n∑

i=1

∂F

∂xi

(O)xi,

which is similar to formula (3.70) obtained in Sect. 3.8.

8.2 Affine Spaces

Definition 8.10 A subset V ′ ⊂ V of an affine space (V ,L) is an affine subspace if
the set of vectors

−→
AB for all A,B ∈ V ′ forms a vector subspace L′ of the vector

space L.

It is obvious that then V ′ itself is an affine subspace, and L′ is its space of vectors.
If dimV ′ = dimV − 1, then V ′ is called a hyperplane in V .

Example 8.11 A typical example of an affine subspace is the set V ′ of solutions of
the system of linear equations (1.3). If the coefficients aij and constants bi of the
system of equations (1.3) lie in the field K, then the set of solutions V ′ is contained
in the set of rows Kn of length n, which we view as an affine space (Kn,Kn), that
is, V = K

n and L = K
n.

For a proof of the fact that the solution set V ′ is an affine subspace, let us verify
that its space of vectors L′ is the solution space of the homogeneous system of linear
equations associated with (1.3). That the set of solutions of a linear homogeneous
system is a vector subspace of Kn was established in Sect. 3.1 (Example 3.8). Let
the rows x and y be solutions of the system (1.3), viewed now as points of the affine
space V = K

n. We must verify that the vector −→xy defined as in the above example
is contained in L′. But in accordance with this example, we must set −→xy = y − x,
and it then remains for us to verify that the row y − x belongs to the subspace L′,
that is, it is a solution of the homogeneous system associated with the system (1.3).
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It suffices to verify this property separately for each equation. Let the ith equation
of the linear homogeneous system associated with (1.3) be given in the form (1.10),
that is, Fi(x) = 0, where Fi is some linear function. By assumption, x and y are
solutions of the system (1.3), in particular, Fi(x) = bi and Fi(y) = bi . From this it
follows that Fi(y − x) = Fi(y) − Fi(x) = bi − bi = 0, as asserted.

Example 8.12 Let us now prove that conversely, every affine subspace of the affine
space (Kn,Kn) is defined by linear equations, that is, if V ′ is an affine subspace,
then V ′ coincides with the set of solutions of some system of linear equations.
Since V ′ is a subspace of the affine space (Kn,Kn), it follows by definition that
the corresponding set of vectors L′ is a subspace of the vector space K

n. We saw in
Sect. 3.1 (Example 3.8) that it is then defined in K

n by a homogeneous system of
linear equations

F1(x) = 0, F2(x) = 0, . . . , Fm(x) = 0. (8.5)

Let us consider an arbitrary point A ∈ V ′ and set Fi(A) = bi for all i = 1, . . . ,m.
We shall prove that then the subspace V ′ coincides with the set of solutions of the
system

F1(x) = b1, F2(x) = b2, . . . , Fm(x) = bm. (8.6)

Indeed, let us take an arbitrary point B ∈ V ′. Let the points A and B have coordi-
nates A = (α1, . . . , αn) and B = (β1, . . . , βn) in some frame of reference. Then the
coordinates of the vector

−→
AB are equal to (β1 − α1, . . . , βn − αn), and we know

that the point B belongs to V ′ if and only if the vector x = −→
AB belongs to the sub-

space L′, that is, satisfies equations (8.5). Now using the fact that the functions Fi

are linear, we obtain that for any one of them,

Fi(β1 − α1, . . . , βn − αn) = Fi(β1, . . . , βn) − Fi(α1, . . . , αn) = Fi(B) − bi.

This implies that the point B belongs to the affine subspace V ′ if and only if Fi(B) =
bi , that is, its coordinates satisfy equations (8.6).

Definition 8.13 Affine subspaces V ′ and V ′′ are said to be parallel if they have the
same set of vectors, that is, if L′ = L′′.

It is easy to see that two parallel subspaces either have no points in common or
else coincide. Indeed, suppose that V ′ and V ′′ are parallel and the point A belongs
to V ′ ∩ V ′′. Since the spaces of vectors for V ′ and V ′′ coincide, it follows that for
an arbitrary point B ∈ V ′, there exists a point C ∈ V ′′ such that

−→
AB = −→

AC. Hence,
taking into account the uniqueness of the point D in the relationship (8.1) from the
definition of an affine space, it follows that B = C, which implies that V ′ ⊂ V ′′.
Since the definition of parallelism does not depend on the order of the subspaces V ′
and V ′′, the opposite inclusion V ′′ ⊂ V ′ holds as well, which yields that V ′ = V ′′.
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Let V ′ and V ′′ be two parallel subspaces, and let us choose in each of them a
point: A ∈ V ′ and B ∈ V ′′. Setting the vector

−→
AB equal to a, we obtain, by definition

of the translation Ta , that Ta(A) = B .
Let us consider an arbitrary point C ∈ V ′. It follows from the definition of par-

allelism that there exists a point D ∈ V ′′ such that
−→
AC = −→

BD. From this, it fol-
lows easily that

−→
CD = −→

AB = a; see Fig. 8.1 and Remark 8.2. But this implies that
Ta(C) = D. In other words, Ta(V

′) ⊂ V ′′. Similarly, we obtain that T−a(V
′′) ⊂ V ′,

whence from properties 1, 2, and 3 of a translation, it follows that V ′′ ⊂ Ta(V
′).

This implies that Ta(V
′) = V ′′, that is, any two parallel subspaces can be mapped

into each other by a translation. Conversely, it is easy to verify that affine subspaces
V ′ and Ta(V

′) are parallel for any choice of V ′ and a.
Let us consider two different points A and B of an affine space (V ,L). Then

the totality of all points C whose existence is established by condition (3) in the
definition of affine space (with arbitrary scalars α) forms, as is easy to see, an affine
subspace V ′. The corresponding vector subspace L′ coincides with 〈−→AB〉. Therefore,
L′, and hence also the affine space (V ′,L′), is one-dimensional. It is called the line
passing through the points A and B .

The notion of a line is related to the general notion of affine subspace by the
following result.

Theorem 8.14 In order for a subset M of an affine space V defined over a field
of characteristic different from 2 to be an affine subspace of V , it is necessary and
sufficient that for every two points of M , the line passing through them be entirely
contained in M .

Proof The necessity of this condition is obvious. Let us prove its sufficiency. Let
us choose an arbitrary point O ∈ M . We need to prove that the set of vectors

−→
OA,

where A runs over all possible points of the set M , forms a subspace L′ of the
space of vectors L of the affine space (V ,L). Then for any other point B ∈ M , the
vector

−→
AB = −→

OB −−→
OA will lie in the subspace L′, whence (M,L′) will be an affine

subspace of the space (V ,L).
That the product of an arbitrary vector

−→
OA and arbitrary scalar α lies in L′ derives

from the condition that the line 〈−→OA〉 is contained in L′. Let us verify that the sum
of two vectors a = −→

OA and b = −→
OB contained in L′ is also contained in L′. For this,

we shall need the condition that we required on the set of points of a line only for
α = 1/2 (in order for us to be able to apply this condition, we have assumed that
the field K over which the affine space V in question is defined is of characteristic
different from 2). Let C be a point of the line passing through A and B such that−→
AC = 1

2
−→
AB . By definition, along with each pair of points A and B of the set M , the

line passing through them also belongs to this set. Hence it follows in particular that
we have C ∈ M and

−→
OC ∈ L′. Let us denote the vector

−→
OC by c; see Fig. 8.2. Then

we have the equalities

b = −→
OB = −→

OA + −→
AB = a + −→

AB, c = −→
OC = −→

OA + −→
AC = a + −→

AC,
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Fig. 8.2 Vectors
−→
OA,

−→
OB ,

and
−→
OC

Fig. 8.3 Independent points

and thus in our case, we have
−→
AB = b − a and

−→
AC = c − a, which implies c − a =

1
2 (b − a), that is, c = 1

2 (a + b). Consequently, the vector a + b equals 2c, and since
c is in L′, the vector a + b is also in L′. �

Now let A0,A1, . . . ,Am be a collection of m + 1 points in the affine space V .
Let us consider the subspace

L′ = 〈−−−→
A0A1,

−−−→
A0A2, . . . ,

−−−→
A0Am〉

of the space L. It does not depend on the choice of point A0 among the given points
A0,A1, . . . ,Am, and we may write it, for example, in the form 〈. . . ,−−−→

AiAj , . . .〉 for
all i and j , 0 ≤ i, j ≤ m. The set V ′ of all points B ∈ V for which the vector−−→
A0B is in L′ forms an affine subspace whose space of vectors is L′. By definition,
dimV ′ ≤ m, and moreover, dimV ′ = m if and only if dim L′ = m, that is, the vectors−−−→
A0A1,

−−−→
A0A2, . . . ,

−−−→
A0Am are linearly independent. This provides the basis for the

following definition.

Definition 8.15 Points A0,A1, . . . ,Am of an affine space V for which

dim〈−−−→
A0A1,

−−−→
A0A2, . . . ,

−−−→
A0Am〉 = m

are called independent.

For example, the points A0,A1, . . . ,An (where n = dimV ) determine a frame of
reference if and only if they are independent. Two distinct points are independent,
as are three noncollinear points, and so on. See Fig. 8.3.

The following theorem gives an important property of affine spaces, connecting
them with the familiar space of elementary geometry.

Theorem 8.16 There is a unique line passing through every pair of distinct points
A and B of an affine space V .
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Proof It is obvious that distinct points A and B are independent, and the line V ′ ⊂ V

containing them must coincide with the set of points C ∈ V for which
−→
AC ∈ 〈−→AB〉

(instead of
−→
AC, one could consider the vector

−→
BC; it determines the same subspace

V ′ ⊂ V ). If
−→
AC = α

−→
AB and

−−→
AC′ = β

−→
AB , then

−−→
CC′ = (β − α)

−→
AB , whence it fol-

lows that V ′ is a line. �

Having selected on any line P of the affine space V the point O (reference point)
and arbitrary point E ∈ P not equal to O (scale of measurement), we obtain for an
arbitrary point A ∈ P the relationship

−→
OA = α

−→
OE, (8.7)

where α is some scalar, that is, an element of the field K over which the affine space
V under consideration is defined. The assignment A 	→ α, as is easily verified, es-
tablishes a bijection between the points A ∈ P and scalars α. This correspondence,
of course, depends on the choice of points O and E on the line. In fact, we have here
a special case of the notion of coordinates relative to a frame of reference (O; e) on
the affine line P , where e = −→

OE.
As a result, we may associate with any three collinear points A, B , and C of an

affine space, excepting only the case A = B = C, a scalar α, called the affine ratio of
the points A, B , and C and denoted by (A,B,C). This is accomplished as follows. If
A �= B , then α is uniquely determined by the relationship

−→
AC = α

−→
AB . In particular,

α = 1 if B = C, and α = 0 if A = C. If A = B �= C, then we take α = ∞. And if all
three points A, B , and C coincide, then their affine ratio (A,B,C) is undefined.

Using the concept of oriented length of a line segment, we can write the affine
ratio of three points using the following formula:

(A,B,C) = AC

AB
, (8.8)

where AB denotes the signed length of AB , that is, AB = |AB| if the point A lies
to the left of B , and AB = −|AB| if the point A lies to the right of B . Here, of
course, in formula (8.8), we assume that a/0 = ∞ for every a �= 0.

For the remainder of this section, we shall assume that V is a real affine space.
In this case, obviously, the numbers α from relationship (8.7) corresponding to

the points of the line P are real, and the relationship α < γ < β between numbers
on the real line carries over to the corresponding points of the line P ⊂ V . If these
numbers α, β , and γ correspond to the points A, B , and C, then we say that the
point C lies between the points A and B .

Despite the fact that the relationship A 	→ α defined by formula (8.7) itself de-
pends on the choice of distinct points O and E on the line, the property of point C

that it lie between A and B does not depend on that choice (although with a different
choice of O and E, the order of the points A and B might, of course, change). In-
deed, it is easy to verify that by replacing the point O by O ′, to each of the numbers

α, β , and γ is added one and the same term λ corresponding to the vector
−−→
OO ′, and
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in replacing the point E by E′, each of the numbers α, β , and γ is multiplied by

one and the same number μ �= 0 such that
−→
OE = μ

−−→
OE′. For both operations, the

relationship α < γ < β for the point C and pair of points A and B is unchanged,
except that the numbers α and β in this inequality may exchange places (if they are
multiplied by μ < 0).

The property of a point C to lie between A and B is related to the affine ratio
for three collinear points introduced above. Namely, it is obvious that in the case of
a real space, the inequality (C,A,B) < 0 is satisfied if and only if the point C lies
between A and B .

Definition 8.17 The collection of all points on the line passing through the points
A and B that lie between A and B together with A and B themselves is called the
segment joining the points A and B and is denoted by [A,B]. Here the points A and
B are called the endpoints of the segment, and by definition, they belong to it.

Thus the segment is determined by two points A and B , but not by their order,
that is, by definition [B,A] = [A,B].

Definition 8.18 A set M ⊂ V is said to be convex if for every pair of points A,B ∈
M , the set M also contains the segment [A,B].

The notion of convexity is related to the partition of an affine space V by a
hyperplane V ′ into two half-spaces, in analogy with the partition of a vector space
into two half-spaces constructed in Sect. 3.2. In order to define this partition, let
us denote by L′ ⊂ L the hyperplane corresponding to V ′, and let us consider the
partition L \ L′ = L+ ∪ L− introduced earlier, choose an arbitrary point O ′ ∈ V ′, and
for a point A ∈ V \ V ′, state that A ∈ V + or A ∈ V − depending on the half-space

(L+ or L−) to which the vector
−−→
O ′A belongs.

A simple verification shows that the subsets V + and V − thus obtained depend
only on the half-spaces L+ and L− and not on the choice of point O ′ ∈ V ′. Obvi-
ously, V \ V ′ = V + ∪ V − and V + ∩ V − = ∅.

Theorem 8.19 The sets V + and V − are convex, but the entire set V \ V ′ is not.

Proof Let us begin by verifying the assertion about the set V +. Let A,B ∈ V +.

This implies that the vectors x = −−→
O ′A and y = −−→

O ′B belong to the half-space L+,
that is, they can be expressed in the form

x = αe + u, y = βe + v, α,β > 0,u,v ∈ L′, (8.9)

for some fixed vector e /∈ L′. Let us consider the vector z = −−→
O ′C and write it in the

form

z = γ e + w, w ∈ L′. (8.10)
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Assuming that the point C lies between A and B , let us prove that z ∈ L+, that
is, that γ > 0. The given condition, that the point C lies between A and B , can
be written with the help of an association between the points on the line passing
through A and B and the numbers that are the coordinates in the frame of refer-
ence (O;−→

OE) according to formula (8.7). Although this association depends on the
choice of points O and E, the property itself of “lying between,” as we have seen,
does not depend on this choice. Therefore, we may choose O = A and E = B . Then
in our frame of reference, the point A has coordinate 0, and the point B has coor-
dinate 1. Let C have coordinate λ. Since C ∈ [A,B], it follows that 0 ≤ λ ≤ 1. By
definition,

−→
AC = λ

−→
AB . But from the fact that

−→
AC = −−→

AO ′ + −−→
O ′C = z − x,

−→
AB = −−→

AO ′ + −−→
O ′B = y − x,

we obtain the equality z − x = λ(y − x), or equivalently, the equality

z = (1 − λ)x + λy.

Using formulas (8.9) and (8.10), we obtain from the last equality the relationship
γ = (1 − λ)α + λβ , from which, taking into account the inequalities α > 0, β > 0,
and 0 ≤ λ ≤ 1, it follows that γ > 0.

The convexity of the set V − is proved in exactly the same way.
We shall prove, finally, that the set V \V ′ is not convex. In view of the convexity

of V + and V −, of interest to us is only the case in which the points A and B lie in
different half-spaces, for example, A ∈ V + and B ∈ V − (or conversely, A ∈ V − and
B ∈ V +, but this case is completely analogous). The condition A ∈ V + and B ∈ V −
means that in formulas (8.9), we have α > 0 and β < 0. In analogy to what has gone
before, for an arbitrary point C ∈ [A,B], let us construct the vector z as was done
in (8.10), and thus obtain the equality γ = (1 − λ)α + λβ . If the numbers α and
β are of opposite sign, an elementary computation shows that there always exists
a number λ ∈ [0,1] such that (1 − λ)α + λβ = 0, and this yields that C ∈ [A,B].
Thus the theorem is proved in its entirety. �

Thus the set V + is characterized by the property that every pair of its points are
connected by a segment lying entirely within it. This holds as well for the set V −. At
the same time, no two points A ∈ V + and B ∈ V − can be joined by a segment that
does not intersect the hyperplane V ′. This consideration gives another definition of
the partition V \ V ′ = V + ∪ V −, one that does not appeal to vector spaces.

Let us consider the sequence of subspaces

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = V, dimVi = i. (8.11)

From the last condition, it follows that Vi−1 is a hyperplane in Vi , and this implies
that the partition defined by Vi \Vi−1 = V +

i ∪V −
i is the partition introduced above.

A pair of half-spaces (Vi−1,Vi) is said to be directed if it is indicated which of
two convex subsets of the set Vi \ Vi−1 we denote by V +

i , and which by V −
i . The
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sequence of subspaces (8.11) is called a flag if each pair (Vi−1,Vi) is directed. We
note that in a flag defined by the sequence (8.11), the subspace V0 has dimension 0,
that is, it consists of a single point. This point is called the center of the flag.

8.3 Affine Transformations

Definition 8.20 An affine transformation of an affine space (V ,L) into another
affine space (V ′,L′) is a pair of mappings

f : V → V ′, F : L → L′,

satisfying the following two conditions:

(1) The mapping F : L → L′ is a linear transformation of vector spaces L → L′.
(2) For every pair of points A,B ∈ V , we have the equality

−−−−−−→
f (A)f (B) = F (

−→
AB).

Condition (2) means that the linear transformation F is determined by the map-
ping f . It is called the linear part of the mapping f and is denoted by Λ(f ). In the
sequel we shall, as a rule, indicate only the mapping f : V → V ′, since the linear
part F is uniquely determined by it, and we shall view the affine transformation as
a mapping from V to V ′.

Theorem 8.21 Affine transformations possess the following properties:

(a) The composition of two affine transformations f and g is again an affine trans-
formation, which we denote by gf . Here Λ(gf ) = Λ(g)Λ(f ).

(b) An affine transformation f is bijective if and only if the linear transformation
Λ(f ) is bijective. In this case, the inverse transformation f −1 is also an affine
transformation, and Λ(f −1) = Λ(f )−1.

(c) If f = e, the identity transformation, then Λ(f ) = E .

Proof All these assertions are proved by direct verification.
(a) Let (V ,L), (V ′,L′), and (V ′′,L′′) be affine spaces. Let us consider the affine

transformation f : V → V ′ with linear part F = Λ(f ) and another affine transfor-
mation g : V ′ → V ′′ with linear part G = Λ(g). We shall denote the composition of
f and g by h, and the composition of F and G by H . Then by the definition of the
composition of arbitrary mappings of sets, we have h : V → V ′′ and H : L → L′′,
and moreover, we know that H is a linear transformation. Thus we must show that
every pair of points A,B ∈ V satisfies the equality

−−−−−−→
h(A)h(B) = H(

−→
AB). But since

by definition, we have the equalities

−−−−−−→
f (A)f (B) = F (

−→
AB),

−−−−−−−→
g
(
A′)g

(
B ′) = G

(−−→
A′B ′)
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for arbitrary points A,B ∈ V and A′,B ′ ∈ V ′, it follows that

−−−−−−→
h(A)h(B) = −−−−−−−−−−−→

g
(
f (A)

)
g
(
f (B)

) = G
(−−−−−−→
f (A)f (B)

) = G
(
F (

−→
AB)

) = H(
−→
AB).

The proofs of assertions (b) and (c) are just as straightforward. �

Let us give some examples of affine transformations.

Example 8.22 For affine spaces (L,L) and (L′,L′), a linear transformation f = F :
L → L′ is affine, and moreover, it is obvious that Λ(f ) = F .

In the sequel, we shall frequently encounter affine transformations in which the
affine spaces V and V ′ coincide (and this also applies to the spaces of vectors L and
L′). We shall call such an affine transformation of a space V an affine transformation
of the space into itself.

Example 8.23 A translation Ta by an arbitrary vector a ∈ L is an affine transfor-
mation of the space V into itself. It follows from the definition of translation that
Λ(Ta) = E . Conversely, every affine transformation whose linear part is equal to E
is a translation. Indeed, by the definition of an affine transformation, the condition

Λ(f ) = E implies that
−−−−−−→
f (A)f (B) = −→

AB . Recalling Remark 8.2 and Fig. 8.1, we

see that from this assertion follows the equality
−−−−→
Af (A) = −−−−→

Bf (B), which implies

that f = Ta , where the vector a is equal to
−−−−→
Af (A) for some (any) point A of the

space V .

The same reasoning allows us to obtain a more general result.

Theorem 8.24 If affine transformations f : V → V ′ and g : V → V ′ have identical
linear parts, then they differ only by a translation, that is, there exists a vector a ∈ L′
such that g = Taf .

Proof By definition, the equality Λ(f ) = Λ(g) implies that
−−−−−−→
f (A)f (B) =−−−−−−→

g(A)g(B) for every pair of points A,B ∈ V . From this, the equality

−−−−−−→
f (A)g(A) = −−−−−−→

f (B)g(B) (8.12)

clearly follows. As in Example 8.23, this reasoning is based on Remark 8.2. The

relationship (8.12) implies that the vector
−−−−−−→
f (A)g(A) does not depend on the choice

of the point A. We shall denote this vector by a. Then by the definition of trans-
lation, g(A) = Ta(f (A)) for every point A ∈ V , which completes the proof of the
theorem. �

Definition 8.25 Let V ′ ⊂ V be a subspace of the affine space V . An affine trans-
formation f : V → V ′ is said to be a projection onto the subspace V ′ if f (V ) = V ′
and the restriction of f to V ′ is the identity transformation.
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Fig. 8.4 Fibers of a
projection

Theorem 8.26 If f : V → V ′ is a projection onto the subspace V ′ ⊂ V , then the
preimage f −1(A′) of an arbitrary point A′ ∈ V ′ is an affine subspace of V of di-
mension dimV − dimV ′. For distinct points A′,A′′ ∈ V ′, the subspaces f −1(A′)
and f −1(A′′) are parallel.

Proof Let F = Λ(f ). Then F : L → L′ is a linear transformation, where L and L′
are the respective spaces of vectors of the affine spaces V and V ′. Let us consider
an arbitrary point A′ ∈ V ′ and points P,Q ∈ f −1(A′), that is, f (P ) = f (Q) = A′.
Then the vector

−−−−−−−→
f (P )f (Q) is equal to 0, whence by the definition of an affine

transformation, we obtain that
−−−−−−−→
f (P )f (Q) = F (

−→
PQ) = 0, that is, the vector

−→
PQ is

in the kernel of the linear transformation F , which, as we know, is a subspace of L.
Conversely, if P ∈ f −1(A′) and the vector x is in the kernel of the transformation

F , that is, F (x) = 0, then there exists a point Q ∈ V for which x = −→
PQ. Then

f (P ) = f (Q) and Q ∈ f −1(A′). By definition, an arbitrary vector x = −−→
A′B ′ ∈ L′

can be represented in the form F (
−→
PQ), where f (P ) = A′ and f (Q) = B ′. This

means that the image of the transformation F coincides with the entire space L′,
whence by Theorem 3.72, we obtain

dimf −1(A′) = dimF −1(0) = dim L − dim L′ = dimV − dimV ′,

since F −1(0) is the kernel of the transformation F , and the number dim L′ is equal
to its rank; see Fig. 8.4. We have already proved that for every point A′ ∈ V ′, the
space of vectors of the affine space f −1(A′) coincides with F −1(0). This completes
the proof of the theorem. �

The subspaces f −1(A′) for the points A′ ∈ V ′ are called fibers of the projection
f : V → V ′; see Fig. 8.4. If S′ ⊂ V ′ is some subset (not necessarily a subspace),
then its preimage, the set S = f −1(S′), is called a cylinder in V .

Definition 8.27 An affine transformation f : V → V ′ is called an isomorphism if it
is a bijection. Affine spaces V and V ′ in this case are said to be isomorphic.

By assertion (b) of Theorem 8.21, the condition of a transformation f : V → V ′
being a bijection is equivalent to the bijectivity of the linear transformation Λ(f ) :
L → L′ of the corresponding spaces of vectors L and L′. Thus affine spaces V and
V ′ are isomorphic if and only if the corresponding spaces of vectors L and L′ are
isomorphic. As shown in Sect. 3.5, vector spaces L and L′ are isomorphic if and
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only if dim L = dim L′, and in this situation every nonsingular linear transformation
L → L′ is an isomorphism. This yields the following assertion: affine spaces V and
V ′ are isomorphic if and only if dimV = dimV ′. Here every affine transformation
f : V → V ′ whose linear part Λ(f ) is nonsingular is an isomorphism between V

and V ′. We shall frequently call an affine transformation f with nonsingular linear
part Λ(f ) nonsingular.

From the definitions, we immediately obtain the following theorem.

Theorem 8.28 The affine ratio (A,B,C) of three collinear points does not change
under a nonsingular affine transformation.

Proof By definition, the affine ratio α = (A,B,C) of three points A,B,C under
the condition A �= B is defined by the relationship

−→
AC = α

−→
AB. (8.13)

Let f : V → V be a nonsingular affine transformation and F : L → L its corre-
sponding linear transformation. Then in view of the nondegeneracy of the transfor-
mation f , we have f (A) �= f (B) and

−−−−−−→
f (A)f (C) = F (

−→
AC),

−−−−−−→
f (A)f (B) = F (

−→
AB),

and β = (f (A),f (B),f (C)) is defined by the equality
−−−−−−→
f (A)f (C) = β

−−−−−−→
f (A)f (B),

that is,

F (
−→
AC) = βF (

−→
AB). (8.14)

Applying the transformation F to both sides of equality (8.13), we obtain F (
−→
AC) =

αF (
−→
AB), whence taking into account equality (8.14), it follows that β = α. In the

case that A = B �= C, we obtain, in view of the nonsingularity of f , the analo-
gous relationship f (A) = f (B) �= f (C), from which we have (A,B,C) = ∞ and
(f (A),f (B),f (C)) = ∞. �

Example 8.29 Every affine space (V ,L) is isomorphic to the space (L,L). Indeed,
let us choose in the set V an arbitrary point O and define the mapping f : V → L in
such a way that f (A) = −→

OA. It is obvious, by the definition of affine space, that the
mapping f is an isomorphism.

Let us note that the situation here is similar to that of an isomorphism of a vector
space L and the dual space L∗. In one case, the isomorphism requires the choice of
a basis of L, while in the other, it is the choice of a point O in V .

Let f : V → V ′ be an affine transformation of affine spaces (V ,L) and (V ′,L′).
Let us consider isomorphisms ϕ : V → L and ϕ′ : V ′ → L′, defined, as in Exam-
ple 8.29, by the selection of certain points O ∈ V and O ′ ∈ V ′. We have the map-
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pings

V
f−−−−→ V ′

ϕ

⏐⏐�
⏐⏐�ϕ′

L −−−−→
F

L′
(8.15)

where F = Λ(f ). Here, generally speaking, we cannot assert that F ϕ = ϕ′f , but
nevertheless, these mappings are closely related. For an arbitrary point A ∈ V , we

have by construction that ϕ(A) = −→
OA and F (ϕ(A)) = F (

−→
OA) = −−−−−−−→

f (O)f (A). In

just the same way, ϕ′(f (A)) = −−−−→
O ′f (A). Finally,

−−−−→
O ′f (A) = −−−−−→

O ′f (O)+−−−−−−−→
f (O)f (A).

Combining these relationships, we obtain

ϕ′f = TbF ϕ, where b = −−−−−→
O ′f (O). (8.16)

Relationship (8.16) allows us to write down the action of affine transformations
in coordinate form. To do so, we choose frames of reference (O; e1, . . . , en) and
(O ′, e′

1, . . . , e
′
m), where n = dimV and m = dimV ′, in the spaces V and V ′. Then

the coordinates of the point A in the chosen frame of reference are the coordinates of
the vector

−→
OA = ϕ(A) in the basis e1, . . . , en. Likewise, the coordinates of the point

f (A) are the coordinates of the vector
−−−−→
O ′f (A) = ϕ′(f (A)) in the basis e′

1, . . . , e
′
m.

Let us make use of relationship (8.16). Suppose the coordinates of the vector
−→
OA

in the basis e1, . . . , en are (α1, . . . , αn), the coordinates of the vector
−−−−→
O ′f (A) in the

basis e′
1, . . . , e

′
m are (α′

1, . . . , α
′
m), and the matrix of the linear transformation F in

these bases is F = (fij ). Setting the coordinates of the vector b from formula (8.16)
in the basis e′

1, . . . , e
′
m equal to (β1, . . . , βm), we obtain

α′
i =

n∑

j=1

fijαj + βi, i = 1, . . . ,m. (8.17)

Using the standard notation for column vectors

[α] =
⎛

⎜
⎝

α1
...

αn

⎞

⎟
⎠ ,

[
α′] =

⎛

⎜
⎝

α′
1
...

α′
m

⎞

⎟
⎠ , [β] =

⎛

⎜
⎝

β1
...

βm

⎞

⎟
⎠ ,

we may rewrite formula (8.17) in the form
[
α′] = F [α] + [β]. (8.18)

The most frequent case that we shall encounter in the sequel is that of transfor-
mations of an affine space V into itself. Let us assume that the mapping f : V → V

has a fixed point O , that is, for the point O ∈ V , we have f (O) = O . Then the trans-
formation f can be identified with its linear part, that is, if by the choice of affine
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space V , the frame of reference (O; e1, . . . , en) with fixed point O identifies V with
the vector space L, then the mapping f is identified with its linear part F = Λ(f ).

Here f (O) = O and
−−−−→
Of (A) = F (

−→
OA) for every point A ∈ V .

We shall call such affine transformations of a space V into itself linear (we note
that this notion depends on the choice of point O ∈ V that f maps to itself). If for an
arbitrary affine transformation f we define f0 = T −1

a f , where the vector a is equal

to
−−−−→
Of (O), then f0 will be a linear transformation, and we obtain the representation

f = Taf0. (8.19)

It is obvious that a nonsingular affine transformation of the space (V ,L) takes each
frame of reference (O; e1, . . . , en) into some other frame of reference. This implies
that if f (O) = O ′ and Λ(f )(ei ) = e′

i , then (O ′; e′
1, . . . , e

′
n) is also a frame of refer-

ence. Conversely, if the transformation f takes some frame of reference to another
frame of reference, then it is nonsingular.

From the representation (8.19) we obtain the following result.
If we are given a frame of reference (O; e1, . . . , en), an arbitrary point O ′, and

vectors a1, . . . ,an in L, then there exists (and it is unique) an affine transformation
f mapping O to O ′ such that Λ(f )(ei ) = ai for all i = 1, . . . , n. To prove this, we

set a equal to
−−→
OO ′ in representation (8.19), and for f0, we take a linear transfor-

mation of the vector space L into itself such that f0(ei ) = ai for all i = 1, . . . , n.
It is obvious that the affine transformation f thus constructed satisfies the requisite
conditions. Its uniqueness follows from the representation (8.19) and from the fact
that the vectors e1, . . . , en form a basis of L.

The following reformulation of this statement is obvious: if we are given n + 1
independent points A0,A1, . . . ,An of an n-dimensional affine space V and an ad-
ditional arbitrary n + 1 points B0,B1, . . . ,Bn, then there exists (and it is unique) an
affine transformation f : V → V such that f (Ai) = Bi for all i = 0,1, . . . , n.

In the sequel, it will be useful to know about the dependence of the vector a

in representation (8.19) on the choice of point O (on its choice also depends the
transformation f0 of the space V , but as a transformation of a vector space L, it

coincides with Λ(f )). Let us set
−−→
OO ′ = c. Then for a new choice of O ′ as fixed

point, we have, similar to (8.19), the representation

f = Ta′f ′
0, (8.20)

where f ′
0(O

′) = O ′ and the vector a′ is equal to
−−−−−→
O ′f (O ′). By well-known rules, we

have

a′ = −−−−−→
O ′f

(
O ′) = −−→

O ′O + −−−−−→
Of

(
O ′),

−−−−−→
Of

(
O ′) = −−−−→

Of (O) + −−−−−−−→
f (O)f

(
O ′) = a + F (c).
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Since
−−→
O ′O = −−−→

OO ′, we obtain that the vectors a and a′ in representations (8.19)
and (8.20) are related by

a′ = a + F (c) − c, where c = −−→
OO ′. (8.21)

Let us choose a frame of reference in the affine space (V ,L). Let us recall that it
is written in the form (O; e1, . . . , en) or (O;A1, . . . ,An), where ei = −−→

OAi . Let f

be a nonsingular transformation of V into itself, and let it map the frame of reference

(O; e1, . . . , en) to (O ′, e′
1, . . . , e

′
n). If e′

i = −−→
O ′A′

i , then this implies that f (O) = O ′
and f (Ai) = A′

i for i = 1, . . . , n.
Let the point A ∈ V have coordinates (α1, . . . , αn) relative to the frame of refer-

ence (O;A1, . . . ,An). This means that the vector
−→
OA is equal to α1e1 +· · ·+αnen.

Then the point f (A) determines the vector
−−−−−−−→
f (O)f (A), that is, F (

−→
OA). And this

vector obviously has, in the basis e′
1, . . . , e

′
n, the same coordinates as the vector

−→
OA

in the basis e1, . . . , en, since by definition, e′
i = F (ei ). Thus the affine transforma-

tion f is defined by the fact that the point A is mapped to a different point f (A)

having in the frame of reference (O ′, e′
1, . . . , e

′
n) the same coordinates as the point

A had in the frame of reference (O; e1, . . . , en).

Definition 8.30 Two subsets S and S′ of an affine space V are said to be affinely
equivalent if there exists a nonsingular affine transformation f : V → V such that
f (S) = S′.

The previous reasoning shows that this definition is equivalent to saying that in
the space V , there exist two frames of reference (O; e1, . . . , en) and (O ′; e′

1, . . . , e
′
n)

such that all points of the set S have the same coordinates with respect to the first
frame of reference as the points of the set S′ have with respect to the second.

In the case of real affine spaces, the definition of affine transformations by for-
mulas (8.17) and (8.18) makes it possible to apply to them Theorem 4.39 on proper
and improper linear transformations.

Definition 8.31 A nonsingular affine transformation of a real affine space V to itself
is said to be proper if its linear part is a proper transformation of the vector space.
Otherwise, it is called improper.

Thus by this definition, we consider translations to be proper transformations.
A bit later, we shall provide a more meaningful justification for this definition.

By the given definition of affine transformation, whether f is proper or improper
depends on the sign of the determinant of the matrix F = (fij ) in formulas (8.17),
(8.18). We observe that this concept relates only to nonsingular transformations V ,
since in formulas (8.17) and (8.18), we must have m = n.

In order to formulate an analogue to Theorem 4.39, we should refine the sense
of the assertion about the fact that the family g(t) of affine transformations depends
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continuously on the parameter t . By this, we shall understand that for g(t), in the
formula

α′
i =

n∑

j=1

gij (t)αj + βi(t), i = 1, . . . , n, (8.22)

analogous to (8.17), written in some (arbitrarily chosen) frame of reference of the
space V , all coefficients gij (t) and βi(t) depend continuously on t . In particular, if
G(t) = (gij (t)) is a matrix of the linear part of the affine transformation g(t), then
its determinant |G(t)| is a continuous function. From the properties of continuous
functions, it follows that the determinant |G(t)| has the same sign at all points of
the interval [0,1].

Thus we shall say that an affine transformation f is continuously deformable
into h if there exists a family g(t) of continuous affine transformations, depending
continuously on the parameter t ∈ [0,1], such that g(0) = f and g(1) = h. It is
obvious that the property thus defined of affine transformations being continuously
deformable into each other defines on the set of such transformations an equivalence
relation, that is, it satisfies the properties of reflexivity, symmetry, and transitivity.

Theorem 8.32 Two nondegenerate affine transformations of a real affine space are
continuously deformable into each other if and only if they are either both proper or
both improper. In particular, a nonsingular affine transformation f is proper if and
only if it is deformable into the identity.

Proof Let us begin with the latter, more specific, assertion of the theorem. Let a
nonsingular affine transformation f be continuously deformable into e. Then by
symmetry, there exists a continuous family of nonsingular affine transformations
g(t) with linear part Λ(g(t)) such that g(0) = e and g(1) = f . For the transfor-
mation g(t), let us write (8.22) in some frame of reference (O; e1, . . . , en) of the
space V . It is obvious that for the matrix G(t) = (gij (t)), we have the relation-
ships G(0) = E and G(1) = F , where F is the matrix of the linear transformation
F = Λ(f ) in the basis e1, . . . , en of the space L and βi(0) = 0 for all i = 1, . . . , n.
By the definition of continuous deformation, the determinant |G(t)| is nonzero for
all t ∈ [0,1]. Since |G(0)| = |E| = 1, it follows that |G(t)| > 0 for all t ∈ [0,1], and
in particular, for t = 1. And this means that |Λ(f )| = |G(1)| > 0. Thus the linear
transformation Λ(f ) is proper, and by definition, the affine transformation f is also
proper.

Conversely, let f be a proper affine transformation. This means that the linear
transformation Λ(f ) is proper. Then by Theorem 4.39, the transformation Λ(f ) is
continuously deformable into the identity. Let G(t) be a family of linear transfor-
mations such that G(0) = E and G(1) = Λ(f ), given in some basis e1, . . . , en of the
space L by the formula

α′
i =

n∑

j=1

gij (t)αj , i = 1, . . . , n, (8.23)
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where gij (t) are continuous functions, the matrix G(t) = (gij (t)) is nonsingular for
all t ∈ [0,1], and we have the equalities G(0) = E, G(t) = F , where F is the matrix
of the transformation Λ(f ) in the same basis e1, . . . , en.

Let us consider the family g(t) of affine transformations given in the frame of
reference (O; e1, . . . , en) by the formula

α′
i =

n∑

j=1

gij (t)αj + βit, i = 1, . . . , n,

in which the coefficients of gij (t) are taken from formula (8.23), while the coeffi-
cients βi are from formula (8.17) for the transformation f in the same frame of refer-
ence (O; e1, . . . , en). Since G(0) = E and G(1) = Λ(f ), it is obvious that g(0) = e

and g(1) = f , and moreover, |G(t)| > 0 for all t ∈ [0,1], that is, the transformation
g(t) is nonsingular for all t ∈ [0,1].

From this it follows by transitivity that every pair of proper affine transformations
are continuously deformable into each other.

The case of improper affine transformations is handled completely analogously.
It is necessary only to note that in all the arguments above, one must replace
the identity transformation E by some fixed improper linear transformation of the
space L. �

Theorem 8.32 shows that analogously to real vector spaces, in every real affine
space there exist two orientations, from which we may select arbitrarily whichever
one we wish.

8.4 Affine Euclidean Spaces and Motions

Definition 8.33 An affine space (V ,L) is called an affine Euclidean space if the
vector space L is a Euclidean space.

This means that for every pair of vectors x,y ∈ L there is defined a scalar product
(x,y) satisfying the conditions enumerated in Sect. 7.1. In particular, (x,x) ≥ 0 for
all x ∈ L and there is a definition of the length |x| = √

(x,x) of a vector x. Since
every pair of points A,B ∈ V defines a vector

−→
AB ∈ L, it follows that one can

associate with every pair of points A and B , the number

r(A,B) = |−→AB|,
called the distance between the points A and B in V . This notion of distance that
we have introduced satisfies the conditions for a metric introduced on p. xvii:

(1) r(A,B) > 0 for A �= B and r(A,A) = 0;
(2) r(A,B) = r(B,A) for every pair of points A and B;
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(3) for every three points A, B , and C, the triangle inequality is satisfied:

r(A,C) ≤ r(A,B) + r(B,C). (8.24)

Properties (1) and (2) clearly follow from the properties of the scalar product. Let
us prove inequality (8.24), a special case of which (for right triangles) was proved

on p. 216. By definition, if
−→
AB = x and

−→
BC = y, then (8.24) is equivalent to the

inequality

|x + y| ≤ |x| + |y|. (8.25)

Since there are nonnegative numbers on the left- and right-hand sides of (8.25), we
can square both sides and obtain an equivalent inequality, which we shall prove:

|x + y|2 ≤ (|x| + |y|)2
. (8.26)

Since

|x + y|2 = (x + y,x + y) = |x|2 + 2(x,y) + |y|2,
then after multiplying out the right-hand side of (8.26), we can rewrite this inequality
in the form

|x|2 + 2(x,y) + |y|2 ≤ |x|2 + 2|x| · |y| + |y|2.
Subtracting like terms from the left- and right-hand sides, we arrive at the inequality

(x,y) ≤ |x| · |y|,
which is the Cauchy–Schwarz inequality (7.6).

Thus an affine Euclidean space is a metric space.
In Sect. 8.1, we defined a frame of reference of an affine space as a point O in

V and a basis e1, . . . , en in L. If our affine space (V ,L) is a Euclidean space, and
the basis e1, . . . , en is orthonormal, then the frame of reference (O; e1, . . . , en) is
also said to be orthonormal. We see that an orthonormal frame of reference can be
associated with each point O ∈ V .

Definition 8.34 A mapping g : V → V of an affine Euclidean space V into itself is
said to be a motion if it is an isometry of V as a metric space, that is, if it preserves
distances between points. This means that for every pair of points A,B ∈ V , the
following equality holds:

r
(
g(A),g(B)

) = r(A,B). (8.27)

Let us emphasize that in this definition, we are speaking about an arbitrary map-
ping g : V → V , which in general, does not have to be an affine transformation. By
the discussion presented on p. xxi, a mapping g : V → V is a motion if its image
g(V ) = V also satisfies the condition (8.27) of preserving distances.
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Example 8.35 Let a be a vector in the vector space L corresponding to the affine
space V . Then the translation Ta is a motion. Indeed, by the definition of a transla-
tion, for every point A ∈ V we have the equality Ta(A) = B , where

−→
AB = a. If for

some other point C, we have an analogous equality Ta(C) = D, then
−→
CD = a. By

condition (2) in the definition of an affine space, we have the equality
−→
AB = −→

CD,
from which, by Remark 8.2, it follows that

−→
AC = −→

BD. This means that |−→AC| =
|−→BD|, or equivalently, r(A,C) = r(Ta(A),Ta(C)), as asserted.

Example 8.36 Let us assume that the mapping g : V → V has the fixed point O ,
that is, the point O ∈ V satisfies the equality g(O) = O . As we saw in Sect. 8.3, the
choice of point O determines a bijective mapping V → L, where L is the space of
vectors of the affine space V . Here to a point A ∈ V corresponds the vector

−→
OA ∈ L.

Thus the mapping g : V → V defines a mapping G : L → L such that G(0) = 0.
Let us emphasize that since we did not assume that the mapping g was an affine
transformation, the mapping G, in general, is not a linear transformation of the
space L. Now let us check that if G is a linear orthogonal transformation of the
Euclidean space L, then g is a motion.

By definition, the transformation G is defined by the condition G(
−→
OA) = −−−−→

Og(A).
We must prove that g is a motion, that is, that for all pairs of points A and B , we
have

∣∣−−−−−−→
g(A)g(B)

∣∣ = |−→AB|. (8.28)

We have the equality
−→
AB = −→

OB − −→
OA, and we obtain that

−−−−−−→
g(A)g(B) = −−−−→

g(A)O + −−−−→
Og(B) = −−−−→

Og(B) − −−−−→
Og(A),

and this vector, by the definition of the transformation G, is equal to G(
−→
OB) −

G(
−→
OA). In view of the fact that the transformation G is assumed to be linear, this

vector is equal to G(
−→
OB − −→

OA). But as we have seen,
−→
OB − −→

OA = −→
AB , and this

means that
−−−−−−→
g(A)g(B) = G(

−→
AB).

From the orthogonality of the transformation G it follows that |G(
−→
AB)| = |−→AB|. In

combination with the previous relationships, this yields the required equality (8.28).

The concept of motion is the most natural mathematical abstraction correspond-
ing to the idea of the displacement of a solid body in space. We may apply to the
analysis of this all of the results obtained in the preceding chapters, on the basis of
the following fundamental assertion.

Theorem 8.37 Every motion is an affine transformation.

Proof Let f be a motion of the affine Euclidean space V . As a first step, let us

choose in V an arbitrary point O and consider the vector a = −−−−→
Of (O) and mapping
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g = T−af of the space V into itself. Here the product T−af , as usual, denotes
sequential application (composition) of the mappings f and T−a . Then O is a fixed
point of the transformation g, that is, g(O) = O . Indeed, g(O) = T−a(f (O)), and

by the definition of translation, the equality g(O) = O is equivalent to
−−−−→
f (O)O =

−a, and this clearly follows from the fact that a = −−−−→
Of (O).

We now observe that the product (that is, the sequential application, or compo-
sition) of two motions g1 and g2 is also a motion; the verification of this follows at
once from the definition. Since we know that Ta is a motion (see Example 8.35), it
follows that g is also a motion. We therefore obtain a representation of f in the form
f = Tag, where g is a motion and g(O) = O . Thus as we saw in Example 8.36, g

defines a mapping G of the space L into itself. The main part of the proof consists in
verifying that G is a linear transformation.

We shall base this verification on the following simple proposition.

Lemma 8.38 Assume that we are given a mapping G of a vector space L into itself
and a basis e1, . . . , en of L. Let us set G(ei ) = e′

i , i = 1, . . . , n, and assume that for
every vector

x = α1e1 + · · · + αnen, (8.29)

its image

G(x) = α1e
′
1 + · · · + αne

′
n (8.30)

has the same α1, . . . , αn. Then G is a linear transformation.

Proof We must verify two conditions that enter into the definition of a linear trans-
formation:

(a) G(x + y) = G(x) + G(y),
(b) G(αx) = αG(x),

for all vectors x and y and scalar α.
The verification of this is trivial. (a) Let the vectors x and y be given by x =

α1e1 + · · · + αnen and y = β1e1 + · · · + βnen. Then their sum is given by

x + y = (α1 + β1)e1 + · · · + (αn + βn)en.

On the other hand, by the condition of the lemma, we have

G(x + y) = (α1 + β1)e
′
1 + · · · + (αn + βn)e

′
n

= (
α1e

′
1 + · · · + αne

′
n

)+ (
β1e

′
1 + · · · + βne

′
n

) = G(x) + G(y).

(b) For the vector x = α1e1 + · · · + αnen and an arbitrary scalar α, we have

αx = (αα1)e1 + · · · + (ααn)en.

By the condition of the lemma,

G(αx) = (αα1)e
′
1 + · · · + (ααn)e

′
n = α

(
α1e

′
1 + · · · + αne

′
n

) = αG(x). �
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We now return to the proof of Theorem 8.37. Let us verify that the above con-
struction of the mapping G : L → L satisfies the condition of the lemma. To this end,
let us first ascertain that it preserves the inner product in L, that is, that for all vectors
x,y ∈ L, we have the equality

(
G(x),G(y)

) = (x,y). (8.31)

Let us recall that the property for the transformation g to be a motion can be
formulated as the following condition on a transformation G of a vector space L:

∣∣G(x) − G(y)
∣∣ = |x − y| (8.32)

for all pairs of vectors x and y. Squaring both sides of equality (8.32), we obtain
∣∣G(x) − G(y)

∣∣2 = |x − y|2. (8.33)

Since x and y are vectors in the Euclidean space L, we have

|x − y|2 = |x|2 − 2(x,y) + |y|2,
∣∣G(x) − G(y)

∣∣2 = ∣∣G(x)
∣∣2 − 2

(
G(x),G(y)

)+ ∣∣G(y)
∣∣2.

Putting these expressions into equality (8.33), we find that
∣∣G(x)

∣∣2 − 2
(
G(x),G(y)

) + ∣∣G(y)
∣∣2 = |x|2 − 2(x,y) + |y|2. (8.34)

Setting the vector y equal to 0 in relationship (8.34), and taking into account that
G(0) = 0, we obtain the equality |G(x)| = |x| for all x ∈ L. Finally, taking into
account the relationships |G(x)| = |x| and |G(y)| = |y|, from (8.34) follows the
required equality (8.31).

Thus for any orthonormal basis e1, . . . , en, the vectors e′
1, . . . , e

′
n, defined by the

relationships G(ei ) = e′
i , also form an orthonormal basis, in which the coordinates

of the vector x = x1e1 + · · ·+ xnen are given by the formula xi = (x, ei ). From this
we obtain that (G(x), e′

i ) = xi , and this implies that

G(x) = x1e
′
1 + · · · + xne

′
n,

that is, the constructed mapping G : L → L satisfies the condition of the lemma.
From this it follows that G is a linear transformation of the space L, and by property
(8.31), it is an orthogonal transformation. �

Let us note that along the way, we have proved the possibility of expressing an
arbitrary motion f in the form of the product

f = Tag, (8.35)

where Ta is a translation, and g has a fixed point O and corresponds to some orthog-
onal transformation G of the space L (see Example 8.36). From the representation
(8.35) and results of Sect. 8.3, it follows that two orthonormal frames of reference
can be mapped into each other by a motion, and moreover, it is unique.
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For studying motions, we may make use of the structure of orthogonal transfor-
mations already investigated in Sect. 7.2, that is, Theorem 7.27. By this theorem, for
every orthogonal transformation, in particular, for the transformation G associated
with the motion g in formula (8.35), there exists an orthonormal basis in which the
matrix of the transformation G is in block-diagonal form:

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
. . . 0

1
−1

. . .

−1
Gϕ1

0
. . .

Gϕr

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (8.36)

where

Gϕi
=

(
cosϕi − sinϕi

sinϕi cosϕi

)
(8.37)

and ϕi �= πk, k ∈ Z. Two instances of the number −1 on the main diagonal of the
matrix (8.36) can be substituted by the matrix Gϕ of the form (8.37) with ϕ = π ,
so that is possible to assume that in the matrix (8.36), the number −1 is absent
or is encountered exactly one time, and in this case, 0 < ϕi < 2π . Under such a
convention, we obtain that if the transformation G is proper, then the number −1
does not appear on the main diagonal, while if G is improper, there is exactly one
such occurrence.

From the aforesaid, it follows that in the case of a proper transformation G of the
space L of dimension n, we have the orthogonal decomposition

L = L0 ⊕ L1 ⊕ · · · ⊕ Lk, where Li ⊥ Lj for all i �= j, (8.38)

where all subspaces L0, . . . ,Lk are invariant with respect to the transformation G,
and dim L0 = n − 2k, dim Li = 2 for all i = 1, . . . , k. The restriction of G to L0
is the identity transformation, while the restriction of G to the subspace Li with
i = 1, . . . , k is a rotation through the angle ϕi .

But if the transformation G is improper, then on the main diagonal of the ma-
trix (8.36) the number −1 is encountered once. Then in the orthogonal decomposi-
tion (8.38), there is added one additional one-dimensional term Lk+1, in which the
transformation G takes each vector x to the opposite vector −x. The orthogonal
decomposition of the space L into a sum of subspaces invariant with respect to the
transformation G takes the form

L = L0 ⊕ L1 ⊕ · · · ⊕ Lk ⊕ Lk+1, where Li ⊥ Lj for all i �= j, (8.39)

where dim Li = 2 for i = 1, . . . , k, dim L0 = n − 2k − 1, and dim Lk+1 = 1.
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Now we shall make use of the arbitrariness in the selection of O in the represen-
tation (8.35) of the motion f . By formula (8.21), for a change in the point O , the
vector a in (8.35) is replaced by the vector a + G(c) − c, where for c, one can take
an arbitrary vector of the space L. We have the representation

c = c0 + c1 + · · · + ck, ci ∈ Li , (8.40)

in the case of the decomposition (8.38), or else we have

c = c0 + c1 + · · · + ck + ck+1, ci ∈ Li , (8.41)

in the case of the decomposition (8.39).
Since G(x) = x for every vector x ∈ L0, the term c0 makes no contribution to

the vector G(c) − c added to a. For i > 0, the situation is precisely the reverse:
the transformation G − E defines a nonsingular transformation in Li . This follows
from the fact that the kernel of the transformation G − E is equal to (0), which is
obvious for a rotation through the angle ϕi , 0 < ϕi < 2π , in the plane and for the
transformation −E on a line. Therefore, the image of the transformation G − E in
Li is equal to the entire subspace Li for i > 0. That is, every vector ai ∈ Li can be
represented in the form ai = G(ci ) − ci , where ci is some other vector of the same
space Li , i > 0.

Thus in accordance with the representations (8.40) and (8.41), the vector a can
be written in the form a = a0 + a1 + · · · + ak or a = a0 + a1 + · · · + ak + ak+1,
depending on whether the transformation G is proper or improper. We may set ai =
G(ci ) − ci , where the vectors ci are defined respectively by relationship (8.40) or
(8.41). As a result, we obtain the equality

a + G(c) − c = a0,

meaning that by our selection of the point O , we can obtain that the vector a is
contained in the subspace L0.

We have thus proved the following theorem.

Theorem 8.39 Every motion f of an affine Euclidean space V can be represented
in the form

f = Tag, (8.42)

where the transformation g has fixed point O and corresponds to the orthogo-
nal transformation G = Λ(g), while Ta is a translation by the vector a such that
G(a) = a.

Let us consider the most visual example, that of the “physical” three-dimensional
space in which we live. Here there are two possible cases.

Case 1: The motion f is proper. Then the orthogonal transformation G : L → L is
also proper. Since dim L = 3, the decomposition (8.38) has the form

L = L0 ⊕ L1, Li ⊥ Lj ,
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Fig. 8.5 A proper motion

where dim L0 = 1 and dim L1 = 2. The transformation G leaves vectors in L0 fixed
and defines a rotation through the angle 0 < ϕ < 2π in the plane L1. Representation
(8.42) shows that the transformation f can be obtained as a rotation through the
angle ϕ about the line L0 and a translation in the direction of L0; see Fig. 8.5.

This result can be given a different formulation. Suppose a solid body executes an
arbitrarily complex motion over time. Then its initial position can be superimposed
on its final position by a rotation around some axis and a translation along that
axis. Indeed, since it is a solid body, its final position is obtained from the initial
position by some motion f . Since this change in position is obtained as a continuous
motion, it follows that it is proper. Thus we may employ the three-dimensional case
of Theorem 8.39. This result is known as Euler’s theorem.

Case 2: The motion f is improper. Then the orthogonal transformation G : L → L is
also improper. Since dim L = 3, the decomposition (8.39) has the form

L = L0 ⊕ L1 ⊕ L2, Li ⊥ Lj ,

where L0 = (0), dim L1 = 2, and dim L2 = 1. The transformation G defines a rotation
through the angle 0 < ϕ < 2π in the plane L1 and carries each vector on the line L2
into its opposite. From this it follows that the equality G(a) = a holds only for
the vector a = 0, and therefore, the translation Ta in formula (8.42) is equal to the
identity transformation. Therefore, the motion f always has the fixed point O , and
can be obtained as a rotation through the angle 0 < ϕ < 2π in the plane L1 passing
through this point followed by a reflection in the plane L1.

The theory of motions in an affine Euclidean space can be given a more graphical
form if we employ the notion of flags, which was introduced in Sect. 8.2 (p. 300).
First, it is clear that a motion of a space carries a flag to a flag. The main result,
which we in fact have already proved, can be formulated as follows.

Theorem 8.40 For every pair of flags, there exists a motion taking the first flag to
the second, and such a motion is unique.

Proof To prove the theorem, we observe that for an arbitrary flag

V0 ⊂ V1 ⊂ · · · ⊂ Vn = V, (8.43)
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the affine subspace V0 consists by definition of a single point. Setting V0 = O , we
may identify each subspace Vi with the subspace Li ⊂ L, where Li is the space of
vectors of the affine space Vi . Here the sequence

L0 ⊂ L1 ⊂ · · · ⊂ Ln = L (8.44)

defines a flag in L. On the other hand, we saw in Sect. 7.2 that the flag (8.44)
is uniquely associated with an orthonormal basis e1, . . . , en in L. Thus Li =
〈e1, . . . , ei〉 and ei ∈ L+

i , as established in Sect. 7.2. This means that the flag (8.43) is
uniquely determined by some orthonormal frame of reference (O; e1, . . . , en) in V .
As we noted above, for two orthonormal frames of reference, there exists a unique
motion of the space V taking the first frame of reference to the second. This holds,
then, for two flags of the form (8.43), which proves the assertion of the theorem. �

The property proved in Theorem 8.40 is called “free mobility” of an affine Eu-
clidean space. In the case of three-dimensional space, this assertion is a mathemati-
cal expression of the fact that in space, a solid body can be arbitrarily translated and
rotated.

In an affine Euclidean space, the distance r(A,B) between any two points does
not change under a motion of the space. In a general affine space it is impossible to
associate with each pair of points a number that would be invariant under every non-
singular affine transformation. This follows from the fact that for an arbitrary pair of
points A,B and another arbitrary pair A′,B ′, there exists an affine transformation
f taking A to A′ and B to B ′.

To prove this, let us write down a transformation f according to formula (8.19)
in the form f = Taf0, choosing the point A as the point O . Here A is a fixed point
of the affine transformation f0, that is, f0(A) = A. The transformation f0 is defined
by some linear transformation of the space of vectors L of our affine space V and is
uniquely defined by the relation

−−−−→
Af0(C) = F (

−→
AC), C ∈ V.

Then the condition f (A) = A′ will be satisfied if we set a = −−→
AA′. It remains to

select a linear transformation F : L → L so as to satisfy the equality f (B) = B ′,
that is, Taf0(B) = B ′, which is equivalent to the relationship

f0(B) = T−a

(
B ′). (8.45)

We set the vector x equal to
−→
AB (under the condition A �= B , whence x �= 0) and

consider the point P = T−a(B
′) and vector y = −→

AP . Then the relationship (8.45) is
equivalent to the equality F (x) = y. It remains only to find a linear transformation
F : L → L for which the condition F (x) = y is satisfied for given vectors x and y,
with x �= 0. For this, we must extend the vector x to a basis of the space L and define
F in terms of the vectors of this basis arbitrarily, provided only that the condition
F (x) = y is satisfied.



Chapter 9
Projective Spaces

9.1 Definition of a Projective Space

In plane geometry, points and lines in the plane play very similar roles. In order to
emphasize this symmetry, the fundamental property that connects points and lines
in the plane is called incidence, and the fact that a point A lies on a line l or that
a line l passes through a point A expresses in a symmetric form that A and l are
incident. Then one might hope that to each assertion of geometry about incidence
of points and lines there would correspond another assertion obtained from the first
by everywhere interchanging the words “point” and “line.” And such is indeed the
case, with some exceptions. For example, to every pair of distinct points, there is
incident one and only one line. But it is not true that to every pair of distinct lines,
there is incident one and only one point: the exception is the case that the lines are
parallel. Then not a single point is incident to the two lines.

Projective geometry gives us the possibility of eliminating such exceptions by
adding to the plane certain points called points at infinity. For example, if we do
this, then two parallel lines will be incident at some point at infinity. And indeed,
with a naive perception of the external world, we “see” that parallel lines moving
away from us converge and intersect at a point on the “horizon.” Strictly speaking,
the “horizon” is the totality of all points at infinity by which we extend the plane.

In analyzing this example, we may say that a point p of the plane seen by us
corresponds to the point where the line passing through p and the center of our
eye meets the retina. Mathematically, this situation is described using the notion of
central projection.

Let us assume that the plane Π that we are investigating is contained in three-
dimensional space. Let us choose in this same space some point O not contained
in the plane Π . Every point A of the plane Π can be joined to O by the line OA.
Conversely, a line passing through the point O intersects the plane Π in a certain
point, provided that the line is not parallel to Π . Thus most straight lines passing
through the point O correspond to points A ∈ Π . But lines parallel to Π intuitively
correspond precisely to points at infinity of the plane Π , or “points on the horizon.”
See Fig. 9.1.

I.R. Shafarevich, A.O. Remizov, Linear Algebra and Geometry,
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Fig. 9.1 Central projection

We shall make this notion the basis of the definition of projective space and shall
develop it in more detail in the sequel.

Definition 9.1 Let L be a vector space of finite dimension. The collection of all
lines 〈x〉, where x is a nonnull vector of the space L, is called a projectivization of
L or projective space P(L). Here the lines 〈x〉 themselves are called points of the
projective space P(L). The dimension of the space P(L) is defined as the number
dimP(L) = dim L − 1.

As we saw in Chap. 3, all vector spaces of a given dimension n are isomorphic.
This fact is expressed by saying that there exists only one theory of n-dimensional
vector spaces. In the same sense, there exists only one theory of n-dimensional
projective space.

We shall frequently denote the projective space of dimension n by P
n if we have

no need of indicating the (n + 1)-dimensional vector space on the basis of which it
was constructed.

If dimP(L) = 1, then P(L) is called the projective line, and if dimP(L) = 2, then
it called the projective plane. Lines in an ordinary plane are points on the projective
line, while lines in three-dimensional space are points in the projective plane.

And as earlier, we give the reader the choice whether to consider L a real or
complex space, or even to consider it as a space over an arbitrary field K (with
the exception of certain questions related specifically to real spaces). In accordance
with the definition given above, we shall say that dimP(L) = −1 if dim L = 0. In
this case, the set P(L) is empty.

In order to introduce coordinates in a space P(L) of dimension n, we choose a
basis e0, e1, . . . , en in the space L. A point A ∈ P(L) is by definition a line 〈x〉,
where x is some nonnull vector in L. Thus we have the representation

x = α0e0 + α1e1 + · · · + αnen. (9.1)

The numbers (α0, α1, . . . , αn) are called homogeneous coordinates of the point A.
But the point A is the entire line 〈x〉. It can also be obtained in the form 〈y〉 if
y = λx and λ �= 0. Then

y = λα0e0 + λα1e1 + · · · + λαnen.
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From this it follows that the numbers (λα0, λα1, . . . , λαn) are also homogeneous
coordinates of the point A. That is, homogeneous coordinates are defined only up to
a common nonzero factor. Since by definition, A = 〈x〉 and x �= 0, they cannot all be
simultaneously equal to zero. In order to emphasize that homogeneous coordinates
are defined only up to a nonzero common factor, they are written in the form

(α0 : α1 : α2 : · · · : αn). (9.2)

Thus if we wish to express some property of the point A in terms of its homogeneous
coordinates, then that assertion must continue to hold if all the homogeneous coor-
dinates (α0, α1, . . . , αn) are simultaneously multiplied by the same nonzero number.

Let us assume, for example, that we are considering the points of projective space
whose homogeneous coordinates satisfy the relationship

F(α0, α1, . . . , αn) = 0, (9.3)

where F is a polynomial in n + 1 variables. In order for this requirement actu-
ally to be related to the points and not depend on the factor λ by which we can
multiply their homogeneous coordinates, it is necessary that along with the num-
bers (α0, α1, . . . , αn), the relationship (9.3) be satisfied as well by the numbers
(λα0, λα1, . . . , λαn) for an arbitrary nonzero factor λ.

Let us elucidate when this requirement is satisfied. To this end, in the polynomial
F(x0, x1, . . . , xn) let us collect all terms of the form ax

k0
0 x

k1
1 · · ·xkn

n with k0 + k1 +
· · · + kn = m and denote their sum by Fm. We thereby obtain the representation

F(x0, x1, . . . , xn) =
N∑

m=0

Fm(x0, x1, . . . , xn).

It follows at once from the definition of Fm that

Fm(λx0, λx1, . . . , λxn) = λmFm(x0, x1, . . . , xn).

From this, we obtain

F(λx0, λx1, . . . , λxn) =
N∑

m=0

λmFm(x0, x1, . . . , xn).

Our condition means that the equality
∑N

m=0 λmFm = 0 is satisfied for the coordi-
nates of the points in question and simultaneously for all nonzero values of λ. Let
us denote by cm the value Fm(α0, α1, . . . , αn) for some concrete choice of homoge-
neous coordinates (α0, α1, . . . , αn). Then we arrive at the condition

∑N
m=0 cmλm =

0 for all nonzero values λ. This means that the polynomial
∑N

m=0 cmλm in the vari-
able λ has an infinite number of roots (for simplicity, we are now assuming that the
field K over which the vector space L is being considered is infinite; however, it
would be possible to eliminate this restriction). Then, by a well-known theorem on
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polynomials, all the coefficients cm are equal to zero. In other words, our equality
(9.3) is reduced to the satisfaction of the relationship

Fm(α0, α1, . . . , αn) = 0, m = 0,1, . . . ,N. (9.4)

The polynomial Fm contains only monomials of the same degree m, that is, it is
homogeneous. We see that the property of the point A expressed by an algebraic re-
lationship between its homogeneous coordinates does not depend on the permissible
selection of coordinates but only on the point A itself if it is expressed by setting the
homogeneous polynomials in its coordinates equal to zero.

If L′ ⊂ L is a vector subspace, then P(L′) ⊂ P(L), since every line 〈x〉 contained in
L′ is also contained in L. Such subsets P(L′) ⊂ P(L) are called projective subspaces
of the space P(L). Every P(L′) is by definition itself a projective space. Its dimension
is thus defined by dimP(L′) = dim L′ − 1. By analogy with vector spaces, a projec-
tive subspace P(L′) ⊂ P(L) is called a hyperplane if dimP(L′) = dimP(L) − 1, that
is, if dim L′ = dim L − 1, and consequently, L′ is a hyperplane in L.

A set of points of the space P(L) defined by the relationships

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F1(α0, α1, . . . , αn) = 0,

F2(α0, α1, . . . , αn) = 0,

. . . . . . . . . . . . . . . . . . . . .

Fm(α0, α1, . . . , αn) = 0,

(9.5)

where F1,F2, . . . ,Fm are homogeneous polynomials of differing (in general) de-
grees, is called a projective algebraic variety.

Example 9.2 The simplest example of a projective algebraic variety is a projec-
tive subspace. Indeed, as we saw in Sect. 3.7, every vector subspace L′ ⊂ L can
be defined with the aid of a system of linear homogeneous equations, and conse-
quently, a projective subspace P(L′) ⊂ P(L) can be defined by formula (9.5), in
which m = dimP(L) − dimP(L′) and the degree of each of the homogeneous poly-
nomials F1, . . . ,Fm is equal to 1. Here in the case m = 1, we obtain a hyperplane.

Example 9.3 Another important example of a projective algebraic variety is what
are called projective quadrics. They are given by formula (9.5), where m = 1 and
the degree of the sole homogeneous polynomial F1 is equal to 2. We shall consider
quadrics in detail in Chap. 11. The simplest examples of projective quadrics appear
in a course in analytic geometry, namely curves of degree 2 in the projective plane.

Example 9.4 Let us consider the set of points of the projective space P(L) whose
ith homogeneous coordinate (in some basis e0, e1, . . . , en of the space L) is equal to
zero, and let us denote by Li the set of vectors of the space L associated with these
points. The subset Li ⊂ L is defined in L by a single linear equation αi = 0, and
therefore is a hyperplane. This means that P(Li ) is a hyperplane in the projective
space P(L). We shall denote the set of points of the projective space P(L) whose



9.1 Definition of a Projective Space 323

Fig. 9.2 Affine subset of a
projective space

ith homogeneous coordinate is nonzero by Vi . It is obvious that Vi is already not a
projective subspace in P(L).

The following construction is a natural generalization of Example 9.4. In the
space L let an arbitrary basis e0, e1, . . . , en be chosen. Let us consider some linear
function ϕ on the space L not identically equal to zero. Vectors x ∈ L for which
ϕ(x) = 0 form a hyperplane Lϕ ⊂ L. It is a subspace of the solutions of the “system”
consisting of a single linear homogeneous equation. To it is associated the projec-
tive hyperplane P(Lϕ) ⊂ P(L). It is obvious that Lϕ coincides with the hyperplane
Li from Example 9.4 if the linear function ϕ maps each vector x ∈ L onto its ith
coordinate, that is, ϕ is the ith vector of the basis of the space L∗, the dual of the
basis e0, e1, . . . , en of the space L.

Let us now denote by Wϕ the set of vectors x ∈ L for which ϕ(x) = 1. This is
again the set of solutions of the “system” consisting of a single linear equation, but
now inhomogeneous. It can be viewed naturally as an affine space with space of
vectors Lϕ . Let us denote the set P(L) \ P(Lϕ) by Vϕ . Then for every point A ∈ Vϕ

there exists a unique vector x ∈ Wϕ for which A = 〈x〉.
In this way, we may identify the set Vϕ with the set Wϕ , and with the aid of this

identification, consider Vϕ an affine space. By definition, its space of vectors is Lϕ ,
and if A and B are two points in Vϕ , then there exist two vectors x and y for which

ϕ(x) = 1 and ϕ(y) = 1 such that A = 〈x〉 and B = 〈y〉, and then
−→
AB = y − x.

Thus the n-dimensional projective space P(L) can be represented as the union of
the n-dimensional affine space Vϕ and the projective hyperplane P(Lϕ) ⊂ P(L); see
Fig. 9.2. In the sequel, we shall call Vϕ an affine subset of the space P(L).

Let us choose in the space L a basis e0, . . . , en such that ϕ(e0) = 1 and ϕ(ei ) = 0
for all i = 1, . . . , n. Then the vector e0 is associated with the point O = 〈e0〉 be-
longing to the affine subset Vϕ , while all the remaining vectors e1, . . . , en are in
Lϕ , and they are associated with the points 〈e1〉, . . . , 〈en〉 lying in the hyperplane
P(Lϕ). We have thus constructed in the affine space (Vϕ,Lϕ) a frame of reference
(O; e1, . . . , en). The coordinates (ξ1, . . . , ξn) of the point A ∈ Vϕ with respect to
this frame of reference are called inhomogeneous coordinates of the point A in our
projective space. We wish to emphasize that they are defined only for points in
the affine subset Vϕ . If we return to the definitions, then we see that the inhomo-
geneous coordinates (ξ1, . . . , ξn) are obtained from the homogeneous coordinates
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(9.2) through the formula

ξi = αi

α0
, i = 1, . . . , n. (9.6)

It is obvious here that for x from formula (9.1), the function ϕ that we have chosen
assumes the value ϕ(x) = α0.

In order to extend the concept of inhomogeneous coordinates to all points of
a projective space P(L) = Vϕ ∪ P(Lϕ), it remains also to consider the points of
the projective hyperplane P(Lϕ). For such points it is natural to assign the value
α0 = 0. Sometimes this is expressed by saying that the inhomogeneous coordinates
(ξ1, . . . , ξn) of the point A ∈ P(Lϕ) assume infinite values, which justifies thinking
of P(Lϕ) as a set of “points at infinity” (horizon) for the affine subset Vϕ .

Of course, one could also choose a linear function ϕ such that ϕ(ei ) = 1 for
some number i ∈ {0, . . . , n}, not necessarily equal to 0, as was done above, and
ϕ(ej ) = 0 for all j �= i. We will denote the associated spaces Vϕ and Lϕ by Vi and
Li . In this case, the projective space P(L) can be represented in the analogous form
Vi ∪ P(Li ), that is, as the union of an affine part Vi and a hyperplane P(Li ) for
the corresponding value i ∈ {0, . . . , n}. Sometimes this fact is expressed by saying
that in the projective space P(L), one may introduce various affine charts. It is not
difficult to see that every point A of a projective space P(L) is “finite” for some value
i ∈ {0, . . . , n}, that is, it belongs to the subset Vi for the corresponding value i. This
follows from the fact that by definition, homogeneous coordinates (9.2) of the point
A are not simultaneously equal to zero. If αi �= 0 for some i ∈ {0, . . . , n}, then A is
contained in the associated affine subset Vi .

If L′ and L′′ are two subspaces of a space L, then it is obvious that

P
(
L′)∩ P

(
L′′) = P

(
L′ ∩ L′′). (9.7)

It is somewhat more complicated to interpret the set P(L′ + L′′). It is obvious that
it does not coincide with P(L′) ∪ P(L′′). For example, if L′ and L′′ are two distinct
lines in the plane L, then the set P(L′) ∪ P(L′′) consisting of two points is in general
not a projective subspace of the space P(L).

To give a geometric interpretation to the sets P(L′ + L′′), we shall introduce the
following notion. Let P = 〈e〉 and P ′ = 〈e′〉 be two distinct points of the projec-
tive space P(L). Let us set L1 = 〈e, e′〉 and consider the one-dimensional projective
subspace P(L1). It obviously contains both points P and P ′, and moreover, it is
contained in every projective subspace containing the points P and P ′. Indeed, if
L2 ⊂ L is a vector subspace such that P(L2) contains the points P and P ′, then this
means that L2 contains the vectors e and e′, which implies that it also contains the
entire subspace L1 = 〈e, e′〉. Therefore, by the definition of a projective subspace,
we have that P(L1) ⊂ P(L2).

Definition 9.5 The one-dimensional projective subspace P(L1) constructed from
two given points P �= P ′ is called the line connecting the points P and P ′.
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Theorem 9.6 Let L′ and L′′ be two subspaces of a vector space L. Then the union
of lines connecting all possible points of P(L′) with all possible points of P(L′′)
coincides with the projective subspace P(L′ + L′′).

Proof We shall denote by Σ the union of lines described in the statement of the
theorem. Every such line has the form P(L1), where L1 = 〈e′, e′′〉, for vectors e′ ∈ L′
and e′′ ∈ L′′. Since e′ + e′′ ∈ L′ + L′′, it follows from the preceding discussion that
every such line P(L1) belongs to P(L′ + L′′). Thus we have proved the set inclusion
Σ ⊂ P(L′ + L′′).

Conversely, suppose now that the point S ∈ P(L) belongs to the projective sub-
space P(L′ + L′′). This means that S = 〈e〉, where the vector e is in L′ + L′′. And
this implies that the vector e can be represented in the form e = e′ + e′′, where
e′ ∈ L′ and e′′ ∈ L′′. This means that S = 〈e〉 and the vector e belongs to the plane
〈e′, e′′〉, that is, S lies on the line connecting the point 〈e′〉 in P(L′) to the point 〈e′′〉
in P(L′′). In other words, we have S ∈ Σ , and thus the subspace P(L′ + L′′) is con-
tained in Σ . Taking into account the reverse inclusion proved above, we obtain the
required equality Σ = P(L′ + L′′). �

Definition 9.7 The set P(L′ +L′′) is called a projective cover of the set P(L′)∪P(L′′)
and is denoted by

P
(
L′ + L′′) = P

(
L′)∪ P

(
L′′). (9.8)

Recalling Theorem 3.41, we obtain the following result.

Theorem 9.8 If P′ and P
′′ are two projective subspaces of a projective space P(L),

then

dim
(
P

′ ∩ P
′′)+ dim

(
P′ ∪ P′′) = dimP

′ + dimP
′′. (9.9)

Example 9.9 If P′ and P
′′ are two lines in the projective plane P(L), dim L = 3, then

dimP
′ = dimP

′′ = 1 and dim(P′ ∪ P′′) ≤ 2, and from relationship (9.9), we obtain
that dim(P′ ∩ P

′′) ≥ 0, that is, every pair of lines in the projective plane intersect.

The theory of projective spaces exhibits a beautiful symmetry, which goes under
the name duality (we have already encountered an analogous phenomenon in the
theory of vector spaces; see Sect. 3.7).

Let L∗ be the dual space to L. The projective space P(L∗) is called the dual of
P(L). Every point of the dual space P(L∗) is by definition a line 〈f 〉, where f is
a linear function on the space L not identically zero. Such a function determines a
hyperplane Lf ⊂ L, given by the linear homogeneous equation f (x) = 0 in the vec-
tor space L, which means that the hyperplane Pf is equal to P(Lf ) in the projective
space P(L).

Let us prove that the correspondence constructed above between points 〈f 〉 of the
dual space P(L∗) and hyperplanes Pf of the space P(L) is a bijection. To do so, we
must prove that the equations f = 0 and αf = 0 are equivalent, defining one and the
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same hyperplane, that is, Pf = Pαf . As was shown in Sect. 3.7, every hyperplane
L′ ⊂ L is determined by a single nonzero linear equation. Two different equations
f = 0 and f 1 = 0 can define one and the same hyperplane only if f 1 = αf , where
α is some nonzero number. Indeed, in the contrary case, the system of the two
equations f = 0 and f 1 = 0 has rank 2, and therefore, it defines a subspace L′′ of
dimension n − 2 in L and a subspace P(L′′) ⊂ P(L) of dimension n − 3, which is
obviously not a hyperplane. Thus the dual space P(L∗) can be interpreted as the
space of hyperplanes in P(L). This is the simplest example of the fact that certain
geometric objects cannot be described by numbers (such as, for example, vector
spaces can be described by their dimension), but constitute a set having a geometric
character. We shall encounter more complex examples in Chap. 10.

There is also a much more general fact, namely that there is a bijection between
m-dimensional projective subspaces of the space P(L) (dimension n) and subspaces
of dimension n − m − 1 of the space P(L∗). We shall now describe this correspon-
dence, and the reader will easily verify that for m = n − 1, this coincides with the
above-described correspondence between hyperplanes in P(L) and points in P(L∗).

Let L′ ⊂ L be a subspace of dimension m + 1, so that dimP(L′) = m. Let us con-
sider in the dual space L∗, the annihilator (L′)a of the subspace L′. Let us recall that
the annihilator is the subspace (L′)a ⊂ L∗ consisting of all linear functions f ∈ L∗
such that f (x) = 0 for all vectors x ∈ L′. As we established in Sect. 3.7 (formula
(3.54)), the dimension of the annihilator is equal to

dim
(
L′)a = dim L − dim L′ = n − m. (9.10)

The projective subspace P((L′)a) ⊂ P(L∗) is called the dual to the subspace
P(L′) ⊂ P(L). By (9.10), its dimension is n − m − 1. What we have here is a vari-
ant of a concept that is well known to us. If a nonsingular symmetric bilinear form
(x,y) is defined on the space L, then we can identify (L′)a with the orthogonal com-
plement to L′, which was denoted by (L′)⊥; see p. 198. If we write the bilinear form
(x,y) in some orthonormal basis of the space L, then it takes the form

∑n
i=0 xiyi ,

and the point with coordinates (y0, y1, . . . , yn) will correspond to the hyperplane
defined by the equation

n∑

i=0

xiyi = 0,

in which y0, . . . , yn are taken as fixed, and x0, . . . , xn are variables.
The assertions we have proved together with the duality principle established in

Sect. 3.7 leads automatically to the following result, called the principle of projective
duality.

Proposition 9.10 (Principle of projective duality) If a theorem is proved for all
projective spaces of a given finite dimension n over a given field K in a formulation
that uses only the concepts of projective subspace, dimension, projective cover, and
intersection, then for all such spaces, one has also the dual theorem obtained from
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the original one by the following substitutions:

dimension m dimension n − m − 1
intersection P1 ∩ P2 projective cover P1 ∪ P2

projective cover P1 ∪ P2 intersection P1 ∩ P2.

For example, the assertion “through two distinct points of the projective plane
there passes one line” has as its dual assertion “every pair of distinct lines in the
projective plane intersect in one point.”

One may try to extend this principle in such a way that it will cover not only
projective spaces, but also the projective algebraic varieties described by equation
(9.5). However, in this regard there appear some new difficulties, which we shall
only mention here without going into detail.

Assume, for example, that a projective algebraic variety X ⊂ P(L) is given by
the single equation

F(x0, x1, . . . , xn) = 0,

where F is a homogeneous polynomial. To every point A ∈ X there corresponds a
hyperplane given by the equation

n∑

i=0

∂F

∂xi

(A)xi = 0, (9.11)

called the tangent hyperplane to X at the point A (this notion will be discussed later
in greater detail). By the above considerations, we can assign to this hyperplane the
point B of the dual space P(L∗).

It is natural to suppose that as A runs through all points X, then the point B also
runs through some projective algebraic variety in the space P(L), called the dual
to the original variety X. This is indeed the case, except for certain unpleasant ex-
ceptions. Namely, for some point A, it could be the case that all partial derivatives
∂F
∂xi

(A) are equal to 0 for i = 0,1, . . . , n, and equation (9.11) takes the form of the
identity 0 = 0. Such points are called singular points of the projective algebraic va-
riety X. In this case, we do not obtain any hyperplane, and therefore, we cannot use
the indicated method to assign to the point A a given point of the space P(L∗). It
is possible to prove that singular points are in some sense exceptional. Moreover,
many very interesting varieties have no singular points at all, so that for them, the
dual variety exists. But then in the dual variety, there appear singular points, so that
the beautiful symmetry nevertheless disappears. Overcoming all these difficulties
is the task of algebraic geometry. We shall not go deeply into this, and we have
mentioned it only in connection to the fact that in Chap. 11, devoted to quadrics,
we shall consider precisely the special case in which these difficulties do not ap-
pear.
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9.2 Projective Transformations

Let A be a linear transformation of a vector space L into itself. It is natural to en-
tertain the idea of extending it to the projective space P(L). It would seem to be
something easy to do: one has only to associate with each point P ∈ P(L) corre-
sponding to the line 〈e〉 in L, the line 〈A(e)〉, which is some point of the projective
space P(L). However, here we encounter the following difficulty: If A(e) = 0, then
we cannot construct the line 〈A(e)〉, since all vectors proportional to A(e) are the
null vector. Thus the transformation that we wish to construct is not defined in gen-
eral for all points of the projective space P(L). However, if we wished to define it for
all points, then we must require that the kernel of the transformation A be (0). As
we know, this condition is equivalent to the transformation A : L → L being nonsin-
gular. Thus to all nonsingular transformations A of the space L into itself (and only
these) there correspond mappings of the projective space P(L) into itself. We shall
denote them by P(A).

We have seen that a nonsingular transformation A : L → L defines a bijective
mapping of the space L into itself. Let us prove that in this case, the corresponding
mapping P(A) : P(L) → P(L) is also a bijection. First, let us verify that its image
coincides with all P(L). Let P be a point of the space P(L). It corresponds to some
line 〈e〉 in L. Since the transformation A is nonsingular, it follows that e = A(e′)
for some vector e′ ∈ L, and moreover, e′ �= 0, since e �= 0. If P ′ is a point of the
space P(L) corresponding to the line 〈e′〉, then P ′ = P(A)(P ). It remains to show
that P(A) cannot map two distinct points into one. Let us suppose that P �= P ′ and

P(A)(P ) = P(A)
(
P ′) = P , (9.12)

where the points P , P ′, and P correspond to the lines 〈e〉, 〈e′〉, and 〈e〉 respectively.
The condition P �= P ′ is equivalent to the vectors e and e′ being linearly in-

dependent, while from equality (9.12) it follows that 〈A(e)〉 = 〈A(e′)〉 = 〈e〉,
which means that the vectors A(e) and A(e′) are linearly dependent. But if
αA(e) + βA(e′) = 0, where α �= 0 or β �= 0, then A(αe + βe′) = 0, and since
the transformation A is nonsingular, we have αe + βe′ �= 0, which contradicts the
condition P �= P ′. Thus we have proved that the mapping P(A) : P(L) → P(L) is a
bijection. Consequently, the inverse mapping P(A)−1 is also defined.

Definition 9.11 A mapping P(A) of the projective space P(L) corresponding to the
nonsingular transformation A of a vector space L into itself is called a projective
transformation of the space P(L).

Theorem 9.12 We have the following assertions:

(1) P(A1) = P(A2) if and only if A2 = λA1, where λ is some nonzero scalar.
(2) If A1 and A2 are two nonsingular transformations of a vector space L, then

P(A1A2) = P(A1)P(A2).
(3) If A is a nonsingular transformation, then P(A)−1 = P(A−1).
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(4) A projective transformation P(A) carries every projective subspace of the space
P(L) into a subspace of the same dimension.

Proof All the assertions of the proof follow directly from the definitions.
(1) If A2 = λA1, then it is obvious that A1 and A2 map lines of the vector space

L in exactly the same way, that is, P(A1) = P(A2). Now suppose, conversely, that
P(A1)(A) = P(A2)(A) for an arbitrary point A ∈ P(L). If the point A corresponds
to the line 〈e〉, then we have 〈A1(e)〉 = 〈A2(e)〉, that is,

A2(e) = λA1(e), (9.13)

where λ is some scalar. However, in theory, the number λ in relationship (9.13) could
have had its own value for each vector e. Let us consider two linearly independent
vectors x and y and for the vectors x, y, and x + y, let us write down condition
(9.13):

⎧
⎪⎨

⎪⎩

A2(x) = λA1(x),

A2(y) = μA1(y),

A2(x + y) = νA1(x + y).

(9.14)

In view of the linearity of A1 and A2, we have

A1(x + y) = A1(x) + A1(y), A2(x + y) = A2(x) + A2(y). (9.15)

Having substituted expressions (9.15) into the third equality of (9.14), we then sub-
tract from it the first and second inequalities. We then obtain

(ν − λ)A1(x) + (ν − μ)A1(y) = A1
(
(ν − λ)x + (ν − μ)y

) = 0.

Since the transformation A1 is nonsingular (by the definition of a projective trans-
formation), it follows that (ν − λ)x + (ν − μ)y = 0, and in view of the linear inde-
pendence of the vectors x and y, it follows from this that λ = ν and μ = ν, that is, all
the scalars λ,μ, ν in (9.14) are the same, and therefore the scalar λ in relationship
(9.13) is one and the same for all vectors e ∈ L.

(2) We must prove that for every point P of the corresponding line 〈e〉, we have
the equality P(A1A2)(P ) = P(A1)(P(A2)(P )), and this, by the definition of a pro-
jective transformation, follows from the fact that 〈(A1A2)(e)〉 = A1(〈A2(e)〉). The
last equality follows from the definition of the product of linear transformations.

(3) By what we have proven, we have the equality P(A)P(A−1) = P(AA−1) =
P(E). It is obvious that P(E) is the identity transformation of the space P(L) into
itself. From this, it follows that P(A)−1 = P(A−1).

(4) Finally, let L′ be an m-dimensional subspace of the vector space L and let
P(L′) be the associated (m − 1)-dimensional projective subspace. The mapping
P(A) takes P(L′) into a collection of points of the form P ′′ = 〈A(e′)〉, where
P ′ = 〈(e′)〉 runs through all points of P(L′). This holds because e′ runs through
all vectors of the space L′. Let us prove that here, all vectors 〈A(e′)〉 coincide with
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the nonnull vectors of some vector subspace L′′ having the same dimension as L′.
This will give us the required assertion.

In the subspace L′, let us choose a basis e1, . . . , em. Then every vector e′ ∈ L′ can
be represented in the form

e′ = α1e1 + · · · + αmem,

while the condition e′ �= 0 is equivalent to not all the coefficients αi being equal to
zero. From this, we obtain

A
(
e′) = α1A(e1) + · · · + αmA(em). (9.16)

The vectors A(e1), . . . ,A(em) are linearly independent, since the transformation
A : L → L is nonsingular. Let us consider the m-dimensional subspace L′′ =
〈A(e1), . . . ,A(em)〉. From the relationship (9.16), it follows that the transformation
P(A) takes the points of the subspace P(L′) precisely into the points of the subspace
P(L′′). From the equality dim L′ = dim L′′ = m, we obtain dimP(L′) = dimP(L′′) =
m − 1. �

By analogy with linear and affine transformations, there is a hope that we can de-
scribe a projective transformation unambiguously by how it maps a certain number
of “sufficiently independent” points. As a first attempt, we may consider the points
Pi = 〈ei〉 for i = 0,1, . . . , n, where e0, e1, . . . , en is a basis of the space L. But this
path does not lead to our goal, for there exist too many distinct transformations tak-
ing each point Pi into itself. Indeed, such are all the transformations of the form
P(A) if A(ei ) = λiei with arbitrary λi �= 0, that is, in other words, if A has, in the
basis e0, e1, . . . , en, the matrix

A =

⎛

⎜⎜⎜
⎝

λ0 0 · · · 0
0 λ1 · · · 0
...

...
. . .

...

0 0 · · · λn

⎞

⎟⎟⎟
⎠

.

In this case, 〈A(ei )〉 = 〈ei〉 for all i = 0,1, . . . , n. However, the image of an arbi-
trary vector

e = α0e0 + α1e1 + · · · + αnen

is equal to

A(e) = α0λ0A(e0) + α1λ1A(e1) + · · · + αnλnA(en),

and this vector is already not proportional to e unless all λi are identical. Thus even
knowing how the transformation P(A) maps the points P0,P1, . . . ,Pn, we are not
yet able to determine it uniquely. But it turns out that the addition of one more point
(under some weak assumptions) describes the transformation uniquely. For this, we
need to introduce a new concept.
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Definition 9.13 In the n-dimensional projective space P(L), n + 2 points

P0,P1, . . . ,Pn,Pn+1 (9.17)

are said to be independent if no n + 1 of them lie in a subspace of dimension less
than n.

For example, four points in the projective plane are independent if no three of
them are collinear.

Let us explore what the condition of independence means if to the point Pi

there corresponds the line 〈ei〉, i = 0, . . . , n + 1. Since by definition, the points
P0,P1, . . . ,Pn do not lie in a subspace of dimension less than n, it follows that the
vectors e0, e1, . . . , en do not lie in a subspace of dimension less than n + 1, that
is, they are linearly independent, and this means that they constitute a basis of the
space L. Thus the vector en+1 is a linear combination of these vectors:

en+1 = α0e0 + α1e1 + · · · + αnen. (9.18)

If some scalar αi is equal to 0, then from (9.18), it follows that the vector en+1
lies in the subspace L′ = 〈e0, . . . , ĕi , . . . , en〉, where the sign ˘ indicates the omis-
sion of the corresponding vector. Consequently, the vectors e0, . . . , ĕi , . . . , en, en+1
lie in a subspace L′ whose dimension does not exceed n. But this means that the
points P0, . . . , P̆i , . . . ,Pn,Pn+1 lie in the projective space P(L′), and moreover,
dimP(L′) ≤ n − 1, that is, they are dependent.

Let us show that for the independence of points (9.17), it suffices that in the
decomposition (9.18), all coefficients αi be nonzero. Let the vectors e0, e1, . . . , en

form a basis of the space L, while the vector en+1 is a linear combination (9.18)
of them such that all the αi are nonzero. Let us show that then, the points (9.17)
are independent. If this were not the case, then some n + 1 vectors from among
e0, e1, . . . , en+1 of the space L would lie in a subspace of dimension not greater
than n. This cannot be the vectors e0, e1, . . . , en, since by assumption, they consti-
tute a basis of L. So let it be the vectors e0, . . . , ĕi , . . . , en, en+1 for some i < n + 1,
and their linear dependence is expressed by the equality

λ0e0 + · · · + λi−1ei−1 + λi+1ei+1 + · · · + λn+1en+1 = 0,

where λn+1 �= 0, since the vectors e0, e1, . . . , en are linearly independent. From
this, it follows that the vector en+1 is a linear combination of the vectors
e0, . . . , ĕi , . . . , en. But this contradicts the condition that in the expression (9.18),
all the αi are nonzero, since the vectors e0, e1, . . . , en form a basis of the space L,
and the decomposition (9.18) for an arbitrary vector en+1 uniquely determines its
coordinates αi .

Thus, n + 2 independent points (9.17) are always obtained from n + 1 points
Pi = 〈ei〉 whose corresponding vectors ei form a basis of the space L by the addition
of one more point P = 〈e〉 for which the vector e is a linear combination of the
vectors ei with all nonzero coefficients.

We can now formulate our main result.
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Theorem 9.14 Let

P0,P1, . . . ,Pn,Pn+1; P ′
0,P

′
1, . . . ,P

′
n,P

′
n+1 (9.19)

be two systems of independent points of the projective space P(L) of dimension n.
Then there exists a projective transformation taking the point Pi to P ′

i for all i =
0,1, . . . , n + 1, and moreover, it is unique.

Proof We shall use the interpretation of the property of independence of points
obtained above. Let points Pi correspond to the lines 〈ei〉, and let the points P ′

i cor-
respond to the lines 〈e′

i〉. We may assume that the vectors e0, . . . , en and the vectors
e′

0, . . . , e
′
n are bases of an (n + 1)-dimensional subspace of L. Then as we know, for

every collection of nonzero scalars λ0, . . . , λn, there exists (and it is unique) a non-
singular linear transformation A : L → L mapping ei to λie

′
i for all i = 0,1, . . . , n.

By definition, for such a transformation A, we have P(A)(Pi) = P ′
i for all i =

0,1, . . . , n. Since dim L = n + 1, we have the relationships

en+1 = α0e0 + α1e1 + · · · + αnen, e′
n+1 = α′

0e
′
0 + α′

1e
′
1 + · · · + α′

ne
′
n. (9.20)

From the condition of independence of both collections of points (9.19), it follows
that in the representations (9.20), all the coefficients αi and α′

i are nonzero. Applying
the transformation A to both sides of the first relationship in (9.20), taking into
account the equalities A(ei ) = λie

′
i , we obtain

A(en+1) = α0λ0e
′
0 + α1λ1e

′
1 + · · · + αnλne

′
n. (9.21)

After setting the scalars λi equal to α′
iα

−1
i for all i = 0,1, . . . , n and substituting

them into the relationship (9.21), taking into account the second equality of formula
(9.20), we obtain that A(en+1) = e′

n+1, that is, P(A)(Pn+1) = P ′
n+1.

The uniqueness of the projective transformation P(A) that we have obtained fol-
lows from its construction. �

For example, for n = 1, the space P(L) is the projective line. Three points
P0,P1,P2 are independent if and only if they are distinct. We see that any three
distinct points on the projective line can be mapped into three other distinct points
by a unique projective transformation.

Let us now consider how a projective transformation can be given in coordinate
form. In homogeneous coordinates (9.2), the stipulation of a projective transforma-
tion P(A) in fact coincides with that of a nonsingular linear transformation A, and
indeed, the homogeneous coordinates of a point A ∈ P(L) coincide with the coor-
dinates of the vector x from (9.1) that determines the line 〈x〉 corresponding to the
point A. Using formula (3.25), we obtain for the homogeneous coordinates βi of
the point P(A)(A) the following expressions in homogeneous coordinates αi of the
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point A:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β0 = a00α0 + a01α1 + a02α2 + · · · + a0nαn,

β1 = a10α0 + a11α1 + a12α2 + · · · + a1nαn,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βn = an0α0 + an1α1 + an2α2 + · · · + annαn.

(9.22)

Here we must recall that the homogeneous coordinates are defined only up to a
common factor, and both collections (α0 : α1 : · · · : αn) and (β0 : β1 : · · · : βn) are
not identically zero. Clearly, in multiplying all the αi by the common factor λ, all βi

in formula (9.22) are also multiplied by this factor. All the βi cannot become zero if
all the αi cannot become zero (this follows from the fact that the transformation A is
nonsingular). The condition of nonsingularity of the transformation A is expressed
as the determinant of its matrix being nonzero:

∣
∣∣∣∣∣∣∣∣

a00 a01 · · · a0n

a10 a11 · · · a1n

...
...

. . .
...

an0 an1 · · · ann

∣
∣∣∣∣∣∣∣∣

�= 0.

Another way of writing a projective transformation is in inhomogeneous coor-
dinates of affine spaces. Let us recall that a projective space P(L) contains affine
subsets Vi , i = 0,1, . . . , n, and it can be obtained from any of the Vi by the addition
of the corresponding projective hyperplane P(Li ) consisting of “points at infinity,”
that is, in the form P(L) = Vi ∪ P(Li ). For simplicity of notation, we shall limit
ourselves to the case i = 0; all the remaining Vi are considered analogously.

To an affine subset V0 there corresponds (as its subspace of vectors) the vector
subspace L0 ⊂ L defined by the condition α0 = 0. For assigning coordinates in the
affine space V0, we must fix in the space some frame of reference consisting of a
point O ∈ V0 and a basis in the space L0. In the (n + 1)-dimensional space L, let us
choose a basis e0, e1, . . . , en. For the point O ∈ V0, let us choose the point associated
with the line 〈e0〉, and for the basis in L0, let us take the vectors e1, . . . , en.

Let us consider a point A ∈ V0, which in the basis e0, e1, . . . , en of the space L
has homogeneous coordinates (α0 : α1 : · · · : αn), and repeating the arguments that
we used in deriving formulas (9.6), let us find its coordinates with respect to the
frame of reference (O; e1, . . . , en) constructed in the manner outlined above. The
point A corresponds to the line 〈e〉, where

e = α0e0 + α1e1 + · · · + αnen, (9.23)

and moreover, α0 �= 0, since A ∈ V0. By assumption, we must choose from both
lines 〈e0〉 and 〈e〉, vectors x and y with coordinate α0 = 1 and examine the coor-
dinates of the vector y − x with respect to the basis e1, . . . , en. It is obvious that
x = e0, and in view of (9.23), we have

y = e0 + α1α
−1
0 e1 + · · · + αnα

−1
0 en.
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Thus the vector y − x has, in the basis e1, . . . , en, coordinates

x1 = α1

α0
, . . . , xn = αn

α0
.

We shall now consider a nonsingular linear transformation A : L → L and the
associated projective transformation P(A), given by formulas (9.22). It takes a point
A with homogeneous coordinates αi to a point B with homogeneous coordinates βi .
In order to obtain in both cases inhomogeneous coordinates in the subset V0, it is
necessary, by formula (9.6), to divide all the coordinates by the coordinate with
index 0. Thus we obtain that a point with inhomogeneous coordinates xi = αi

α0
is

mapped to the point with inhomogeneous coordinates yi = βi

β0
, that is, taking into

account (9.22), we obtain the expressions

yi = ai0 + ai1x1 + · · · + ainxn

a00 + a01x1 + · · · + a0nxn

, i = 1, . . . , n. (9.24)

In other words, in inhomogeneous coordinates, a projective transformation can be
written in terms of the linear fractional formulas (9.24) with a common denominator
for all yi . It is not defined at points where this denominator becomes zero, and these
are the “points at infinity,” that is, points of the projective hyperplane P(L0) with
equation β0 = 0.

Let us consider projective transformations mapping “points at infinity” to “points
at infinity” and consequently, “finite points” to “finite points.” This means that the
equality β0 = 0 is possible only for α0 = 0, that is, taking into account formula
(9.22), the equality

a00α0 + a01α1 + a02α2 + · · · + a0nαn = 0

is possible only for α0 = 0. Obviously, this latter condition is equivalent to the con-
ditions a0i = 0 for all i = 1, . . . , n. In this case, the common denominator of the
linear fractional formulas (9.24) reduces to the constant a00. From the nonsingular-
ity of the transformation A, it follows that a00 �= 0, and we can divide the numer-
ators in equalities (9.24) by a00. We then obtain precisely the formulas for affine
transformations (8.17). Thus affine transformations are special cases of projective
transformations, namely, those that take the set of “points at infinity” to itself.

Example 9.15 In the case dimP(L) = 1, the projective line P(L) has a single inho-
mogeneous coordinate, and formula (9.24) assumes the form

y = a + bx

c + dx
, ad − bc �= 0.

Transformations of the “finite part” of the projective line (x �= ∞) are affine and
have the form y = α + βx, where β �= 0.
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9.3 The Cross Ratio

Let us recall that in Sect. 8.2, we defined the affine ratio (A,B,C) among three
collinear points of an affine space, and then, in Sect. 8.3, it was proved (The-
orem 8.28) that the affine ratio (A,B,C) among three collinear points does not
change under a nonsingular affine transformation. In projective spaces, the notion
of a relationship among three collinear points cannot be given a natural analogue.
This is the result of the following assertion.

Theorem 9.16 Let A1,B1,C1 and A2,B2,C2 be two triples of points in a projective
space satisfying the following conditions:

(a) The three points in each triple are distinct.
(b) The points in each triple are collinear (one line for each triple).

Then there exists a projective transformation taking one triple into the other.

Proof Let us denote the line on which the three points Ai,Bi,Ci lie by li , where
i = 1,2. Points A1,B1,C1 are independent on l1, and the points A2,B2,C2 are in-
dependent on l2. Let the point Ai be determined by the line 〈ei〉, point Bi by the
line 〈f i〉, point Ci by the line 〈gi〉, and line li by the two-dimensional space Li ,
i = 1,2. They are all contained in the space L that determines our projective space.
Repeating the proof of Theorem 9.14 verbatim, we shall construct an isomorphism
A′ : L1 → L2 taking the lines 〈e1〉, 〈f 1〉, 〈g1〉 to the lines 〈e2〉, 〈f 2〉, 〈g2〉 respec-
tively. Let us represent the space L in the form of two decompositions:

L = L1 ⊕ L′
1, L = L2 ⊕ L′

2.

It is obvious that dim L′
1 = dim L′

2 = dim L − 2, and therefore, the spaces L′
1 and

L′
2 are isomorphic. We shall choose some isomorphism A′′ : L′

1 → L′
2 and define a

transformation A : L → L as A′ on L1 and as A′′ on L′
1, while for arbitrary vectors

x ∈ L, we shall use the decomposition x = x1 + x′
1, x1 ∈ L1, x′

1 ∈ L′
1, to define

A(x) = A′(x1) + A′′(x′
1). It is easy to see that A is a nonsingular linear transfor-

mation, and the projective transformation P(A) takes the triple of points A1,B1,C1

to A2,B2,C2. �

Analogously to the fact that for a triple of collinear points A,B,C of an affine
space, there is an associated number (A,B,C) that is unchanged under every non-
singular affine transformation, in a projective space we can associate with a quadru-
ple of collinear points A1,A2,A3,A4 a number that does not change under projec-
tive transformations. This number is denoted by (A1,A2,A3,A4) and is called the
cross or anharmonic ratio of these four points. We now turn to its definition.

Let us consider first the projective line l = P(L), where dim L = 2. Four arbitrary
points A1,A2,A3,A4 on l correspond to four lines 〈a1〉, 〈a2〉, 〈a3〉, 〈a4〉 lying in the
plane L. In the plane L, let us choose a basis e1, e2 and consider the decomposition
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of the vectors ai in this basis: ai = xie1 + yie2, i = 1, . . . ,4. The coordinates of the
vectors a1, . . . ,a4 can be written as the columns of the matrix

M =
(

x1 x2 x3 x4
y1 y2 y3 y4

)
.

Consider the following question: how do the minors of order 2 of the matrix M

change under a transition to another basis e′
1, e

′
2 of the plane L? Let us denote by

[αi] and [α′
i] the columns of the coordinates of the vector ai in the bases (e1, e2)

and (e′
1, e

′
2) respectively:

[αi] =
(

xi

yi

)
,

[
α′

i

] =
(

x′
i

y′
i

)

.

By formula (3.36) for changing coordinates, they are related by [α] = C[α′],
where C is the transition matrix from the basis e′

1, e
′
2 to the basis e1, e2. From this

it follows that
(

xi xj

yi yj

)
= C ·

(
x′
i x′

j

y′
i y′

j

)

for any choice of indices i and j , and by the theorem on multiplication of determi-
nants, we obtain

∣
∣∣∣
xi xj

yi yj

∣
∣∣∣ = |C| ·

∣
∣∣∣∣
x′
i x′

j

y′
i y′

j

∣
∣∣∣∣
,

where |C| �= 0. This means that for any three indices i, j, k, the relation

∣∣ xi xj

yi yj

∣∣
∣∣ xi xk

yi yk

∣∣ =
∣∣ x′

i x′
j

y′
i y′

j

∣∣

∣∣ x′
i x′

k

y′
i y′

k

∣∣
(9.25)

is unaltered under a change of basis (we assume now that both determinants, in
the numerator and denominator, are nonzero). Thus relationship (9.25) determines a
number (ai ,aj ,ak) depending on the three vectors ai ,aj ,ak but not on the choice
of basis in L.

However, this is not yet what we promised: the points Ai indeed determine the
lines 〈ai〉, but not the vectors ai . We know that the vector a′

i determines the same
line as the vector ai if and only if a′

i = λiai , λi �= 0. Therefore, if in expression
(9.25) we replace the coordinates of the vectors ai ,aj ,ak with the coordinates of
the proportional vectors a′

i ,a
′
j ,a

′
k , then its numerator will be multiplied by λiλj ,

while its denominator will be multiplied by λiλk , with the result that the entire
expression (9.25) will be multiplied by the number λjλ

−1
k , which means that it will

change.
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However, if we now consider the expression

DV(A1,A2,A3,A4) =
∣∣ x1 x3
y1 y3

∣∣ · ∣∣ x2 x4
y2 y4

∣∣
∣∣ x1 x4
y1 y4

∣∣ · ∣∣ x2 x3
y2 y3

∣∣ , (9.26)

then as our previous reasoning demonstrates, it will depend neither on the choice
of basis of the plane L nor on the choice of vectors ai on the lines 〈ai〉, but will
be determined only by the four points A1,A2,A3,A4 on the projective line l. It is
expression (9.26) that is called the cross ratio of these four points.

Let us write the expression for DV(A1,A2,A3,A4) assuming that homogeneous
coordinates have been introduced on the projective line l. Let us begin with the
formula written in the homogeneous coordinates (x : y). We shall now consider the
points Ai “finite” points of l, that is, we assume that yi �= 0 for all i = 1, . . . ,4, and
we set ti = xi/yi ; these will be the coordinates of the point Ai in the “affine part”
of the projective line l. Then we obtain

∣∣∣
∣
xi xj

yi yj

∣∣∣
∣ = yiyj ·

∣∣∣
∣
ti tj
1 1

∣∣∣
∣ = yiyj (ti − tj ).

Substituting these expressions into formula (9.26), we see that all the yi cancel, and
as a result, we obtain the expression

DV(A1,A2,A3,A4) = (t1 − t3)(t2 − t4)

(t1 − t4)(t2 − t3)
. (9.27)

If we assume that all four points A1,A2,A3,A4 lie in the “finite part” of the
plane, then this means in particular that they belong to the affine part of the projec-
tive line l and have finite coordinates t1, t2, t3, t4 on the projective line l. Taking into
account formula (8.8) for the affine ratio of three points, we observe that then the
expression for the cross ratio takes the form

DV(A1,A2,A3,A4) = (A3,A2,A1)

(A4,A2,A1)
. (9.28)

Equality (9.28) shows the connection between the cross ratio and the affine ratio
introduced in Sect. 8.2.

We have determined the cross ratio for four distinct points. In the case in which
two of these points coincide, it is possible to define this ratio under some natural
conventions (as we did for the affine ratio), setting the cross ratio in some cases
equal to ∞. However, the cross ratio remains undefined if three of the four points
coincide.

The above reasoning almost contains the proof of the following fundamental
property of the cross ratio.

Theorem 9.17 The cross ratio of four collinear points in a projective space does
not change under a projective transformation of the space.
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Fig. 9.3 Perspective
mapping

Proof Let A1,A2,A3,A4 be four points lying on the line l′ in some projective space
P(L). They correspond to the four lines 〈a1〉, 〈a2〉, 〈a3〉, 〈a4〉 of the space L, and the
line l′ corresponds to the two-dimensional subspace L′ ⊂ L. Let A be a nonsingular
transformation of the space L, and ϕ = P(A) the corresponding projective trans-
formation of the space P(L). Then by Theorem 9.12, ϕ(l′) = l′′ is another line in
the projective space P(L); it corresponds to the subspace A(L′) ⊂ L and contains
the four points ϕ(A1), ϕ(A2), ϕ(A3), ϕ(A4). Let the vectors e1, e2 form a basis of
L′ and write the vectors ai as ai = xie1 + yie2, i = 1, . . . ,4. Then the cross ratio
DV(A1,A2,A3,A4) is defined by the formula (9.26).

On the other hand, A(ai ) = xiA(e1) + yiA(e2), and if we use the bases f 1 =
A(e1) and f 2 = A(e2) of the subspace A(L′), then the cross ratio

DV
(
ϕ(A1), ϕ(A2), ϕ(A3), ϕ(A4)

)

is defined by the same formula (9.26), since the coordinates of the vectors A(ai ) in
the basis f 1,f 2 coincide with the coordinates of the vectors ai in the basis e1, e2.
But as we have already verified, the cross ratio depends neither on the choice of
basis nor on the choice of vectors ai that determine the lines 〈ai〉. Therefore, it
follows that

DV(A1,A2,A3,A4) = DV
(
ϕ(A1), ϕ(A2), ϕ(A3), ϕ(A4)

)
. �

Example 9.18 In a projective space Π , let us consider two lines l1 and l2 and a point
O lying on neither of the lines. Let us connect an arbitrary point A ∈ l1 to the point
O of the line lA; see Fig. 9.3. We shall denote the point of intersection of the lines
lA and l2 by A′. The mapping of the line l1 into l2 that to each point A ∈ l1 assigns
the point A′ ∈ l2 is called a perspective mapping.

Let us prove that there exists a projective transformation of the plane Π defining
a perspective correspondence between the lines l1 and l2. To this end, let us denote
by l0 the line joining the point O and the point P = l1 ∩ l2, and let us consider
the set V = Π \ l0. In other words, we shall consider l0 a “line at infinity” and the
points of V will be considered “finite points” of the projective plane. Then on V , the
perspective correspondence will be given by a bundle of parallel lines, since these
lines in the “finite part” do not intersect; see Fig. 9.4.

More precisely, this bundle defines a mapping of the “finite parts” l′1 and l′2 of
the lines l1 and l2. From this it follows that in the affine plane V , the lines l′1 and
l′2 are parallel, and the perspective correspondence between them is defined by an
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Fig. 9.4 A bundle of parallel
lines

arbitrary translation Ta by the vector a = −−→
AA′, where A is an arbitrary point on the

line l′1, and A′ is the point on the line l′2 corresponding to it under the perspective
correspondence. As we saw above, every nonsingular affine transformation of an
affine plane V is a projective mapping for Π , and this is even more obviously the
case for a translation. This means that a perspective correspondence is defined by
some projective transformation of the plane Π . Therefore, from Theorem 9.17, we
deduce the following result.

Theorem 9.19 The cross ratio of four collinear points is preserved under a per-
spective correspondence.

9.4 Topological Properties of Projective Spaces*

The previous discussion in this chapter was related to a projective space P(L), where
L was a finite-dimensional vector space over an arbitrary field K. If our interest is
in a particular field (for example, R or C), then all the assertions we have proved
remain valid, since we used only general algebraic notions (which derive from the
definition of a field), and nowhere did we use, for example, properties of inequality
or absolute value. Now let us say a few words about properties related to the notion
of convergence, or as they are called, topological properties, of projective spaces. It
makes sense to talk about them if, for example, L is a real or complex vector space,
that is, the field in question is K= R or C.

Let us begin by formulating the notion of convergence of a sequence of vectors
x1,x2, . . . ,xk, . . . in a space L to a vector x of the same space. Let us choose in L
an arbitrary basis e0, e1, . . . , en and let us write the vectors xk and x in this basis:

xk = αk0e0 + αk1e1 + · · · + αknen, x = β0e0 + β1e1 + · · · + βnen.

We shall say that the sequence of vectors x1,x2, . . . ,xk, . . . converges to the vector
x if the sequence of numbers

α1i , α2i , . . . , αki, . . . (9.29)

for fixed i converges to the number βi as k → ∞ for each index i = 0,1, . . . , n (in
speaking about complex vector spaces, we assume that the reader is familiar with the
notion of convergence of a sequence of complex numbers). The vector x is called,
in this case, the limit of the sequence. From the formulas for changing coordinates



340 9 Projective Spaces

given in Sect. 3.4, it is easy to derive that the property of convergence does not
depend on the basis in L. We shall write this convergence as xk → x as k → ∞.

Let us move now from vectors to points of a projective space. In both cases
that we are considering (K = R or C), there is a useful method of normalizing the
homogeneous coordinates (x0 : x1 : · · · : xn) defined, generally speaking, only up to
multiplication by a common factor λ �= 0. Since by definition, the equality xi = 0
for all i = 0,1, . . . , n is impossible, we may choose a coordinate xr for which |xr |
(the absolute value in R or C, respectively) assumes the greatest value, and setting
λ = |xr |, make the substitution yi = λ−1xi for all i = 0,1, . . . , n. Then, obviously,

(x0 : x1 : · · · : xn) = (y0 : y1 : · · · : yn),

and moreover, |yr | = 1 and |yi | ≤ 1 for all i = 0,1, . . . , n.

Definition 9.20 A sequence of points P1,P2, . . . ,Pk, . . . converges to the point P

if on every line 〈ek〉 that determines the point Pk , and on the line 〈e〉 determining
the point P , it is possible to find nonnull vectors xk and x such that xk → x as
k → ∞. This is written as Pk → P as k → ∞. The point P is called the limit of the
sequence P1,P2, . . . ,Pk, . . . .

We note that by assumption, 〈ek〉 = 〈xk〉 and 〈e〉 = 〈x〉.

Theorem 9.21 It is possible to choose from an arbitrary infinite sequence of points
of a projective space a subsequence that converges to a point of the space.

Proof As we have seen, every point P of a projective space can be represented in the
form P = 〈y〉, where the vector y has coordinates (y0, y1, . . . , yn), and moreover,
max |yi | = 1.

It is proved in a course in real analysis that every bounded sequence of real num-
bers satisfies the assertion of Theorem 9.21. It is also very easy to prove the state-
ment for a sequence of complex numbers. To obtain from this the assertion of the
theorem, let us consider an infinite sequence of points P1,P2, . . . ,Pk, . . . of the
projective space P(L). Let us focus attention first on the sequence of zeroth (that
is, having index 0) coordinates of the vectors x1,x2, . . . ,xk, . . . corresponding to
these points. Suppose they are the numbers

α10, α20, . . . , αk0, . . . . (9.30)

As we noted above, we may assume that all |αk0| are less than or equal to 1. By the
assertion from real analysis formulated above, from the sequence (9.30), we may
choose a subsequence

αn10, αn20, . . . , αnk0, . . . , (9.31)

converging to some number β0 that therefore also does not exceed 1 in absolute
value. Let us now consider a subsequence of points Pn1 ,Pn2 , . . . ,Pnk

, . . . and of
vectors xn1,xn2 , . . . ,xnk

, . . . with the same indices as those in the subsequence
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(9.31). Let us focus attention on the first coordinate of these vectors. For them,
clearly, it is also the case that |αnk1| ≤ 1. This means that from the sequence

αn11, αn21, . . . , αnk1, . . .

we may choose a subsequence converging to some number β1, and moreover, clearly
|β1| ≤ 1.

Repeating this argument n + 1 times, we obtain as a result, from the original
sequence of vectors x1,x2, . . . ,xk, . . . , a subsequence xm1,xm2, . . . ,xmk

, . . . con-
verging to some vector x ∈ L, which, like every vector of this space, can be decom-
posed in terms of the basis e0, e1, . . . , en, that is,

x = β0e0 + β1e1 + · · · + βnen.

This gives us the assertion of Theorem 9.21 if we ascertain that not all coordinates
β0, β1, . . . , βn of the vector x are equal to zero. But this follows from the fact that
by construction, for each vector xmk

of the subsequence xm1,xm2, . . . ,xmk
, . . . ,

a certain coordinate αmki , i = 0, . . . , n, has absolute value equal to 1. Since there
exists only a finite number of coordinates, and the number of vectors xmk

is in-
finite, there must be an index i such that among the coordinates αmki , infinitely
many will have absolute value 1. On the other hand, by construction, the sequence
αm1i , αm2i , . . . , αmki, . . . converges to the number βi , which therefore must have
absolute value equal to 1. �

The property established in Theorem 9.21 is called compactness. It holds as well
for every projective algebraic variety of a projective space (whether real or com-
plex). We may formulate it as follows.

Corollary 9.22 In the case of a real or complex space, the points of a projective
algebraic variety form a compact set.

Proof Let the projective algebraic variety X be given by a system of equations (9.5),
and let P1,P2, . . . ,Pk, . . . be a sequence of points in X. By Theorem 9.21, there ex-
ists a subsequence of this sequence that converges to some point P of this space. It
remains to prove that the point P belongs to the variety X. For this, it suffices to
show that it can be represented in the form P = 〈u〉, where the coordinates of the
vector u satisfy equations (9.5). But this follows at once from the fact that polyno-
mials are continuous functions. Let F(x0, x1, . . . , xn) be a polynomial (in this case,
homogeneous; it is one of the polynomials Fi appearing in the system of equations
(9.5)). We shall write it in the form F = F(x), where x ∈ L. Then from the conver-
gence of the vectors xk → x as k → ∞ such that F(xk) = 0 for all k, it follows that
F(x) = 0. �

For subsets of a finite-dimensional vector or affine space (whether real or com-
plex), the property of compactness is related to their boundedness—more precisely,
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Fig. 9.5 The real projective
line

the property of boundedness follows from compactness. Thus while real and com-
plex vector or affine spaces can be visualized as “extending unboundedly in all di-
rections,” for projective spaces, such is not the case. But what does it mean to say
“can be visualized”? In order to formulate this intuitive idea precisely, we shall in-
troduce for the real and complex projective lines some simple geometric representa-
tions to which they are homeomorphic (see the relevant definition on p. xviii). This
will allow us to give a precise meaning to the words that a given set “can be visual-
ized.” Let us observe that the property of compactness established in Theorem 9.21
is unchanged under a transition from one set to another that is homeomorphic to it.

Let us begin with the simplest situation: a one-dimensional real projective space,
that is, the real projective line. It consists of pairs (x0 : x1), where x0 and x1 are
considered only up to a common factor λ �= 0. Those pairs for which x0 �= 0 form
an affine subset U , whose points are given by the single coordinate t = x1/x0, so
that we may identify the set U with R. Pairs for which x0 = 0 do not enter the set
U , but they correspond to only one point (0 : 1) of the projective line, which we
shall denote by (∞). Thus the real projective line can be represented in the form
R∪ (∞).

The convergence of points Pk → Q as k → ∞ is defined in this case as follows.
If points Pk �= (∞) correspond to the numbers tk , and the point Q �= (∞) corre-
sponds to the number t , then Pk = (αk : βk) and Q = (α : β), where βk/αk = tk ,
αk �= 0, and β/α = t , α �= 0. The convergence Pk → Q as k → ∞ in this case im-
plies the convergence of the sequence of numbers tk → t as k → ∞. In the case
that Pk → (∞), the convergence (in the previous notation) means that αk → 0,
βk → 1 as k → ∞, from which it follows that t−1

k → 0, or equivalently, |tk| → ∞
as k → ∞.

We can graphically represent the real projective line by drawing a circle tangent
to the horizontal line l at the point O; see Fig. 9.5. Connecting the highest point O ′
of this circle with an arbitrary point A of the circle, we obtain a line that intersects l

at some point B . We thereby obtain a bijection between points A �= O ′ of the circle
and all the points B of the line l. If we place the coordinate origin of the line l at the
point O and associate with each point B ∈ l a number t ∈ R resulting from a choice
of some unit measure on the line l (that is, an arbitrary point of the line l different
from O is given the value 1), then we obtain a bijection between numbers t ∈ R

and points A �= O ′ of the circle. Then |tk| → ∞ if and only if for the corresponding
points Ak of the circle, we have the convergence Ak → O ′. Consequently, we obtain
a bijection between points of the real projective line R ∪ (∞) and all points of the
circle that preserves the notion of convergence. Thus we have proved that the real
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Fig. 9.6 Stereographic
projection of the sphere onto
the plane

projective line is homeomorphic to the circle, which is usually denoted by S1 (the
one-dimensional sphere).

An analogous argument can be applied to the complex projective line. It is repre-
sented in the form C∪ (∞). On it, the convergence of a sequence of points Pk → Q

as k → ∞ in the case Q �= (∞) corresponds to convergence of a sequence of com-
plex numbers zk → z, where z ∈C, while the convergence of the sequence of points
Pk → (∞) corresponds to the convergence |zk| → ∞ (here |z| denotes the modulus
of the complex number z).

For the graphical representation of the complex projective line, Riemann pro-
posed the following method; see Fig. 9.6. The complex numbers are depicted in the
usual way as points in a plane. Let us consider a sphere tangent to this plane at the
origin O , which corresponds to the complex number z = 0. Through the highest
point O ′ of the sphere and any other point A of the sphere there passes a line in-
tersecting the complex plane at a point B , which represents some number z ∈ C.
This yields a bijection between numbers z ∈ C and all the points of the sphere, with
the exception of the point O ′; see Fig. 9.6. This correspondence is often called the
stereographic projection of the sphere onto the plane. By associating the point (∞)

of the complex projective line with the point O ′ of the sphere, we obtain a bijec-
tion between the points of the complex projective line C ∪ (∞) and all the points
of the sphere. It is easy to see that convergence is preserved under this assignment.
Thus the complex projective line is homeomorphic to the two-dimensional sphere
in three-dimensional space, which is denoted by S2.

In the sequel, we shall limit our consideration to projective spaces P(L), where L
is a real vector space of some finite dimension, and we shall consider for such spaces
the property of orientability. It is related to the concept of continuous deformation
of a linear transformation, which was introduced in Sect. 4.4.

By definition, every projective transformation of a projective space P(L) has the
form P(A), where A is a nonsingular linear transformation of the vector space L.
Moreover, as we have seen, the linear transformation A is determined by the pro-
jective transformation up to a replacement by αA, where α is any nonzero number.

Definition 9.23 A projective transformation is said to be continuously deformable
into another if the first can be represented in the form P(A1) and the second in the
form P(A2), and the linear transformation A1 is continuously deformable into A2.

Theorem 4.39 asserts that a linear transformation A1 is continuously deformable
into A2 if and only if the determinants |A1| and |A2| have the same sign. What
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happens under a replacement of A by αA? Let the projective space P(L) have di-
mension n. Then the vector space L has dimension n+1, and |αA| = αn+1|A|. If the
number n + 1 is even, then it is always the case that αn+1 > 0, and such a replace-
ment does not change the sign of the determinant. In other words, in a projective
space of odd dimension n, the sign of the determinant |A| of a linear transforma-
tion A is uniquely determined by the transformation P(A). This clearly yields the
following result.

Theorem 9.24 In a projective space of odd dimension, a projective transformation
P(A1) is continuously deformable into P(A2) if and only if the determinants |A1|
and |A2| have the same sign.

The same considerations can be applied to projective spaces of even dimension,
but they lead to a different result.

Theorem 9.25 In a projective space of even dimension, every projective transfor-
mation is continuously deformable into every other projective transformation.

Proof Let us show that every projective transformation P(A) is continuously de-
formable into the identity. If |A| > 0, then this follows at once from Theorem 4.39.
And if |A| < 0, then the same theorem gives us that the transformation A is continu-
ously deformable into B, which has matrix

(−1 0
0 En

)
, where En is the identity matrix

of order n. But P(B) = P(−B), and the transformation −B has matrix
( 1 0

0 −En

)
.

Since in our case, the number n is even, it follows that | − En| = (−1)n > 0, and
by Theorem 4.38, the matrix

( 1 0
0 −En

)
is continuously deformable into En+1, and

consequently, the transformation −B is continuously deformable into the identity.
Thus the projective transformation P(B) is continuously deformable into P(E), and
this means by definition, that P(A) is also continuously deformable into P(E). �

Expressing these facts in topological form, we may say that the set of projective
transformations of the space P

n of a given dimension has a single path-connected
component if n is even, and two path-connected components if n is odd.

Theorems 9.24 and 9.25 show that the properties of projective spaces of even and
odd dimension are radically different. We encounter this for the first time in the case
of the projective plane. It differs from the vector (or Euclidean) plane in that it has
not two, but only one orientation. It is the same with projective spaces of arbitrary
even dimension. We saw in Sect. 4.4 that the orientation of the affine plane can be
interpreted as a choice of direction of motion around a circle. Theorem 9.25 shows
that in the projective plane, this is already not the case—the continuous motion in
a given direction around a circle in the projective plane can be transformed into
motion in the opposite direction. This is possible only because our deformation at a
certain moment “passes through infinity,” which is impossible in the affine plane.

This property can be presented graphically using the following construction,
which is applicable to real projective spaces of arbitrary dimension.
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Fig. 9.7 A model of the
projective plane

Fig. 9.8 Identification of
points

Let us assume that the vector space L defining our projective space P(L) is a Eu-
clidean space, and let us consider in this space the sphere S, defined by the equality
|x| = 1. Every line 〈x〉 of the space L intersects the sphere S. Indeed, such a line
consists of vectors of the form αx, where α ∈ R, and the condition αx ∈ S means
that |αx| = 1. Since |αx| = |α| · |x| and x �= 0, we may set |α| = |x|−1. With this
choice, the number α is determined up to sign, or in other words, there exist two
vectors, e and −e, belonging to the line 〈x〉 and to the sphere S. Thus associating
with each vector e ∈ S the line 〈x〉 of the projective space, we obtain the mapping
f : S → P(L). The previous reasoning shows that the image of f is the entire space
P(L). However, this mapping f is not a bijection, since two points of the sphere S

pass through one point P ∈ P(L), corresponding to the line 〈x〉, namely, the vectors
e and −e. This property is expressed by saying that the projective space is obtained
from the sphere S via the identification of its antipodal points.

Let us apply this to the case of the projective plane, that is, we shall suppose
that dimP(L) = 2. Then dim L = 3, and the sphere S contained in three-dimensional
space is the sphere S2. Let us decompose it into two equal parts by a horizontal
plane; see Fig. 9.7.

Each point of the upper hemisphere is diametrically opposite some point on the
lower hemisphere, and we can map the upper hemisphere onto the projective plane
P(L) by representing each point P ∈ P(L) in the form 〈e〉, where e is a vector of the
upper hemisphere.

However, this correspondence will not be a bijection, since antipodal points on
the boundary of the hemisphere will be joined together, that is, they correspond to
a single point; see Fig. 9.8. This is expressed by saying that the projective plane is
obtained by identifying antipodal points of the boundary of the hemisphere.

Let us now consider a moving circle with a given direction of rotation; see
Fig. 9.9. In the figure is shown that when the moving circle intersects the bound-
ary of the hemisphere, the direction of rotation changes to its opposite.

This property is expressed by saying that the projective plane is a one-sided
surface (while the sphere in three-dimensional space and other familiar surfaces
are two-sided). This property of the projective plane was studied by Möbius. He
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Fig. 9.9 Motion of a circle

Fig. 9.10 Möbius strip

Fig. 9.11 Partition of the
sphere

Fig. 9.12 The central part of
the sphere

presented an example of a one-sided surface that is now known as the Möbius
strip. It can be constructed by cutting from a sheet of paper the rectangle ABDC

(Fig. 9.10, left) and gluing together its opposite sides AB and CD, after rotating
CD by 180◦. The one-sided surface thus obtained is shown in the right-hand picture
of Fig. 9.10, where is also shown the continuous deformation of the circle (stages
1 → 2 → 3 → 4), changing the direction of rotation to it opposite.

The Möbius strip also has a direct relationship to the projective plane. Namely,
let us visualize this plane as the sphere S2, in which antipodal points are identified.
Let us divide the sphere into three parts by intersecting it with two parallel planes
that pass above and below the equator. As a result, the sphere is partitioned into a
central part U and two “caps” above and below; see Fig. 9.11.

Let us begin by studying the central section U . For each point of U , its antipodal
point is also contained in U . Let us divide U into two halves—front and back—by
a vertical plane intersecting U in the arcs AB and CD; see Fig. 9.12.

We may combine the front half (U ′) with the rectangle ABDC in Fig. 9.10.
Every point of the central section U either itself belongs to the front half or else has
an antipodal point that belongs to the front half, of which there is only one, except
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for the points of the segments AB and CD. In order to obtain only one of the two
antipodal points of these segments, we must glue these segments together exactly as
is done in Fig. 9.10. Thus the Möbius strip is homeomorphic to the part U ′ of the
projective plane. To obtain the remaining part V = P(L) \ U ′, we have to consider
the “caps” on the sphere; see Fig. 9.11. For every point in a cap, its antipodal point
lies in the other cap. This means that by identifying antipodal points, it suffices to
consider only one cap, for example the upper one. This cap is homeomorphic to a
disk: to see this, it suffices simply to project it onto the horizontal plane. Clearly,
the boundary of the upper cap is identified with the boundary of the central part
of the sphere. Thus the projective plane is homeomorphic to the surface obtained
by gluing a circle to the Möbius strip in such a way that its boundary is identified
with the boundary of the Möbius strip (it is easily verified that the boundary of the
Möbius strip is a circle).



Chapter 10
The Exterior Product and Exterior Algebras

10.1 Plücker Coordinates of a Subspace

The fundamental idea of analytic geometry, which goes back to Fermat and
Descartes, consists in the fact that every point of the two-dimensional plane or
three-dimensional space is defined by its coordinates (two or three, respectively).
Of course, there must also be present a particular choice of coordinate system. In
this course, we have seen that this very principle is applicable to many spaces of
more general types: vector spaces of arbitrary dimension, as well as Euclidean,
affine, and projective spaces. In this chapter, we shall show that it can be applied
to the study of vector subspaces M of fixed dimension m in a given vector space
L of dimension n ≥ m. Since there is a bijection between the m-dimensional sub-
spaces M ⊂ L and (m − 1)-dimensional projective subspaces P(M) ⊂ P(L), we shall
therefore also obtain a description of the projective subspaces of fixed dimension
of a projective space with the aid of “coordinates” (certain collections of num-
bers).

The case of points of a projective space (subspaces of dimension 0) was already
analyzed in the previous chapter: they are given by homogeneous coordinates. The
same holds in the case of hyperplanes of a projective space P(L): they correspond
to the points of the dual space P(L∗). The simplest case in which the problem is
not reduced to these two cases given above is the set of projective lines in three-
dimensional projective space. Here a solution was proposed by Plücker. And there-
fore, in the most general case, the “coordinates” corresponding to the subspace
are called Plücker coordinates. Following the course of history, we shall begin in
Sects. 10.1 and 10.2 by describing these using some coordinate system, and then
investigate the construction we have introduced in an invariant way, in order to de-
termine which of its elements depend on the choice of coordinate system and which
do not.

Therefore, we now assume that some basis has been chosen in the vector space L.
Since dim L = n, every vector a ∈ L has in this basis n coordinates. Let us consider
a subspace M ⊂ L of dimension m ≤ n. Let us choose an arbitrary basis a1, . . . ,am

of the subspace M. Then M = 〈a1, . . . ,am〉, and the vectors a1, . . . ,am are linearly
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independent. The vector ai has, in the chosen basis of the space L, coordinates
ai1, . . . , ain (i = 1, . . . ,m), which we can arrange in the form of a matrix M of type
(m,n), writing them in row form:

M =

⎛

⎜⎜⎜
⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎞

⎟⎟⎟
⎠

. (10.1)

The condition that the vectors a1, . . . ,am are linearly independent means that the
rank of the matrix M is equal to m, that is, one of its minors of order m is nonzero.
Since the number of rows of the matrix M is equal to m, a minor of order m is
uniquely defined by the indices of its columns. Let us denote by Mi1,...,im the minor
consisting of columns with indices i1, . . . , im, which assume the various values from
1 to n.

We know that not all of the minors Mi1,...,im can be equal to zero at the same
time. Let us examine how they depend on the choice of basis a1, . . . ,am in M. If
b1, . . . ,bm is some other basis of this subspace, then

bi = bi1a1 + · · · + bimam, i = 1, . . . ,m.

Since the vectors b1, . . . ,bm are linearly independent, the determinant |(bij )| is
nonzero. Let us set c = |(bij )|. If M ′

i1,...,im
is a minor of the matrix M ′, constructed

analogously to M using the vectors b1, . . . ,bm, then by formula (3.35) and Theo-
rem 2.54 on the determinant of a product of matrices, we have the relationship

M ′
i1,...,im

= cMi1,...,im . (10.2)

The numbers Mi1,...,im that we have determined are not independent. Namely, if
the unordered collection of numbers j1, . . . , jm coincides with i1, . . . , im (that is,
comprises the same numbers, perhaps arranged in a different order), then as we saw
in Sect. 2.6, we have the relationship

Mj1,...,jm = ±Mi1,...,im, (10.3)

where the sign + or − appears depending on whether the number of transpositions
necessary to effect the passage from the collection (i1, . . . , im) to (j1, . . . , jm) is
even or odd. In other words, the function Mi1,...,im of m arguments i1, . . . , im as-
suming the values 1, . . . , n is antisymmetric.

In particular, we may take as the collection (j1, . . . , jm) the arrangement of
the numbers i1, . . . , im such that i1 < i2 < · · · < im, and the corresponding minor
Mj1,...,jm will coincide with either Mi1,...,im or −Mi1,...,im . In view of this, in the
original notation, we shall assume that i1 < i2 < · · · < im, and we shall set

pi1,...,im = Mi1,...,im (10.4)
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for all collections i1 < i2 < · · · < im of the numbers 1, . . . , n. Thus we assign to the
subspace M as many of the numbers pi1,...,im as there are combinations of n things
taken m at a time, that is, ν = Cm

n . From formula (10.3) and the condition that the
rank of the matrix M is equal to m, it follows that these numbers pi1,...,im cannot
all become zero simultaneously. On the other hand, formula (10.2) shows that in
replacing the basis a1, . . . ,am of the subspace M by some other basis b1, . . . ,bm

of this subspace, all these numbers are simultaneously multiplied by some number
c �= 0. Thus the numbers pi1,...,im for i1 < i2 < · · · < im can be taken as the homoge-
neous coordinates of a point of the projective space P

ν−1 = P(N), where dim N = ν

and dimP(N) = ν − 1.

Definition 10.1 The totality of numbers pi1,...,im in (10.4) for all collections i1 <

i2 < · · · < im taking the values 1, . . . , n is called the Plücker coordinates of the
m-dimensional subspace M ⊂ L.

As we have seen, Plücker coordinates are defined only up to a common nonzero
factor; the collection of them must be understood as a point in the projective space
P

ν−1.
The simplest special case m = 1 returns us to the definition of projective space,

whose points correspond to one-dimensional subspaces 〈a〉 of some vector space L.
The numbers pi1,...,im in this case become the homogeneous coordinates of a point.
It is therefore not surprising that all of these depend on the choice of a coordinate
system (that is, a basis) of the space L. Following tradition, in the sequel we shall
allow for a certain imprecision and call “Plücker coordinates” of the subspace M
both a point of the projective space P

ν−1 and the collection of numbers pi1,...,im

specified in this definition.

Theorem 10.2 The Plücker coordinates of a subspace M ⊂ L uniquely determine
the subspace.

Proof Let us choose an arbitrary basis a1, . . . ,am of the subspace M. It uniquely
determines (and not up to a common factor) the minors Mi1,...,im , without regard
to the order of the indices i1, . . . , im. The minors are uniquely determined by the
Plücker coordinates (10.4), according to formula (10.3).

A vector x ∈ L belongs to the subspace M = 〈a1, . . . ,am〉 if and only if the rank
of the matrix

M =

⎛

⎜⎜⎜
⎝

a11 a12 · · · a1n

...
...

. . .
...

am1 am2 · · · amn

x1 x2 · · · xn

⎞

⎟⎟⎟
⎠

,

consisting of the coordinates of the vectors a1, . . . ,am,x in some (arbitrary) basis
of the space L, is equal to m, that is, if all the minors of order m+ 1 of the matrix M

are equal to zero. Let us consider the minor that comprises the columns with indices
forming the subset X = {k1, . . . , km+1} of the set Nn = {1, . . . , n}, where we may
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assume that k1 < k2 < · · · < km+1. Expanding it along the last row, we obtain the
equality

∑

α∈X

xαAα = 0, (10.5)

where Aα is the cofactor of the element xα in the minor under consideration. But by
definition, the minor corresponding to Aα is obtained from the matrix M by deleting
the last row and the column with index α. Therefore, it coincides with one of the
minors of the matrix M , and the indices of its columns are obtained by deleting the
element α from the set X. For writing the sets thus obtained, one frequently uses the
convenient notation

{k1, . . . , k̆α, . . . , km+1},
where the notation ˘ signifies the omission of the element so indicated. Thus rela-
tionship (10.5) can be written in the form

m+1∑

j=1

(−1)j xkj
M

k1,...,k̆j ,...,km+1
= 0. (10.6)

Since the minors Mi1,...,im of the matrix M are expressed in Plücker coordinates
by formula (10.4), relationships (10.6), obtained from all possible subsets X =
{k1, . . . , km+1} of the set Nn, also give expressions in terms of Plücker coordinates
of the condition x ∈ M, which completes the proof of the theorem. �

By Theorem 10.2, Plücker coordinates uniquely define the subspace M, but as a
rule, they cannot assume arbitrary values. It is true that for m = 1, the homogeneous
coordinates of a point of projective space can be chosen with arbitrary numbers
(of course, with the exception of the one collection consisting of all zeros). Another
equally simple case is m = n−1, in which subspaces are hyperplanes corresponding
to points of P(L∗). Hyperplanes are defined by their coordinates in this projective
space, which also can be chosen as arbitrary collections of numbers (again with
the exclusion of the collection consisting of all zeros). It is not difficult to verify
that these homogeneous coordinates can differ from Plücker coordinates only by
their signs, that is, by the factor ±1. However, as we shall now see, for an arbitrary
number m < n, the Plücker coordinates are connected to one another by certain
specific relationships.

Example 10.3 Let us consider the next case in order of complexity: n = 4, m = 2.
If we pass to projective spaces corresponding to L and M, then this will give us a
description of the totality of projective lines in three-dimensional projective space
(the case considered by Plücker).

Since n = 4, m = 2, we have ν = C2
4 = 6, and consequently, each plane M ⊂ L

has six Plücker coordinates:
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p12,p13,p14,p23,p24,p34. (10.7)

It is easy to see that for an arbitrary basis of the space L, we may always choose
a basis a,b in the subspace M in such a way that the matrix M given by formula
(10.1) will have the form

M =
(

1 0 α β

0 1 γ δ

)
.

From this follow easily the values of the Plücker coordinates (10.7):

p12 = 1, p13 = γ, p14 = δ, p23 = −α, p24 = −β,

p34 = αδ − βγ,

which yields the relationship p34 − p13p24 + p14p23 = 0. In order to make this
homogeneous, we will use the fact that p12 = 1, and write it in the form

p12p34 − p13p24 + p14p23 = 0. (10.8)

The relationship (10.8) is already homogeneous, and therefore, it is preserved under
multiplication of all the Plücker coordinates (10.7) by an arbitrary nonzero factor c.
Thus relationship (10.8) remains valid for an arbitrary choice of Plücker coordinates,
and this means that it defines a point in some projective algebraic variety in 5-
dimensional projective space.1 In the following section, we shall study an analogous
question in the general case, for arbitrary dimension m < n.

10.2 The Plücker Relations and the Grassmannian

We shall now describe the relationships satisfied by Plücker coordinates of an m-
dimensional subspace M of an n-dimensional space L for arbitrary n and m. Here
we shall use the following notation and conventions. Although in the definition
of Plücker coordinates pi1,...,im it was assumed that i1 < i2 < · · · < im, now we
shall consider numbers pi1,...,im also with other collections of indices. Namely, if
(j1, . . . , jm) is an arbitrary collection of m indices taking the values 1, . . . , n, then
we set

pj1,...,jm = 0 (10.9)

if some two of the numbers j1, . . . , jm are equal, while if all the numbers j1, . . . , jm

are distinct and (i1, . . . , im) is their arrangement in ascending order, then we set

pj1,...,jm = ±pi1,...,im, (10.10)

1This variety is called a quadric.
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where the sign + or − depends on whether the permutation that takes (j1, . . . , jm)

to (i1, . . . , im) is even or odd (that is, whether the number of transpositions is even
or odd), according to Theorem 2.25.

In other words, in view of equality (10.3), let us set

pj1,...,jm = Mj1,...,jm, (10.11)

where (j1, . . . , jm) is an arbitrary collection of indices assuming the values 1, . . . , n.

Theorem 10.4 For every m-dimensional subspace M of an n-dimensional space L
and for any two sets (j1, . . . , jm−1) and (k1, . . . , km+1) of indices taking the values
1, . . . , n, the following relationships hold:

m+1∑

r=1

(−1)rpj1,...,jm−1,kr · p
k1,...,k̆r ,...,km+1

= 0. (10.12)

These are called the Plücker relations.

The notation k1, . . . , k̆r , . . . , km+1 means that we omit kr in the sequence
k1, . . . , kr , . . . , km+1.

Let us note that the indices among the numbers pα1,...,αm entering relationship
(10.12) are not necessarily in ascending order, so they are not Plücker coordinates.
But with the aid of relationships (10.9) and (10.10), we can easily express them in
terms of Plücker coordinates. Therefore, relationship (10.12) may also be viewed as
a relationship among Plücker coordinates.

Proof of Theorem 10.4 Returning to the definition of Plücker coordinates in terms of
the minors of the matrix (10.1) and using relationship (10.11), we see that equality
(10.12) can be rewritten in the form

m+1∑

r=1

(−1)rMj1,...,jm−1,kr · M
k1,...,k̆r ,...,km+1

= 0. (10.13)

Let us show that relationship (10.13) holds for the minors of an arbitrary matrix of
type (m,n). To this end, let us expand the determinant Mj1,...,jm−1kr along the last
column. Let us denote the cofactor of the element alkr of the last column of this
determinant by Al , l = 1, . . . ,m. Thus the cofactor Al corresponds to the minor
located in the rows and columns with indices (1, . . . , l̆, . . . ,m) and (j1, . . . , jm−1)

respectively. Then

Mj1,...,jm−1,kr =
m∑

l=1

alkr Al.
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On substituting this expression into the left-hand side of relationship (10.13), we
arrive at the equality

m+1∑

r=1

(−1)rMj1,...,jm−1,kr · M
k1,...,k̆r ,...,km+1

=
m+1∑

r=1

(−1)r

(
m∑

l=1

alkr Al

)

M
k1,...,k̆r ,...,km+1

.

Changing the order of summation, we obtain

m+1∑

r=1

(−1)rMj1,...,jm−1,kr · M
k1,...,k̆r ,...,km+1

=
m∑

l=1

(
m+1∑

r=1

(−1)ralkr Mk1,...,k̆r ,...,km+1

)

Al.

But the sum in parentheses is equal to the result of the expansion along the first row
of the determinant of the square matrix of order m + 1 consisting of the columns
of the matrix (10.1) numbered k1, . . . , km+1 and rows numbered l,1, . . . ,m. This
determinant is equal to

∣∣∣
∣∣∣∣∣∣∣∣

alk1 alk2 · · · alkm+1

a1k1 a1k2 · · · a1km+1

a2k1 a2k2 · · · a2km+1
...

...
. . .

...

amk1 amk2 · · · amkm+1

∣∣∣
∣∣∣∣∣∣∣∣

= 0.

Indeed, for arbitrary l = 1, . . . ,m, two of its rows (numbered 1 and l + 1) coincide,
and this means that the determinant is equal to zero. �

Example 10.5 Let us return once more to the case n = 4, m = 2 considered in
the previous section. Relationships (10.12) are here determined by subsets (k) and
(l,m,n) of the set {1,2,3,4}. If, for example, k = 1 and l = 2, m = 3, n = 4, then
we obtain relationship (10.8) introduced earlier. It is easily verified that if all the
numbers k, l,m,n are distinct, then we obtain the same relationship (10.8), while
if among them there are two that are equal, then relationship (10.12) is an identity
(for the proof of this, we can use the antisymmetry of pij with respect to i and
j ). Therefore, in the general case, too (for arbitrary m and n), relationships (10.12)
among the Plücker coordinates are called the Plücker relations.

We have seen that to each subspace M of given dimension m of the space L of
dimension n, there correspond its Plücker coordinates

pi1,...,im, i1 < i2 < · · · < im, (10.14)
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satisfying the relationships (10.12). Thus an m-dimensional subspace M ⊂ L is de-
termined by its Plücker coordinates (10.14), completely analogously to how points
of a projective space are determined by their homogeneous coordinates (this is in
fact a special case of Plücker coordinates for m = 1). However, for m > 1, the co-
ordinates of the subspace M cannot be assigned arbitrarily: it is necessary that they
satisfy relationships (10.12). Below, we shall prove that these relationships are also
sufficient for the collection of numbers (10.14) to be Plücker coordinates of some
m-dimensional subspace M ⊂ L. For this, we shall find the following geometric in-
terpretation of Plücker coordinates useful.

Relationships (10.12) are homogeneous (of degree 2) with respect to the num-
bers pi1,...,im . After substitution on the basis of formulas (10.9) and (10.10), each of
these relationships remains homogeneous, and thus they define a certain projective
algebraic variety in the projective space Pν−1, called a Grassmann variety or simply
Grassmannian and denoted by G(m,n).

We shall now investigate the Grassmannian G(m,n) in greater detail.
As we have seen, G(m,n) is contained in the projective space P

ν−1, where
ν = Cm

n (see p. 351), and the homogeneous coordinates are written as the numbers
(10.14) with all possible increasing collections of indices taking the values 1, . . . , n.
The space P

ν−1 is the union of affine subsets Ui1,...,im , each of which is defined by
the condition pi1,...,im �= 0 for some choice of indices i1, . . . , im. From this we obtain

G(m,n) =
⋃

i1,...,im

(
G(m,n) ∩ Ui1,...,im

)
.

We shall investigate separately one of these subsets G(m,n) ∩ Ui1,...,im , for exam-
ple, for simplicity, the subset with indices (i1, . . . , im) = (1, . . . ,m). The general
case is considered completely analogously and differs only in the numeration of the
coordinates in the space P

ν−1. We may assume that for points of our affine subset
U1,...,m, the number p1,...,m is equal to 1.

Relationships (10.12) give the possibility to choose Plücker coordinates (10.14)
of the subspace M (or equivalently, the minors Mi1,...,im of the matrix (10.1)) in the
form of polynomials in coordinates pi1,...,im , such that among the indices i1 < i2 <

· · · < im, not more than one exceeds m. Any such collection of indices obviously
has the form (1, . . . , r̆, . . . ,m, l), where r ≤ m and l > m. Let us denote the Plücker
coordinate corresponding to this collection by prl , that is, we set prl = p1,...,r̆,...,m,l .

Let us consider an arbitrary ordered collection j1 < j2 < · · · < jm of numbers
between 1 and n. If the indices jk are less than or equal to m for all k = 1, . . . ,m,
then the collection (j1, j2, . . . , jm) coincides with the collection (1,2, . . . ,m), and
since the Plücker coordinate p1,...,m is equal to 1, there is nothing to prove. Thus we
have only to consider the remaining case.

Let jk > m be one of the numbers j1 < j2 < · · · < jm. Let us use relationship
(10.12), corresponding to the collection (j1, . . . , j̆k, . . . , jm) of m − 1 numbers and
the collection (1, . . . ,m, jk) of m + 1 numbers. In this case, relationship (10.12)
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assumes the form

m∑

r=1

(−1)rp
j1,...,j̆k ,...,jm,r

· p1,2,...,r̆,...,m,jk
+ (−1)m+1p

j1,...,j̆k ,...,jm,jk
= 0,

since p1,...,m = 1. In view of the antisymmetry of the expression pj1,...,jm , it follows
that pj1,...,jm = p

j1,...,j̆k ,...,jm,jk
is equal to the sum (with alternating signs) of the

products p
j1,...,j̆k ,...,jmr

prl . If among the numbers j1, . . . , jm there were s numbers
exceeding m, then among the numbers j1, . . . , j̆k, . . . , jm, there would be already
s − 1 of them.

Repeating this process as many times as necessary, we will obtain as a result an
expression of the chosen Plücker coordinate pj1,...,jm in terms of the coordinates
prl , r ≤ m, l > m. We have thereby obtained the following important result.

Theorem 10.6 For each point in the set G(m,n) ∩ U1,...,m, all the Plücker coordi-
nates (10.14) are polynomials in the coordinates prl = p1,...,r̆,...,m,l , r ≤ m, l > m.

Since the numbers r and l satisfy 1 ≤ r ≤ m and m < l ≤ n, it follows that all
possible collections of coordinates prl form an affine subspace V of dimension
m(n − m). By Theorem 10.6, all the remaining Plücker coordinates pi1,...,im are
polynomials in prl , and therefore the coordinates prl uniquely define a point of the
set G(m,n) ∩ U1,...,m. Thus is obtained a natural bijection (given by these polyno-
mials) between points of the set G(m,n) ∩ U1,...,m and points of the affine space V

of dimension m(n − m). Of course, the same is true as well for points of any other
set G(m,n) ∩ Ui1,...,im . In algebraic geometry, this fact is expressed by saying that
the Grassmannian G(m,n) is covered by the affine space of dimension m(n − m).

Theorem 10.7 Every point of the Grassmannian G(m,n) corresponds to some m-
dimensional subspace M ⊂ L as described in the previous section.

Proof Since the Grassmannian G(m,n) is the union of sets G(m,n) ∩ Ui1,...,im , it
suffices to prove the theorem for each set separately. We shall carry out the proof
for the set G(m,n) ∩ U1,...,m, since the rest differ from it only in the numeration of
coordinates.

Let us choose an m-dimensional subspace M ⊂ L and basis a1, . . . ,am in it so
that in the associated matrix M given by formula (10.1), the elements residing in its
first m columns take the form of the identity matrix E of order m. Then the matrix
M has the form

M =

⎛

⎜⎜⎜
⎝

1 0 · · · 0 a1m+1 · · · a1n

0 1 · · · 0 a2m+1 · · · a2n

...
...

. . .
...

...
. . .

...

0 0 · · · 1 amm+1 · · · amn

⎞

⎟⎟⎟
⎠

. (10.15)

By Theorem 10.6, the Plücker coordinates (10.14) are polynomials in prl =
p1,...,r̆,...,m,l . Moreover, by the definition of Plücker coordinates (10.4), we have
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p1,...,r̆,...,m,l = M1,...,r̆,...,m,l . Here, in the r th row of the minor M1,...,r̆,...,m,l of the
matrix (10.15), all elements are equal to zero, except for the element in the last (lth)
column, which is equal to arl . Expanding the minor M1,...,r̆,...,m,l along the r th row,
we see that it is equal to (−1)r+larl . In other words, prl = (−1)r+larl .

By our construction, all elements arl of the matrix (10.15) can assume arbitrary
values by the choice of a suitable subspace M ⊂ L and basis a1, . . . ,am in it. Thus
the Plücker coordinates prl also assume arbitrary values. It remains to observe that
by Theorem 10.6, all remaining Plücker coordinates are polynomials in prl , and
consequently, for the constructed subspace M, they determine the given point of the
set G(m,n) ∩ U1,...,m. �

10.3 The Exterior Product

Now we shall attempt to understand the sense in which the subspace M ⊂ L is related
to its Plücker coordinates, after separating out those parts of the construction that
depend on the choice of bases e1, . . . , en in L and a1, . . . ,am in M from those that
do not depend on the choice of basis.

Our definition of Plücker coordinates was connected with the minors of the ma-
trix M given by formula (10.1), and since minors (like all determinants) are multilin-
ear and antisymmetric functions of the rows (and columns), let us begin by recalling
the appropriate definitions from Sect. 2.6 (especially because now we shall need
them in a somewhat changed form). Namely, while in Chap. 2, we considered only
functions of rows, now we shall consider functions of vectors belonging to an arbi-
trary vector space L. We shall assume that the space L is finite-dimensional. Then
by Theorem 3.64, it is isomorphic to the space of rows of length n = dim L, and so
we might have used the definitions from Sect. 2.6. But such an isomorphism itself
depends on the choice of basis in the space L, and our goal is precisely to study the
dependence of our construction on the choice of basis.

Definition 10.8 A function F(x1, . . . ,xm) in m vectors of the space L taking nu-
meric values is said to be multilinear if for every index i in the range 1 to m and
arbitrary fixed vectors a1, . . . , ăi , . . . ,am,

F(a1, . . . ,ai−1,xi ,ai+1, . . . ,am)

is a linear function of the vector xi .

For m = 1, we arrive at the notion of linear function introduced in Sect. 3.7, and
for m = 2, this is the notion of bilinear form, introduced in Sect. 6.1.

The definition of antisymmetric function given in Sect. 2.6 was valid for every
set, and in particular, we may apply it to the set of all vectors of the space L. Ac-
cording to this definition, for every pair of distinct indices r and s in the range 1 to
m, the relationship

F(x1, . . . ,xr , . . . ,xs , . . . ,xm) = −F(x1, . . . ,xs , . . . ,xr , . . . ,xm) (10.16)
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must be satisfied for every collection of vectors x1, . . . ,xm ∈ L. As proved in
Sect. 2.6, it suffices to prove property (10.16) for s = r + 1, that is, a transposi-
tion of two neighboring vectors from the collection x1, . . . ,xm is performed. Then
property (10.16) will also be satisfied for arbitrary indices r and s. In view of this,
we shall often formulate the condition of antisymmetry only for “neighboring” in-
dices and use the fact that it then holds for two arbitrary indices r and s.

If these numbers are elements of a field of characteristic different from 2, then it
follows that F(x1, . . . ,xm) = 0 if any two vectors x1, . . . ,xm coincide.

Let us denote by Πm(L) the collection of all multilinear functions of m vectors of
the space L, and by Ωm(L) the collection of all antisymmetric functions in Πm(L).
The sets Πm(L) and Ωm(L) become vector spaces if for all F,G ∈ Πm(L) we define
their sum H = F + G ∈ Πm(L) by the formula

H(x1, . . . ,xm) = F(x1, . . . ,xm) + G(x1, . . . ,xm)

and define for every function F ∈ Πm(L) the product by the scalar α as the function
H = αF ∈ Πm(L) according to the formula

H(x1, . . . ,xm) = αF(x1, . . . ,xm).

It directly follows from these definitions that Πm(L) is thereby converted to a vector
space, and Ωm(L) ⊂ Πm(L) is a subspace of Πm(L).

Let dim L = n, and let e1, . . . , en be some basis of the space L. It follows from
the definition that the multilinear function F(x1, . . . ,xm) is defined for all collec-
tions of vectors (x1, . . . ,xm) if it is defined for those collections whose vectors xi

belong to our basis. Indeed, repeating the arguments from Sect. 2.7 verbatim that we
used in the proof of Theorem 2.29, we obtain for F(x1, . . . ,xm) the same formu-
las (2.40) and (2.43). Thus for the chosen basis e1, . . . , en, the multilinear function
F(x1, . . . ,xm) is determined by its values F(ei1, . . . , eim), where i1, . . . , im are all
possible collections of numbers from the set Nn = {1, . . . , n}.

The previous line of reasoning shows that the space Πm(L) is isomorphic to
the space of functions on the set Nm

n = Nn × · · · × Nn (m-fold product). It follows
that the dimension of the space Πm(L) is finite and coincides with the number of
elements of the set Nm

n . It is easy to verify that this number is equal to nm, and so
dimΠm(L) = nm.

As we observed in Example 3.36 (p. 94), in a space of functions f on a finite
set Nm

n , there exists a basis consisting of δ-functions assuming the value 1 on one
element of Nm

n and the value 0 on all the other elements (p. 94). In our case, we shall
introduce a special notation for such a basis. Let I = (i1, . . . , im) be an arbitrary
element of the set Nm

n . Then we denote by f I the function taking the value 1 at the
element I and the value 0 on all remaining elements of the set Nm

n .
We now move on to an examination of the subspace of antisymmetric multilinear

functions Ωm(L), assuming as previously that there has been chosen in L some basis
e1, . . . , en. To verify that a multilinear function F is antisymmetric, it is necessary
and sufficient that property (10.16) be satisfied for the vectors ei of the basis. In
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other words, this reduces to the relationships

F(ei1, . . . , eir , . . . , eis , . . . , eim) = −F(ei1, . . . , eis , . . . , eir , . . . , eim)

for all collections of vectors ei1, . . . , eim in the chosen basis e1, . . . , en of the
space L. Therefore, for every function F ∈ Ωm(L) and every collection (j1, . . . ,

jm) ∈N
m
n , we have the equality

F(ej1, . . . , ejm) = ±F(ei1, . . . , eim), (10.17)

where the numbers i1, . . . , im are the same as j1, . . . , jm, but arranged in ascending
order i1 < i2 < · · · < im, while the sign + or − in (10.17) depends on whether the
number of transpositions necessary for passing from the collection (i1, . . . , im) to
the collection (j1, . . . , jm) is even or odd (we note that if any two of the numbers
j1, . . . , jm are equal, then both sides of equality (10.17) become equal to zero).

Reasoning just as in the case of the space Πm(L), we conclude that the space

Ωm(L) is isomorphic to the space of functions on the set
−→
N

m
n ⊂ N

m
n , which consists

of all increasing sets I = (i1, . . . , im), that is, those for which i1 < i2 < · · · < im.
From this it follows in particular that Ωm(L) = (0) if m > n. It is easy to see that
the number of such increasing sets I is equal to Cm

n , and therefore,

dimΩm(L) = Cm
n . (10.18)

We shall denote by FI the δ-function of the space Ωm(L), taking the value 1 on the

set I ∈ −→
N

m
n and the value 0 on all the remaining sets in

−→
N

m
n .

The vectors a1, . . . ,am ∈ L determine on the space Ωm(L) a linear function ϕ
given by the relationship

ϕ(F ) = F(a1, . . . ,am) (10.19)

for an arbitrary element F ∈ Ωm(L). Thus ϕ is a linear function on Ωm(L), that is,
an element of the dual space Ωm(L)∗.

Definition 10.9 The dual space Λm(L) = Ωm(L)∗ is called the space of m-vectors
or the mth exterior power of the space L, and its elements are called m-vectors.
A vector ϕ ∈ Λm(L) constructed with the help of relationship (10.19) involving the
vectors a1, . . . ,am is called the exterior product (or wedge product) of a1, . . . ,am

and is denoted by

ϕ = a1 ∧ a2 ∧ · · · ∧ am.

Now let us explore the connection between the exterior product and Plücker co-
ordinates of the subspace M ⊂ L. To this end, it is necessary to choose some basis
e1, . . . , en in L and some basis a1, . . . ,am in M. The Plücker coordinates of the sub-
space M take the form (10.4), where Mi1,...,im is the minor of the matrix (10.1) that
resides in columns i1, . . . , im and is an antisymmetric function of its columns. Let
us introduce for the Plücker coordinates and associated minors the notation

pI = pi1,...,im, MI = Mi1,...,im, where I = (i1, . . . , im) ∈ −→
N

m
n .
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To the basis of the space Ωm(L) consisting of δ-functions FI , there corresponds
the dual basis, of the dual space Λm(L), whose vectors we shall denote by ϕI . Using
the notation that we introduced in Sect. 3.7, we may say that the dual basis is defined
by the condition

(FI ,ϕI ) = 1 for all I ∈ −→
N

m
n , (FI ,ϕJ ) = 0 for all I �= J . (10.20)

In particular, the vector ϕ = a1 ∧a2 ∧· · ·∧am of the space Λm(L) can be expressed
as a linear combination of vectors in this basis:

ϕ =
∑

I∈−→
N m

n

λIϕI (10.21)

with certain coefficients λI . Using formulas (10.19) and (10.20), we obtain the fol-
lowing equality:

λI = ϕ(FI ) = FI (a1, . . . ,am).

For determining the values FI (a1, . . . ,am), we may make use of Theorem 2.29;
see formulas (2.40) and (2.43). Since FI (ej1, . . . , ejm) = 0 when the indices of
ej1 , . . . , ejm form the collection J �= I , then from formula (2.43), it follows that
the values FI (a1, . . . ,am) depend only on the elements appearing in the minor
MI . The minor MI is a linear and antisymmetric function of its rows. In view of
the fact that by definition, FI (ei1, . . . , eim) = 1, we obtain from Theorem 2.15 that
FI (a1, . . . ,am) = MI = pI . In other words, we have the equality

ϕ = a1 ∧ a2 ∧ · · · ∧ am =
∑

I∈−→
N m

n

MIϕI =
∑

I∈−→
N m

n

pIϕI . (10.22)

Thus any collection of m vectors a1, . . . ,am uniquely determines the vector
a1 ∧ · · · ∧ am in the space Λm(L), where the Plücker coordinates of the subspace
〈a1, . . . ,am〉 are the coordinates of this vector a1 ∧· · ·∧am with respect to the basis

ϕI , I ∈ −→
N

m
n , of the space Λm(L). Like all coordinates, they depend on this basis,

which itself is constructed as the dual basis to some basis of the space Ωm(L).

Definition 10.10 A vector x ∈ Λm(L) is said to be decomposable if it can be repre-
sented as an exterior product

x = a1 ∧ a2 ∧ · · · ∧ am (10.23)

with some a1, . . . ,am ∈ L.

Let the m-vector x have coordinates xi1,...,im in some basis ϕI , I ∈ −→
N

m
n , of the

space Λm(L). As in the case of an arbitrary vector space, the coordinates xi1,...,im

can assume arbitrary values in the associated field. In order for an m-vector x to
be decomposable, that is, that it satisfy the relationship (10.23) with some vectors
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a1, . . . ,am ∈ L, it is necessary and sufficient that its coordinates xi1,...,im coincide
with the Plücker coordinates pi1,...,im of the subspace M = 〈a1, . . . ,am〉 in L. But
as we established in the previous section, the collection of Plücker coordinates of
a subspace M ⊂ L cannot be an arbitrary collection of ν numbers, but only one
that satisfies the Plücker relations (10.12). Consequently, the Plücker relations give
necessary and sufficient conditions for an m-vector x to be decomposable.

Thus for the specification of m-dimensional subspaces M ⊂ L, we need only
the decomposable m-vectors (the indecomposable m-vectors correspond to no m-
dimensional subspace). However, generally speaking, the decomposable vectors do
not form a vector space (the sum of two decomposable vectors might be an inde-
composable vector), and also, as is easily verified, the set of decomposable vectors
is not contained in any subspace of the space Λm(L) other than Λm(L) itself. In
many problems, it is more natural to deal with vector spaces, and this is the reason
for introducing the notion of a space Λm(L) that contains all m-vectors, including
those that are indecomposable.

Let us note that the basis vectors ϕI themselves are decomposable: they are de-
termined by the conditions (10.20), which, as is easily verified, taking into account
equality (FJ ,ϕI ) = FJ (ei1, . . . , eim), means that for a vector x = ϕI , we have the
representation (10.23) for a1 = ei1, . . . ,am = eim , that is,

ϕI = ei1 ∧ ei2 ∧ · · · ∧ eim, I = (i1, . . . , im).

If e1, . . . , en is a basis of the space L, then the vectors ei1 ∧ · · · ∧ eim for all
possible increasing collections of indices (i1, . . . , im) form a basis of the subspace
Λm(L), dual to the basis FI of the space Ωm(L) that we considered above. Thus
every m-vector is a linear combination of decomposable vectors.

The exterior product a1 ∧· · ·∧am is a function of m vectors ai ∈ L with values in
the space Λm(L). Let us now establish some of its properties. The first two of these
are an analogue of multilinearity, and the third is an analogue of antisymmetry, but
taking into account that the exterior product is not a number, but a vector of the
space Λm(L).

Property 10.11 For every i ∈ {1, . . . ,m} and all vectors ai ,b, c ∈ L the following
relationship is satisfied:

a1 ∧ · · · ∧ ai−1 ∧ (b + c) ∧ ai+1 ∧ · · · ∧ am

= a1 ∧ · · · ∧ ai−1 ∧ b ∧ ai+1 ∧ · · · ∧ am

+ a1 ∧ · · · ∧ ai−1 ∧ c ∧ ai+1 ∧ · · · ∧ am. (10.24)

Indeed, by definition, the exterior product

a1 ∧ · · · ∧ ai−1 ∧ (b + c) ∧ ai+1 ∧ · · · ∧ am

is a linear function on the space Ωm(L) associating with each function F ∈ Ωm(L),
the number F(a1, . . . ,ai−1,b + c,ai+1, . . . ,am). Since the function F is multilin-
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ear, it follows that

F(a1, . . . ,ai−1,b + c,ai+1, . . . ,am)

= F(a1, . . . ,ai−1,b,ai+1, . . . ,am) + F(a1, . . . ,ai−1, c,ai+1, . . . ,am),

which proves equality (10.24).
The following two properties are just as easily verified.

Property 10.12 For every number α and all vectors ai ∈ L, the following relation-
ship holds:

a1 ∧ · · · ∧ ai−1 ∧ (αai ) ∧ ai+1 ∧ · · · ∧ am

= α(a1 ∧ · · · ∧ ai−1 ∧ ai ∧ ai+1 ∧ · · · ∧ am). (10.25)

Property 10.13 For all pairs of indices r, s ∈ {1, . . . ,m} and all vectors ai ∈ L, the
following relationship holds:

a1 ∧ · · · ∧ as−1 ∧ as ∧ as+1 ∧ · · · ∧ ar−1 ∧ ar ∧ ar+1 ∧ · · · ∧ am

= −a1 ∧ · · · ∧ as−1 ∧ ar ∧ as+1 ∧ · · ·
∧ ar−1 ∧ as ∧ ar+1 ∧ · · · ∧ am, (10.26)

that is, if any two vectors from among a1, . . . ,am change places, the exterior prod-
uct changes sign.

If (as we assume) the numbers are elements of a field of characteristic different
from 2 (for example, R or C), then Property 10.13 yields the following corollary.

Corollary 10.14 If any two of the vectors a1, . . . ,am are equal, then a1 ∧ · · · ∧
am = 0.

Generalizing the definition given above, we may express Properties 10.11, 10.12,
and 10.13 by saying that the exterior product a1 ∧ · · · ∧ am is a multilinear antisym-
metric function of the vectors a1, . . . ,am ∈ L taking values in the space Λm(L).

Property 10.15 Vectors a1, . . . ,am are linearly dependent if and only if

a1 ∧ · · · ∧ am = 0. (10.27)

Proof Let us assume that the vectors a1, . . . ,am are linearly dependent. Then one
of them is a linear combination of the rest. Let it be the vector am (the other cases
are reduced to this one by a change in numeration). Then

am = α1a1 + · · · + αm−1am−1,
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and on the basis of Properties 10.11 and 10.12, we obtain that

a1 ∧ · · · ∧ am−1 ∧ am

= α1(a1 ∧ · · · ∧ am−1 ∧ a1) + · · · + αm−1(a1 ∧ · · · ∧ am−1 ∧ am−1).

In view of Corollary 10.14, each term on the right-hand side of this equality is equal
to zero, and consequently, we have a1 ∧ · · · ∧ am = 0.

Let us assume now that the vectors a1, . . . ,am are linearly independent. We
must prove that a1 ∧ · · · ∧ am �= 0. Equality (10.27) would mean that the function
a1 ∧ · · · ∧ am (as an element of the space Λm(L)) assigns to an arbitrary function
F ∈ Ωm(L), the value F(a1, . . . ,am) = 0. However, in contradiction to this, it is
possible to produce a function F ∈ Ωm(L) for which F(a1, . . . ,am) �= 0. Indeed,
let us represent the space L as a direct sum

L = 〈a1, . . . ,am〉 ⊕ L′,

where L′ ⊂ L is some subspace of dimension n − m, and for every vector z ∈ L, let
us consider the corresponding decomposition z = x + y, where x ∈ 〈a1, . . . ,am〉
and y ∈ L′. Finally, for vectors

zi = αi1a1 + · · · + αimam + yi , yi ∈ L′, i = 1, . . . ,m,

let us define a function F by the condition F(z1, . . . ,zm) = |(αij )|. As we saw
in Sect. 2.6, the determinant is a multilinear antisymmetric function of its rows.
Moreover, F(a1, . . . ,am) = |E| = 1, which proves our assertion. �

Let L and M be arbitrary vector spaces, and let A : L → M be a linear transforma-
tion. It defines the transformation

Ωp(A) : Ωp(M) → Ωp(L), (10.28)

which assigns to each antisymmetric function F(y1, . . . ,yp) in the space Ωp(M),
an antisymmetric function G(x1, . . . ,xp) in the space Ωp(L) by the formula

G(x1, . . . ,xp) = F
(
A(x1), . . . ,A(xp)

)
, x1, . . . ,xp ∈ L. (10.29)

A simple verification shows that this transformation is linear. Let us note that we
have already met with such a transformation in the case m = 1, namely the dual
transformation A∗ : M∗ → L∗ (see Sect. 3.7). In the general case, passing to the dual
spaces Λp(L) = Ωp(L)∗ and Λp(M) = Ωp(M)∗, we define the linear transformation

Λp(A) : Λp(L) → Λp(M), (10.30)

dual to the transformation (10.28).
Let us note the most important properties of the transformation (10.30).
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Lemma 10.16 Let A : L → M and B : M → N be linear transformations of arbi-
trary vector spaces L,M,N. Then

Λp(BA) = Λp(B)Λp(A).

Proof In view of the definition (10.30) and the properties of dual transformations
(formula (3.61)) established in Sect. 3.7, it suffices to ascertain that

Ωp(BA) = Ωp(A)Ωp(B). (10.31)

But equality (10.31) follows directly from the definition. Indeed, the transforma-
tion Ωp(A) maps the function F(y1, . . . ,yp) in the space Ωp(M) to the func-
tion G(x1, . . . ,xp) in Ωp(L) by formula (10.29). In just the same way, the trans-
formation Ωp(B) maps the function H(z1, . . . ,zp) in Ωp(N) to the function
F(y1, . . . ,yp) in Ωp(M) by the analogous formula

F(y1, . . . ,yp) = H
(
B(y1), . . . ,B(yp)

)
, y1, . . . ,yp ∈ M. (10.32)

Finally, the transformation BA : L → N takes the function H(z1, . . . ,zp) in the
space Ωp(N) to the function G(x1, . . . ,xp) in the space Ωp(L) by the formula

G(x1, . . . ,xp) = H
(
BA(x1), . . . ,BA(xp)

)
, x1, . . . ,xp ∈ L. (10.33)

Substituting into (10.33) the vector yi = A(xi ) and comparing the relationship thus
obtained with (10.32), we obtain the required equality (10.31). �

Lemma 10.17 For all vectors x1, . . . ,xp ∈ L, we have the equality

Λp(A)(x1 ∧ · · · ∧ xp) = A(x1) ∧ · · · ∧ A(xp). (10.34)

Proof Both sides of equality (10.34) are elements of the space Λp(M) = Ωp(M)∗,
that is, they are linear functions on Ωp(M). It suffices to verify that their applica-
tion to any function F(y1, . . . ,yp) in the space Ωp(M) gives one and the same
result. But as follows from the definition, in both cases, this result is equal to
F(A(x1), . . . ,A(xp)). �

Finally, we shall prove a property of the exterior product that is sometimes called
universality.

Property 10.18 Any mapping that carries a vector [a1, . . . ,am] of some space M
satisfying Properties 10.11, 10.12, 10.13 (p. 362) to m vectors a1, . . . ,am of the
space L can be obtained from the exterior product a1 ∧ · · · ∧ am by applying some
uniquely defined linear transformation A : Λm(L) → M.

In other words, there exists a linear transformation A : Λm(L) → M such that for
every collection a1, . . . ,am of vectors of the space L, we have the equality

[a1, . . . ,am] = A(a1 ∧ · · · ∧ am), (10.35)
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which can be represented by the following diagram:

Lm

[··· ]

Λm M

Λm(L)

A

(10.36)

In this diagram, [a1, . . . ,am] = A(a1 ∧ · · · ∧ am).
Let us note that although Lm = L × · · · × L (m-fold product) is clearly a vector

space, we by no means assert that the mapping

a1, . . . ,am 	→ [a1, . . . ,am]
discussed in Property 10.18 is a linear transformation Lm → M. In general, such is
not the case. For example, the exterior product a1 ∧ · · · ∧ am : Lm → Λm(L) itself
is not a linear transformation in the case that dim L > m + 1 and m > 1. Indeed, the
image of the exterior product is the set of decomposable vectors described by their
Plücker relations, which is not a vector subspace of Λm(L).

Proof of Property 10.18 We can construct a linear transformation Ψ : M∗ → Ωm(L)

such that it maps every linear function f ∈ M∗ to the function Ψ (f ) ∈ Ωm(L) de-
fined by the relationship

Ψ (f ) = f
([a1, . . . ,am]). (10.37)

By Properties 10.11–10.13, which, by assumption, are satisfied by [a1, . . . ,am],
the mapping Ψ (f ) thus constructed is a multilinear and antisymmetric function of
a1, . . . ,am. Therefore, Ψ : M∗ → Ωm(L) is a linear transformation. Let us define A
as the dual mapping

A = Ψ ∗ : Λm(L) = Ωm(L)
∗ −→ M = M∗∗.

By definition of the dual transformation (formula (3.58)), for every linear func-
tion F on the space Ωm(L), its image A(F ) is a linear function on the space M∗
such that A(F )(f ) = F(Ψ (f )) for all f ∈ M∗. Applying formula (10.37) to the
right-hand side of the last equality, we obtain the equality

A(F )(f ) = F
(
Ψ (f )

) = F
(
f
([a1, . . . ,am])). (10.38)

Setting in (10.38) the function F(Ψ ) = Ψ (a1, . . . ,am), that is, F = a1 ∧ · · · ∧ am,
we arrive at the relationship

A(a1 ∧ · · · ∧ am)(f ) = f
([a1, . . . ,am]), (10.39)
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whose left-hand side is an element of the space M∗∗, which is isomorphic to M.
Let us recall that the identification (isomorphism) of the spaces M∗∗ and M can

be obtained by mapping each vector ψ(f ) ∈ M∗∗ to the vector x ∈ M for which the
equality f (x) = ψ(f ) is satisfied for every linear function f ∈ M∗. Then formula
(10.39) gives the relationship

f
(
A(a1 ∧ · · · ∧ am)

) = f
([a1, . . . ,am]),

which is valid for every function f ∈ M∗. Consequently, from this we obtain the
required relationship

A(a1 ∧ · · · ∧ am) = [a1, . . . ,am]. (10.40)

Equality (10.40) defines a linear transformation A for all decomposable vec-
tors x ∈ Λm(L). But above, we saw that every m-vector is a linear combina-
tion of decomposable vectors. The transformation A is linear, and therefore, it is
uniquely defined for all m-vectors. Thus we obtain the required linear transforma-
tion A : Λm(L) → M. �

10.4 Exterior Algebras*

In many branches of mathematics, an important role is played by the expression

a1 ∧ · · · ∧ am,

understood not so much as a function of m vectors a1, . . . ,am of the space L with
values in Λm(L), but more as the result of repeated (m-fold) application of the op-
eration consisting in mapping two vectors x ∈ Λp(L) and y ∈ Λq(L) to the vector
x ∧ y ∈ Λp+q(L). For example, the expression a ∧ b ∧ c can then be calculated
“by parts.” That is, it can be represented in the form a ∧ b ∧ c = (a ∧ b) ∧ c and
computed by first calculating a ∧ b, and then (a ∧ b) ∧ c.

To accomplish this, we have first to define the function mapping two vectors x ∈
Λp(L) and y ∈ Λq(L) to the vector x ∧y ∈ Λp+q(L). As a first step, such a function
x ∧ y will be defined for the case that the vector y ∈ Λq(L) is decomposable, that
is, representable in the form

y = a1 ∧ a2 ∧ · · · ∧ aq, ai ∈ L. (10.41)

Let us consider the mapping that assigns to p vectors b1, . . . ,bp of the space L
the vector

[b1, . . . ,bp] = b1 ∧ · · · ∧ bp ∧ a1 ∧ · · · ∧ aq,
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and let us apply to it Property 10.18 (universality) from the previous section. We
thereby obtain the diagram

Lp

[b1,...,bp]

Λp Λp+q(L)

Λp(L)

A

(10.42)

In this diagram,

A(b1 ∧ · · · ∧ bp) = [b1, . . . ,bp].

Definition 10.19 Let y be a decomposable vector, that is, it can be written in the
form (10.41). Then for every vector x ∈ Λp(L), its image A(x) for the transforma-
tion A : Λp(L) → Λp+q(L) constructed above is denoted by x ∧y = x ∧ (a1 ∧· · ·∧
aq) and is called the exterior product of vectors x and y.

Thus as a first step, we defined x ∧ y in the case that the vector y is de-
composable. In order to define x ∧ y for an arbitrary vector y ∈ Λq(L), it suf-
fices simply to repeat the same argument. Indeed, let us consider the mapping
[a1, . . . ,aq ] : Λq(L) → Λp+q(L) defined by the formula

[a1, . . . ,aq ] = x ∧ (a1 ∧ · · · ∧ aq).

We again obtain, on the basis of Property 10.18, the same diagram:

Lq

[a1,...,aq ]

Λq Λp+q(L)

Λq(L)

A

(10.43)

where the transformation A : Λq(L) → Λp+q(L) is defined by the formula

A(a1 ∧ · · · ∧ aq) = [a1, . . . ,aq ].

Definition 10.20 For any vectors x ∈ Λp(L) and y ∈ Λq(L), the exterior product
x ∧ y is the vector A(y) ∈ Λp+q(L) in diagram (10.43) constructed above.
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Let us note some properties of the exterior product that follow from this defini-
tion.

Property 10.21 For any vectors x1,x2 ∈ Λp(L) and y ∈ Λq(L), we have the rela-
tionship

(x1 + x2) ∧ y = x1 ∧ y + x2 ∧ y.

Similarly, for any vectors x ∈ Λp(L) and y ∈ Λq(L) and any scalar α, we have the
relationship

(αx) ∧ y = α(x ∧ y).

Both equalities follow immediately from the definitions and the linearity of the
transformation A in diagram (10.43).

Property 10.22 For any vectors x ∈ Λp(L) and y1,y2 ∈ Λq(L), we have the rela-
tionship

x ∧ (y1 + y2) = x ∧ y1 + x ∧ y2.

Similarly, for any vectors x ∈ Λp(L) and y ∈ Λq(L) and any scalar α, we have the
relationship

x ∧ (αy) = α(x ∧ y).

Both equalities follow immediately from the definitions and the linearity of the
transformations A in diagrams (10.42) and (10.43).

Property 10.23 For decomposable vectors x = a1 ∧ · · · ∧ ap and y = b1 ∧ · · · ∧ bq ,
we have the relationship

x ∧ y = a1 ∧ · · · ∧ ap ∧ b1 ∧ · · · ∧ bq .

This follows at once from the definition.

Let us note that we have actually defined the exterior product in such a way
that Properties 10.21–10.23 are satisfied. Indeed, Property 10.23 defines the exterior
product of decomposable vectors. And since every vector is a linear combination of
decomposable vectors, it follows that Properties 10.21 and 10.22 define it in the gen-
eral case. The property of universality of the exterior product has been necessary for
verifying that the result x ∧ y does not depend on the choice of linear combinations
of decomposable vectors that we use to represent the vectors x and y.

Finally, let us make note of the following equally simple property.

Property 10.24 For any vectors x ∈ Λp(L) and y ∈ Λq(L), we have the relationship

x ∧ y = (−1)pqy ∧ x. (10.44)
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Both vectors on the right- and left-hand sides of equality (10.44) belong to the space
Λp+q(L), that is, by definition, they are linear functions on Ωp+q(L). Since every
vector is a linear combination of decomposable vectors, it suffices that we verify
equality (10.44) for decomposable vectors.

Let x = a1 ∧ · · · ∧ ap , y = b1 ∧ · · · ∧ bq , and let F be any vector of the space
Ωp+q(L), that is, F is an antisymmetric function of the vectors x1, . . . ,xp+q in L.
Then equality (10.44) means that

F(a1, . . . ,ap,b1, . . . ,bq) = (−1)pqF (b1, . . . ,bq,a1, . . . ,ap). (10.45)

But equality (10.45) is an obvious consequence of the antisymmetry of the func-
tion F . Indeed, in order to place the vector b1 in the first position on the left-hand
side of (10.45), we must change the position of b1 with each vector a1, . . . ,ap

in turn. One such transposition reverses the sign, and altogether, the transpositions
multiply F by (−1)p . Similarly, in order to place the vector b2 in the second posi-
tion on the left-hand side of (10.45), we also must execute p transpositions, and the
value of F is again multiplied by (−1)p . And in order to place all vectors b1, . . . ,bq

at the beginning, it is necessary to multiply F by (−1)p a total of q times, and this
ends up as (10.45).

Our next step consists in uniting all the sets Λp(L) into a single set Λ(L) and
defining the exterior product for its elements. Here we encounter a special case of a
very important algebraic notion, that of an algebra.2

Definition 10.25 An algebra (over some field K, which we shall consider to consist
of numbers) is a vector space A on which, besides the operations of addition of
vectors and multiplication of a vector by a scalar, is also defined the operation A ×
A → A, called the product, assigning to every pair of elements a,b ∈ A the element
ab ∈ A and satisfying the following conditions:

(1) the distributive property: for all a,b, c ∈ A, we have the relationship

(a + b)c = ac + bc, c(a + b) = ca + cb; (10.46)

(2) for all a,b ∈ A and every scalar α ∈ K, we have the relationship

(αa)b = a(αb) = α(ab); (10.47)

(3) there exists an element e ∈ A, called the identity, such that for every a ∈ A, we
have ea = a and ae = a.

Let us note that there can be only one identity element in an algebra. Indeed,
if there existed another identity element e′, then by definition, we would have the
equalities ee′ = e′ and ee′ = e, from which it follows that e = e′.

2This is not a very felicitous term, since it coincides with the name of a branch of mathematics, the
one we are currently studying. But the term has taken root, and we are stuck with it.
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As in any vector space, in an algebra we have, for every a ∈ A, the equality
0 · a = 0 (here the 0 on the left denotes the scalar zero in the field K, while the 0 on
the right denotes the null element of the vector space A that is an algebra).

If an algebra A is finite-dimensional as a vector space and e1, . . . , en is a basis of
A, then the elements e1, . . . , en are said to form a basis of the algebra A, where the
number n is called its dimension and is denoted by dim A = n. For an algebra A of
finite dimension n, the product of two of its basis elements can be represented in the
form

eiej =
n∑

k=1

αk
ijek, i, j = 1, . . . , n, (10.48)

where αk
ij ∈K are certain scalars.

The totality of all scalars αk
ij for all i, j, k = 1, . . . , n is called the multiplication

table of the algebra A, and it uniquely determines the product for all the elements
of the algebra. Indeed, if x = λ1e1 + · · · + λnen and y = μ1e1 + · · · + μnen, then
repeatedly applying the rules (10.46) and (10.47) and taking into account (10.48),
we obtain

xy =
n∑

i,j,k=1

λiμjα
k
ijek, (10.49)

that is, the product xy is uniquely determined by the coordinates of the vectors x,y

and the multiplication table of the algebra A. And conversely, it is obvious that for
any given multiplication table, formula (10.49) defines in an n-dimensional vector
space an operation of multiplication satisfying all the requirements entering into the
definition of an algebra, except, perhaps, property 3, which requires further consid-
eration; that is, it converts this vector space into an algebra of the same dimension n.

Definition 10.26 An algebra A is said to be associative if for every collection of
three elements a, b, and c, we have the relationship

(ab)c = a(bc). (10.50)

The associative property makes it possible to calculate the product of any num-
ber of elements a1, . . . ,am of an algebra A without indicating the arrangement of
parentheses among them; see the discussion on p. xv. Clearly, it suffices to verify
the associative property of a finite-dimensional algebra for elements of some basis.

We have already encountered some examples of algebras.

Example 10.27 The algebra of all square matrices of order n. It has the finite di-
mension n2, and as we saw in Sect. 2.9, it is associative.

Example 10.28 The algebra of all polynomials in n > 0 variables with numeric
coefficients. This algebra is also associative, but its dimension is infinite.
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Now we shall define for a vector space L of finite dimension n its exterior algebra
Λ(L). This algebra has many different applications (some of them will be discussed
in the following section); its introduction is one more reason why in Sect. 10.3, we
did not limit our consideration to decomposable vectors only, which were sufficient
for describing vector subspaces.

Let us define the exterior algebra Λ(L) as a direct sum of spaces Λp(L), p ≥ 0,
which consist of more than just the one null vector, where Λ0(L) is by definition
equal to K. Since as a result of the antisymmetry of the exterior product we have
Λp(L) = (0) for all p > n, we obtain the following definition of an exterior algebra:

Λ(L) = Λ0(L) ⊕ Λ1(L) ⊕ · · · ⊕ Λn(L). (10.51)

Thus every element u of the constructed vector space Λ(L) can be represented in
the form u = u0 + u1 + · · · + un, where ui ∈ Λi(L).

Our present goal is the definition of the exterior product in Λ(L), which we de-
note by u ∧ v for arbitrary vectors u,v ∈ Λ(L). We shall define the exterior product
u ∧ v of vectors

u = u0 + u1 + · · · + un, v = v0 + v1 + · · · + vn, ui ,vi ∈ Λi(L),

as the element

u ∧ v =
n∑

i,j=0

ui ∧ vj ,

where we use the fact that the exterior product ui ∧ vj is already defined as an
element of the space Λi+j (L). Thus

u ∧ v = w0 + w1 + · · · + wn, where wk =
∑

i+j=k

ui ∧ vj ,wk ∈ Λk(L).

A simple verification shows that for the exterior product thus defined, all the con-
ditions for the definition of an algebra are satisfied. This follows at once from the
properties of the exterior product x ∧ y of vectors x ∈ Λi(L) and y ∈ Λj(L) proved
earlier. By definition, Λ0(L) = K, and the number 1 (the identity in the field K) is
the identity in the exterior algebra Λ(L).

Definition 10.29 A finite-dimensional algebra A is called a graded algebra if there
is given a decomposition of the vector space A into a direct sum of subspaces Ai ⊂ A,

A = A0 ⊕ A1 ⊕ · · · ⊕ Ak, (10.52)

and the following conditions are satisfied: for all vectors x ∈ Ai and y ∈ Aj , the
product xy is in Ai+j if i + j ≤ k, and xy = 0 if i + j > k. Here the decomposition
(10.52) is called a grading.
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In this case, dim A = dim A0 + · · · + dim Ak , and taking the union of the bases of
the subspaces Ai , we obtain a basis of the space A. The decomposition (10.51) and
the definition of the exterior product show that the exterior algebra Λ(L) is graded if
the space L has finite dimension n. Since Λp(L) = (0) for all p > n, it follows that

dimΛ(L) =
n∑

p=0

dimΛp(L) =
n∑

p=0

Cp
n = 2n.

In an arbitrary graded algebra A with grading (10.52), the elements of the subspace
Ai are called homogeneous elements of degree i, and for every u ∈ Ai , we write
i = degu. One often encounters graded algebras of infinite dimension, and in this
case, the grading (10.52) contains, in general, not a finite, but an infinite number
of terms. For example, in the algebra of polynomials (Example 10.28), a grading is
defined by the decomposition of a polynomial into homogeneous components.

Property (10.44) of the exterior product that we have proved shows that in an ex-
terior algebra Λ(L), we have for all homogeneous elements u and v the relationship

u ∧ v = (−1)dv ∧ u, where d = degudegv. (10.53)

Let us prove that for every finite-dimensional vector space L, the exterior algebra
Λ(L) is associative. As we noted above, it suffices to prove the associative property
for some basis of the algebra. Such a basis can constructed out of homogeneous
elements, and we may even choose them to be decomposable. Thus we may suppose
that the elements a,b, c ∈ Λ(L) are equal to

a = a1 ∧ · · · ∧ ap, b = b1 ∧ · · · ∧ bq, c = c1 ∧ · · · ∧ cr ,

and in this case, using the properties proved above, we obtain

a ∧ (b ∧ c) = a1 ∧ · · · ∧ ap ∧ b1 ∧ · · · ∧ bq ∧ c1 ∧ · · · ∧ cr = (a ∧ b) ∧ c.

An associative graded algebra that satisfies relationship (10.53) for all pairs of
homogeneous elements is called a superalgebra. Thus an exterior algebra Λ(L) of
an arbitrary finite-dimensional vector space L is a superalgebra, and it is the most
important example of this concept.

Let us now return to the exterior algebra Λ(L) of the finite-dimensional vector
space L. Let us choose in it a convenient basis and determine its multiplication table.

Let us fix in the space L an arbitrary basis e1, . . . , en. Since the elements

ϕI = ei1 ∧ · · · ∧ eim for all possible collections I = (i1, . . . , im) in
−→
N

m
n form a

basis of the space Λm(L), m > 0, it follows from decomposition (10.51) that a
basis in Λ(L) is obtained as the union of the bases of the subspaces Λm(L) for
all m = 1, . . . , n and the basis of the subspace Λ0(L) = K, consisting of a sin-

gle nonnull scalar, for example 1. This means that all such elements ϕI , I ∈ −→
N

m
n ,

m = 1, . . . , n, together with 1 form a basis of the exterior algebra Λ(L). Since the
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exterior product with 1 is trivial, it follows that in order to compose a multiplica-
tion table in the constructed basis, we must find the exterior product ϕI ∧ ϕJ for all

possible collections of indices I ∈ −→
N

p
n and J ∈ −→

N
q
n for all 1 ≤ p,q ≤ n.

In view of Property 10.23 on page 369, the exterior product ϕI ∧ ϕJ is equal to

ϕI ∧ ϕJ = ei1 ∧ · · · ∧ eip ∧ ej1 ∧ · · · ∧ ejq . (10.54)

Here there are two possibilities. If the collections I and J contain at least one
index in common, then by Corollary 10.14 (p. 363), the product (10.54) is equal to
zero.

If, on the other hand, I ∩ J = ∅, then we shall denote by K the collection in
N

p+q
n comprising the indices belonging to the set I ∪ J , that is, in other words, K

is obtained by arranging the collection (i1, . . . , ip, j1, . . . , jq) in ascending order.
Then, as is easily verified, the exterior product (10.54) differs from the element

ϕK , K ∈ −→
N

p+q
n , belonging to the basis of the exterior algebra Λ(L) constructed

above in that the indices of the collection I ∪ J are not necessarily arranged in

ascending order. In order to obtain from (10.54) the element ϕK , K ∈ −→
N

p+q
n , it is

necessary to interchange the indices (i1, . . . , ip, j1, . . . , jq) in such a way that the
resulting collection is increasing. Then by Theorems 2.23 and 2.25 from Sect. 2.6
and Property 10.13, according to which the exterior product changes sign under the
transposition of any two vectors, we obtain that

ϕI ∧ ϕJ = ε(I ,J )ϕK , K ∈ −→
N

p+q
n ,

where the number ε(I ,J ) is equal to +1 or −1 depending on whether the number
of transpositions necessary for passing from (i1, . . . , ip, j1, . . . , jq) to the collection

K ∈ −→
N

p+q
n is even or odd.

As a result, we see that in the constructed basis of the exterior algebra Λ(L), the
multiplication table assumes the following form:

ϕI ∧ ϕJ =
{

0, if I ∩ J �= ∅,

ε(I ,J )ϕK , if I ∩ J = ∅.
(10.55)

10.5 Appendix*

The exterior product x ∧ y of vectors x ∈ Λp(L) and y ∈ Λq(L) defined in the
previous section makes it possible in many cases to give simple proofs of assertions
that we encountered earlier.

Example 10.30 Let us consider the case p = n, using the notation and results of the
previous section. As we have seen, dimΛp(L) = Cp

n , and therefore, the space Λn(L)

is one-dimensional, and each of its nonzero vectors constitutes a basis. If e is such
a vector, then an arbitrary vector of the space Λn(L) can be written in the form αe
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with a suitable scalar α. Thus for any n vectors x1, . . . ,xn of the space L, we obtain
the relationship

x1 ∧ · · · ∧ xn = α(x1, . . . ,xn)e, (10.56)

where α(x1, . . . ,xn) is some function of n vectors taking numeric values from the
field K. By Properties 10.11, 10.12, and 10.13, this function is multilinear and anti-
symmetric.

Let us choose in the space L some basis e1, . . . , en and set

xi = xi1e1 + · · · + xinen, i = 1, . . . , n.

The choice of a basis defines an isomorphism of the space L and the space K
n of

rows of length n, in which the vector xi corresponds to the row (xi1, . . . , xin). Thus
α becomes a multilinear and antisymmetric function of n rows taking numeric val-
ues. By Theorem 2.15, the function α(x1, . . . ,xn) coincides up to a scalar multiple
k(e) with the determinant of the square matrix of order n consisting of the coordi-
nates xij of the vectors x1, . . . ,xn:

α(x1, . . . ,xn) = k(e) ·

∣∣∣∣∣∣∣

x11 · · · x1n

...
. . .

...

xn1 · · · xnn

∣∣∣∣∣∣∣
. (10.57)

The arbitrariness of the choice of coefficient k(e) in formula (10.57) corresponds to
the arbitrariness of the choice of basis e in the one-dimensional space Λn(L) (let us
recall that the basis e1, . . . , en of the space L is fixed).

In particular, let us choose as basis of the space Λn(L) the vector

e = e1 ∧ · · · ∧ en. (10.58)

Vectors e1, . . . , en are linearly independent. Therefore, by Property 10.15 (p. 363),
the vector e is nonnull. We therefore obviously obtain that k(e) = 1. Indeed, since
the coefficient k(e) in formula (10.57) is one and the same for all collections of vec-
tors x1, . . . ,xn, we can calculate it by setting xi = ei , i = 1, . . . , n. Comparing in
this case formulas (10.56) and (10.58), we see that α(e1, . . . , en) = 1. Substituting
this value into relationship (10.57) for xi = ei , i = 1, . . . , n, and noting that the de-
terminant on the right-hand side of (10.57) is the determinant of the identity matrix,
that is, equal to 1, we conclude that k(e) = 1.

Using definitions given earlier, we may associate the linear transformation
Λn(A) : Λn(L) → Λn(L) with the linear transformation A : L → L. The transfor-
mation A can be defined by indicating to which vectors x1, . . . ,xn it takes the basis
e1, . . . , en of the space L, that is, by specifying vectors xi = A(ei ), i = 1, . . . , n. By
Lemma 10.17 (p. 365), we have the equality

Λn(A)(e1 ∧ · · · ∧ en) = A(e1) ∧ · · · ∧ A(en)

= x1 ∧ · · · ∧ xn = α(x1, . . . ,xn)e. (10.59)
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On the other hand, as we know, all linear transformations of a one-dimensional
space have the form x 	→ αx, where α is some scalar equal to the determinant of
the given transformation and independent of the choice of basis e in Λn(L). Thus
we obtain that (Λn(A))(x) = αx, where the scalar α is equal to the determinant
|(Λn(A))| and clearly depends only on the transformation A itself, that is, it is
determined by the collection of vectors xi = A(ei ), i = 1, . . . , n. It is not difficult
to see that this scalar α coincides with the function α(x1, . . . ,xn) defined above.
Indeed, let us choose in the space Λn(L) a basis e = e1 ∧ · · ·∧ en. Then the required
equality follows directly from formula (10.59).

Further, substituting into (10.59) expression (10.57) for α(x1, . . . ,xn), taking
into account that k(e) = 1 and that the determinant on the right-hand side of (10.57)
coincides with the determinant of the transformation A, we obtain the following
result:

A(e1) ∧ · · · ∧ A(en) = |A|(e1 ∧ · · · ∧ en). (10.60)

This relationship gives the most invariant definition of the determinant of a linear
transformation among all those that we have encountered.

We obtained relationship (10.60) for an arbitrary basis e1, . . . , en of the space L,
that is, for any n linearly independent vectors of the space. But it is also true for any
n linearly dependent vectors a1, . . . ,an of this space. Indeed, in this case, the vec-
tors A(a1), . . . ,A(an) are clearly also linearly dependent, and by Property 10.15,
both exterior products a1 ∧· · ·∧an and A(a1)∧· · ·∧A(an) are equal to zero. Thus
for any n vectors a1, . . . ,an of the space L and any linear transformation A : L → L,
we have the relationship

A(a1) ∧ · · · ∧ A(an) = |A|(a1 ∧ · · · ∧ an). (10.61)

In particular, if B : L → L is some other linear transformation, then formula
(10.60) for the transformation BA : L → L gives the analogous equality

(
BA(e1) ∧ · · · ∧ BA(en)

) = |BA|(e1 ∧ · · · ∧ en).

On the other hand, from the same formula we obtain that
(
B
(
A(e1)

)∧ · · · ∧ B
(
A(en)

)) = |B|(A(e1) ∧ · · · ∧ A(en)
)

= |B||A|(e1 ∧ · · · ∧ en).

Hence it follows that |BA| = |B| · |A|. This is almost a “tautological” proof of
Theorem 2.54 on the determinant of the product of square matrices.

The arguments that we have presented acquire a more concrete character if L is
an oriented Euclidean space. Then as the basis e1, . . . , en in L we may choose an
orthonormal and positively oriented basis. In this case, the basis (10.58) in Λn(L)

is uniquely defined, that is, it does not depend on the choice of basis e1, . . . , en.
Indeed, if e′

1, . . . , e
′
n is another such basis in L, then as we know, there exists a linear

transformation A : L → L such that e′
i = A(ei ), i = 1, . . . , n, and furthermore, the

transformation A is orthogonal and proper. But then |A| = 1, and formula (10.60)
shows that e′

1 ∧ · · · ∧ e′
n = e1 ∧ · · · ∧ en.
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Example 10.31 Let us show how from the given considerations, we obtain a proof
of the Cauchy–Binet formula, which was stated but not proved in Sect. 2.9.

Let us recall that in that section, we considered the product of two matrices B

and A, the first of type (m,n), and the second of type (n,m), so that BA is a square
matrix of order m. We are required to obtain an expression for the determinant |BA|
in terms of the associated minors of the matrices B and A. Minors of the matrices B

and A are said to be associated if they are of the same order, namely the minimum
of n and m, and are located in the columns (of matrix B) and rows (of matrix A)
of identical indices. The Cauchy–Binet formula asserts that the determinant |BA| is
equal to 0 if n < m, and that |BA| is equal to the sum of the pairwise products over
all the associated minors of order m if n ≥ m.

Since every matrix is the matrix of some linear transformation of vector spaces of
suitable dimensions, we may formulate this problem as a question of the determinant
of the product of linear transformations A : M → L and B : L → M, where dim L = n

and dim M = m. Here it is assumed that we have chosen a basis e1, . . . , em in the
space M and a basis f 1, . . . ,f n in the space L such that the transformations A and
B have matrices A and B respectively in these bases. Then BA will be a linear
transformation of the space M into itself with determinant |BA| = |BA|.

Let us first prove that |BA| = 0 if n < m. Since the image of the transformation,
BA(M), is a subset of B(L) and dimB(L) ≤ dim L, it follows that in the case under
consideration, we have the inequality

dim
(
BA(M)

) ≤ dimB(L) ≤ dim L = n < m = dim M,

from which it follows that the image of the transformation BA : M → M is not
equal to the entire space M, that is, the transformation BA is singular. This means
that |BA| = 0, that is, |BA| = 0.

Now let us consider the case n ≥ m. Using Lemmas 10.16 and 10.17 from
Sect. 10.3 with p = m, we obtain for the vectors of the basis e1, . . . , em of the
space M the relationship

Λm(BA)(e1 ∧ · · · ∧ em) = Λm(B)Λm(A)(e1 ∧ · · · ∧ em)

= Λm(B)
(
A(e1) ∧ · · · ∧ A(em)

)
. (10.62)

The vectors A(e1), . . . ,A(em) are contained in the space L of dimension n, and
their coordinates in the basis f 1, . . . ,f n, being written in column form, form the
matrix A of the transformation A : M → L. Let us now write the coordinates of
the vectors A(e1), . . . ,A(em) in row form. We thereby obtain the transpose matrix
A∗ of type (m,n). Applying formula (10.22) to the vectors A(e1), . . . ,A(em), we
obtain the equality

A(e1) ∧ · · · ∧ A(em) =
∑

I⊂−→
N m

n

MIϕI (10.63)

with the functions ϕI defined by formula (10.20). In the expression (10.63), ac-
cording to our definition, MI is the minor of the matrix A∗ occupying columns
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i1, . . . , im. It is obvious that such a minor MI of the matrix A∗ coincides with the mi-
nor of the matrix A occupying rows with the same indices i1, . . . , im. Thus we may
assume that in the sum on the right-hand side of (10.63), MI are the minors of order
m of the matrix A corresponding to all possible ordered collections I = (i1, . . . , im)

of indices of its rows.
Relationships (10.62) and (10.63) together give the equality

Λm(BA)(e1 ∧ · · · ∧ em) = Λm(B)

( ∑

I⊂−→
N m

n

MIϕI

)
. (10.64)

Let us denote by MI and NI the associated minors of the matrices A and B .
This means that the minor MI occupies the rows of the matrix A with indices I =
(i1, . . . , im), and the minor NI occupies the columns of the matrix B with the same
indices. Let us consider the restriction of the linear transformation B : L → M to the
subspace 〈f i1

, . . . ,f im
〉. By the definition of the functions ϕI , we obtain that

Λm(B)(ϕI ) = B(f i1
) ∧ · · · ∧ B(f im

) = NI (e1 ∧ · · · ∧ em).

From this, taking into account formula (10.64), follows the relationship

Λm(BA)(e1 ∧ · · · ∧ em) = Λm(B)

( ∑

I⊂−→
N m

n

MIϕI

)

=
∑

I⊂−→
N m

n

MIΛm(B)(ϕI )

=
( ∑

I⊂−→
N m

n

MINI

)
(e1 ∧ · · · ∧ em).

On the other hand, by Lemma 10.17 and formula (10.60), we have

Λm(BA)(e1 ∧ · · · ∧ em) = BA(e1) ∧ · · · ∧ BA(em) = |BA|(e1 ∧ · · · ∧ em).

The last two equalities give us the relationship

|BA| =
∑

I⊂−→
N m

n

MINI ,

which, taking into account the equality |BA| = |BA|, coincides with the Cauchy–
Binet formula for the case n ≥ m.

Example 10.32 Let us derive the formula for the determinant of a square matrix A

that generalizes the well-known formula for the expansion of the determinant along
the j th column:

|A| = a1jA1j + a2jA2j + · · · + anjAnj , (10.65)
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where Aij is the cofactor of the element aij , that is, the number (−1)i+jMij , and
Mij is the minor obtained by deleting this element from the matrix A along with
the entire row and column at whose intersection it is located. The generalization
consists in the fact that now we shall write down an analogous expansion of the
determinant not along a single column, but along several, thereby generalizing in a
suitable way the notion of the cofactor.

Let us consider a certain collection I ∈ −→
N

m
n , where m is a natural number in

the range 1 to n − 1. Let us denote by I the collection obtained from (1, . . . , n)

by discarding all indices entering into I . Clearly, I ∈ −→
N

n−m
n . Let us denote by

|I | the sum of all indices entering into the collection I , that is, we shall set |I | =
i1 + · · · + im.

Let A be an arbitrary square matrix of order n, and let I = (i1, . . . , im) and J =
(j1, . . . , jm) be two collections of indices in

−→
N

m
n . For the minor MIJ occupying

the rows with indices i1, . . . , im and columns with indices j1, . . . , jm, let us call the
number

AIJ = (−1)|I |+|J |MIJ (10.66)

the cofactor. It is easy to see that the given definition is indeed a generalization of
that given in Chap. 2 of the cofactor of a single element aij for which m = 1 and the
collections I = (i), J = (j) each consist of a single index.

Theorem 10.33 (Laplace’s theorem) The determinant of a matrix A is equal to the
sum of the products of all minors occupying any m given columns (or rows) by their
cofactors:

|A| =
∑

J∈−→
N m

n

MIJ AIJ =
∑

I∈−→
N m

n

MIJ AIJ ,

where the number m can be arbitrarily chosen in the range 1 to n − 1.

Remark 10.34 For m = 1 and m = n − 1, Laplace’s theorem gives formula (10.65)
for the expansion of the determinant along a column and the analogous formula for
expansion along a row. However, only in the general case is it possible to focus our
attention on the symmetry between the minors of order m and those of order n − m.

Proof of Theorem 10.33 Let us first of all note that since for the transpose matrix,
its rows are converted into columns while the determinant is unchanged, it suffices
to provide a proof for only one of the given equalities. For definiteness, let us prove
the first—the formula for the expansion of the determinant |A| along m columns.

Let us consider a vector space L of dimension n and an arbitrary basis e1, . . . , en

of L. Let A : L → L be a linear transformation having in this basis the matrix A. Let
us apply to the vectors of this basis a permutation such that the first m positions are
occupied by the vectors ei1, . . . , eim , the remaining n − m positions by the vectors
eim+1 , . . . , ein . In the basis thus obtained, the determinant of the transformation A
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will again be equal to |A|, since the determinant of the matrix of a transformation
A does not depend on the choice of basis. Using formula (10.60), we obtain

A(ei1) ∧ · · · ∧ A(eim) ∧ A(eim+1) ∧ · · · ∧ A(ein )

= |A|(ei1 ∧ · · · ∧ eim ∧ eim+1 ∧ · · · ∧ ein ) = |A|(ϕI ∧ ϕI ). (10.67)

Let us calculate the left-hand side of relationship (10.67), applying formula
(10.22) to the two different groups of vectors.

First, let us set a1 = A(ei1), . . . , am = A(eim). Then from (10.22), we obtain

A(ei1) ∧ · · · ∧ A(eim) =
∑

J∈−→
N m

n

MIJ ϕJ , (10.68)

where I = (i1, . . . , im), and J runs through all collections from the set
−→
N

m
n .

Now let replace the number m by n − m in (10.22) and apply the formula thus
obtained to the vectors a1 = A(eim+1), . . . , an−m = A(ein ). As a result, we obtain
the equality

A(eim+1) ∧ · · · ∧ A(ein ) =
∑

J ′∈−→
N

n−m
n

MIJ ′ϕJ ′ , (10.69)

where I = (im+1, . . . , in), and J ′ runs through all collections in the set
−→
N

n−m
n .

Substituting the expressions (10.68) and (10.69) into the left-hand side of (10.67),
we obtain the equality

∑

J∈−→
N m

n

∑

J ′∈−→
N

n−m
n

MIJ MIJ ′ϕJ ∧ ϕJ ′ = |A|(ϕI ∧ ϕI ). (10.70)

Let us calculate the exterior product ϕI ∧ ϕI for p = m and q = n − m, mak-
ing use of the multiplication table (10.55) that was obtained at the end of the
previous section. In this case, it is obvious that the collection K obtained by the
union of I and I is equal to (1, . . . , n), and we have only to calculate the number
ε(I , I ) = ±1, which depends on whether the number of transpositions to get from
(i1, . . . , im, im+1, . . . , in) to K = (1, . . . , n) is even or odd. It is not difficult to see
(using, for example, the same reasoning as in Sect. 2.6) that ε(I , I ) is equal to the
number of pairs (i, ı), where i ∈ I and ı ∈ I , for which the indices i and ı are in
reverse order (form an inversion), that is, i > ı. By definition, all indices less than i1
appear in I , and consequently, they form an inversion with i1. This gives us i1 − 1
pairs. Further, all numbers less than i2 and belonging to I form an inversion with
index i2, that is, all numbers less than i2 with the exception of i1, which belongs to
I and not I . This gives i2 − 2 pairs.

Continuing in this way to the end, we obtain that the number of pairs (i, ı) form-
ing an inversion is equal to (i1 − 1) + (i2 − 2) + · · · + (im − m), that is, equal to
|I | − μ, where μ = 1 + · · · + m = 1

2m(m + 1). Consequently, we finally obtain the
formula ϕI ∧ ϕI = (−1)|I |−μϕK , where K = (1, . . . , n).
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The exterior product ϕJ ∧ ϕJ ′ is equal to zero for all J and J ′, with the excep-
tion only of the case that J ′ = J , that is, the collections J and J ′ are disjoint and
complement each other. By what we have said above, ϕJ ∧ ϕJ = (−1)|J |−μϕK .
Thus from (10.70) we obtain the equality

∑

J∈−→
N m

n

MIJ MIJ (−1)|J |−μϕK = |A|(−1)|I |−μϕK . (10.71)

Multiplying both sides of equality (10.71) by the number (−1)|I |+μ, taking into
account the obvious identity (−1)2|I | = 1, we finally obtain

∑

J∈−→
N m

n

MIJ MIJ (−1)|I |+|J | = |A|,

which, taking into account definition (10.66), gives us the required equality. �

Example 10.35 We began this section with Example 10.30, in which we investigated
in detail the space Λp(L) for p = n. Let us now consider the case p = n − 1. As a
result of the general relationship dimΛp(L) = Cp

n , we obtain that dimΛn−1(L) = n.
Having chosen an arbitrary basis e1, . . . , en in the space L, we assign to every

vector z ∈ Λn−1(L) the linear function f (x) on L defined by the condition

z ∧ x = f (x)(e1 ∧ · · · ∧ en), x ∈ L.

For this, it is necessary to recall that z ∧ x belongs to the one-dimensional space
Λn(L), and the vector e1 ∧ · · · ∧ en constitutes there a basis. The linearity of the
function f (x) follows from the properties of the exterior product proved above. Let
us verify that the linear transformation

F : Λn−1(L) → L∗

thus constructed is an isomorphism. Since dimΛn−1(L) = dim L∗ = n, to show this,
it suffices to verify that the kernel of the transformation F is equal to (0). As we
know, it is possible to select as the basis of the space Λn−1(L) the vectors

ei1 ∧ ei2 ∧ · · · ∧ ein−1 , ik ∈ {1, . . . , n},
uniquely up to a permutation of the collection (i1, . . . , in−1); these are all the num-
bers (1, . . . , n) except for one. This means that as the basis Λn−1(L) one can choose
the vectors

ui = e1 ∧ · · · ∧ ei−1 ∧ ĕi ∧ ei+1 · · · ∧ en, i = 1, . . . , n. (10.72)

It is clear that ui ∧ ej = 0 if i �= j , and ui ∧ ei = ±e1 ∧ · · · ∧ en for all i = 1, . . . , n.
Let us assume that z ∈ Λn−1(L) is a nonnull vector such that its associated linear

function f (x) is equal to zero for every x ∈ L. Let us set z = z1u1 + · · · + znun.
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Then from our assumption, it follows that z ∧ x = 0 for all x ∈ L, and in particular,
for the vectors e1, . . . , en. It is easy to see that from this follow the equalities z1 = 0,
. . . , zn = 0 and hence z = 0.

The constructed isomorphism F : Λn−1(L) → L∗ is a refinement of the following
fact that we encountered earlier: the Plücker coordinates of a hyperplane can be
arbitrary numbers; in this dimension, the Plücker relations do not yet appear.

Let us now assume that the space L is an oriented Euclidean space. On the one
hand, this determines a fixed basis (10.58) in Λn(L) if e1, . . . , en is an arbitrary
positively oriented orthonormal basis of L, so that the isomorphism F : Λn−1(L) →
L∗ constructed above is uniquely determined. On the other hand, for a Euclidean
space, there is defined the standard isomorphism L∗ ∼→ L, which does not require the
selection of any basis at all in L (see p. 214). Combining these two isomorphisms,
we obtain the isomorphism

G : Λn−1(L) ∼→ L,

which assigns to the element z ∈ Λn−1(L) the vector x ∈ L such that

z ∧ y = (x,y)(e1 ∧ · · · ∧ en) (10.73)

for every vector y ∈ L and for the positively oriented orthonormal basis e1, . . . , en,
where (x,y) denotes the inner product in the space L.

Let us consider this isomorphism in greater detail. We saw earlier that the vectors
ui determined by formula (10.72) form a basis of the space Λn−1(L). To describe the
constructed isomorphism, it suffices to determine which vector b ∈ L corresponds
to the vector a1 ∧ · · · ∧ an−1, ai ∈ L. We may suppose that the vectors a1, . . . ,an−1
are linearly independent, since otherwise, the vector a1 ∧ · · · ∧ an−1 would equal 0,
and therefore to it would correspond the vector b = 0. Taking into account formula
(10.73), this correspondence implies the equality

(b,y)(e1 ∧ · · · ∧ en) = a1 ∧ · · · ∧ an−1 ∧ y, (10.74)

satisfied by all y ∈ L. Since the vector on the right-hand side of (10.74) is the
null vector if y belongs to the subspace L1 = 〈a1, . . . ,an−1〉, we may assume that
b ∈ L⊥

1 .
Now we must recall that we have an orientation and consider L and L1 to be ori-

ented (it is easy to ascertain that the orientation of the space L does not determine
a natural orientation of the subspace L1, and so we must choose and fix the orienta-
tion of L1 separately). Then we may choose the basis e1, . . . , en in such a way that
it is orthonormal and positively oriented and also such that the first n − 1 vectors
e1, . . . , en−1 belong to the subspace L1, and also define in it an orthonormal and
positively oriented basis (it is always possible to attain this, possibly after replacing
the vector en with its opposite).

Since the vector b is contained in the one-dimensional subspace L⊥
1 = 〈en〉, it

follows that b = βen. Using the previous arguments, we obtain that

a1 ∧ · · · ∧ an−1 = v(a1, . . . ,an−1)en,
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where v(a1, . . . ,an−1) is the oriented volume of the parallelepiped spanned by the
vectors a1, . . . ,an−1 (see the definition on p. 221). This observation determines the
number β .

Indeed, substituting the vector y = en into (10.74) and taking into account the
fact that the basis e1, . . . , en was chosen to be orthonormal and positively oriented
(from which follows, in particular, the equality v(e1 ∧ · · · ∧ en) = 1), we obtain the
relationship

βv = v(a1, . . . ,an−1, en) = v(a1, . . . ,an−1).

Thus the isomorphism G constructed above assigns to the vector a1 ∧ · · · ∧ an−1
the vector b = v(a1, . . . ,an−1)en, where en is the unit vector on the line L⊥

1 , chosen
with the sign making the basis e1, . . . , en of the space L orthonormal and positively
oriented. As is easily verified, this is equivalent to the requirement that the basis
a1, . . . ,an−1, en be positively oriented.

The final result is contained in the following theorem.

Theorem 10.36 For every oriented Euclidean space L, the isomorphism

G : Λn−1(L) ∼→ L

assigns to the vector a1 ∧ · · · ∧ an−1 the vector b ∈ L, which is orthogonal to
the vectors a1, . . . ,an−1 and whose length is equal to the unoriented volume
V (a1, . . . ,an−1), or more precisely,

b = V (a1, . . . ,an−1)e, (10.75)

where e ∈ L is a vector of unit length orthogonal to the vectors a1, . . . ,an−1 and
chosen in such a way that the basis a1, . . . ,an−1, e is positively oriented.

The vector b determined by the relationship (10.75) is called the vector product
of the vectors a1, . . . ,an−1 and is denoted by [a1, . . . ,an−1]. In the case n = 3, this
definition gives us the vector product of two vectors [a1,a2] familiar from analytic
geometry.



Chapter 11
Quadrics

We have encountered a number of types of spaces consisting of points (affine, affine
Euclidean, projective). For all of these spaces, an interesting and important question
has been the study of quadrics contained in such spaces, that is, sets of points with
coordinates (x1, . . . , xn) that in some coordinate system satisfy the single equation

F(x1, . . . , xn) = 0, (11.1)

where F is a second-degree polynomial in the variables x1, . . . , xn. Let us focus our
attention on the fact that by the definition of a polynomial, it is possible in general
for there to be present in equation (11.1) both first- and second-degree monomials
as well as a constant term.

For each of the spaces of the above-mentioned types, a trivial verification shows
that the property of a set of points being a quadric does not depend on the choice of
coordinate system. Or in other words, a nonsingular affine transformation, motion,
or projective transformation (depending on the type of space under consideration)
takes a quadric to a quadric.

11.1 Quadrics in Projective Space

By the definition given above, a quadric Q in the projective space P(L) is given by
equation (11.1) in homogeneous coordinates. However, as we saw in Chap. 9, such
an equation is satisfied by the homogeneous coordinates of a point of the projective
space P(L) only if its left-hand side is homogeneous.

Definition 11.1 A quadric in a projective space P(L) is a set Q consisting of points
defined by equation (11.1), where F is a homogeneous second-degree polynomial,
that is, a quadratic form in the coordinates x0, x1, . . . , xn.
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In Sect. 6.2, it was proved that is some coordinate system (that is, in some basis
of the space L), equation (11.1) is reduced to canonical form

λ0x
2
0 + λ1x

2
1 + · · · + λrx

2
r = 0,

where all the coefficients λi are nonzero. Here the number r ≤ n is equal to the rank
of the quadratic form F , and it is the same for every system of coordinates in which
the form F is reduced to canonical form. In the sequel, we shall assume that the
quadratic form F is nonsingular, that is, that r = n. We shall also call the associated
quadric Q nonsingular. The canonical form of its equation can then be written as
follows:

α0x
2
0 + α1x

2
1 + · · · + αnx

2
n = 0, (11.2)

where all the coefficients αi are nonzero. The general case differs from (11.2) only
in the omission of terms containing xi with i = r + 1, . . . , n. It is therefore easily
reduced to the case of a nonsingular quadric.

We have already encountered the concept of a tangent space to an arbitrary
smooth hypersurface (in Chap. 7) or to a projective algebraic variety (in Chap. 9).
Now we move on to a consideration of the notion of the tangent space to a quadric.

Definition 11.2 If A is a point on the quadric Q given by equation (11.1), then the
tangent space to Q at the point A ∈ Q is defined as the projective space TAQ given
by equation

n∑

i=0

∂F

∂xi

(A)xi = 0. (11.3)

The tangent space is an important general mathematical concept, and we shall
now discuss it in the greatest possible generality. Within the framework of a course
in algebra, it is natural to limit ourselves to the case in which F is a homogeneous
polynomial of arbitrary degree k > 0. Then equation (11.1) defines in the space
P(L) some hypersurface X, and if not all the partial derivatives ∂F

∂xi
(A) are equal to

zero, then equation (11.3) gives the tangent hyperplane to the hypersurface X at the
point A. We see that in equation (11.3), on the left-hand side appears the differential
dAF(x) (see Example 3.86 on p. 130), and since this notion was defined so as to
be invariant with respect to the choice of coordinate system, the notion of tangent
space is also independent of such a choice. The tangent space to the hypersurface X

at the point A is denoted by TAX.
In the sequel, we shall always assume that quadrics are viewed as lying in spaces

over a field K of characteristic different from 2 (for example, for definiteness, we
may assume that the field K is either R or C). If F(x) is a quadratic form, then by
the assumptions we have made, we can write it in the form

F(x) =
n∑

i,j=0

aij xixj , (11.4)
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where the coefficients satisfy aij = aji . In other words, F(x) = ϕ(x,x), where

ϕ(x,y) =
n∑

i,j=0

aij xiyj (11.5)

is a symmetric bilinear form (Theorem 6.6). If the point A corresponds to the vector
a with coordinates (α0, α1, . . . , αn), then

∂F

∂xi

(A) = 2
n∑

j=0

aijαj ,

and therefore, equation (11.3) takes the form

n∑

i,j=0

aijαjxi = 0,

or equivalently, ϕ(a,x) = 0. Thus in this case, the tangent hyperplane at the point
A coincides with the orthogonal complement 〈a〉⊥ to the vector a ∈ L with respect
to the bilinear form ϕ(x,y).

The definition of tangent space (11.3) loses sense if all derivatives ∂F
∂xi

(A) are
equal to zero:

∂F

∂xi

(A) = 0, i = 0,1, . . . , n. (11.6)

A point A of the hypersurface X given by equation (11.1) for which equalities (11.6)
are satisfied is called a singular or critical point. If a hypersurface has no singular
points, then it is said to be smooth. When the hypersurface X is a quadric, that is,
the polynomial F is a quadratic form (11.4), then equations (11.6) assume the form

n∑

j=0

aijαj = 0, i = 0,1, . . . , n.

Since the point A is in P(L), it follows that not all of its coordinates αi are equal to
zero. Thus singular points of a quadric Q are the nonzero solutions of the system of
equations

n∑

j=0

aij xj = 0, i = 0,1, . . . , n. (11.7)

As was shown in Chap. 2, such solutions exist only if the determinant of the matrix
(aij ) is equal to zero, and that is equivalent to saying that the quadric Q is singular.
Thus a nonsingular quadric is the same thing as a smooth quadric.

Let us consider the possible mutual relationships between a quadric Q and a line
l in projective space P(L). First, let us show that either the line l has not more than
two points in common with the quadric Q, or else it lies entirely in Q.
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Indeed, if a line l is not contained entirely in Q, then one can choose a point
A ∈ l, A /∈ Q. Let the line l correspond to some plane L′ ⊂ L, that is, l = P(L′). If
A = 〈a〉, then L′ = 〈a,b〉, where the vector b ∈ L is not collinear with the vector a.
In other words, the plane L′ consists of all vectors of the form xa + yb, where x and
y range over all possible scalars. The points of intersection of the line l and plane
Q are found from the equation F(xa + yb) = 0, that is, from the equation

F(xa + yb) = ϕ(xa + yb, xa + yb)

= F(a)x2 + 2ϕ(a,b)xy + F(b)y2 = 0 (11.8)

in the variables x, y. The vectors xa + yb with y = 0 give us a point A /∈ Q. As-
suming, therefore, that y �= 0, we obtain t = x/y. Then (11.8) gives us a quadratic
equation in the variable t :

F(xa + yb) = y2(F(a)t2 + 2ϕ(a,b)t + F(b)
) = 0.

The condition A /∈ Q has the form F(a) �= 0. Consequently, the leading coeffi-
cient of the quadratic trinomial F(a)t2 +2ϕ(a,b)t +F(b) is nonzero, and therefore,
the quadratic trinomial itself is not identically zero and cannot have more than two
roots.

Let us now consider the mutual arrangement of Q and l if the line l passes
through the point A ∈ Q. Then, as in the previous case, l corresponds to the so-
lutions of the quadratic equation (11.8), in which F(a) = 0, since A ∈ Q. Thus we
obtain the equation

F(xa + yb) = 2ϕ(a,b)xy + F(b)y2 = y
(
2ϕ(a,b)x + F(b)y

) = 0. (11.9)

One solution of equation (11.9) is obvious: y = 0. It precisely corresponds to the
point A ∈ Q. This solution is unique if and only if ϕ(a,b) = 0, that is, if b ∈ TAQ.
In the latter case, clearly l ⊂ TAQ, and one says that the line l is tangent to the
quadric Q at the point A.

Thus there are four possible cases of the relationship between a nonsingular
quadric Q and a line l:

(1) The line l has no points in common with the quadric Q.
(2) The line l has precisely two distinct points in common with the quadric Q.
(3) The line l has exactly one point A in common with the quadric Q, which is

possible if and only if l ⊂ TAQ.
(4) The line l lies entirely in Q.

Of course, there also exist smooth hypersurfaces defined by equation (11.1) of ar-
bitrary degree k ≥ 1. For example, such a hypersurface is given by the equation
c0x

k
0 + c1x

k
1 + · · · + cnx

k
n = 0, where all the ci are nonzero. In the sequel, we shall

consider only smooth hypersurfaces. For these, the left-hand side of equation (11.3)
is a nonnull linear form on the vector space L, and this means that it determines a
hyperplane in L and in P(L).
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Let us verify that this hyperplane contains the point A. This means that if the
point A corresponds to the vector a = (α0, α1, . . . , αn), then

n∑

i=0

∂F

∂xi

(A)αi = 0.

If the degree of the homogeneous polynomial F is equal to k, then by Euler’s iden-
tity (3.68), we have the equality

n∑

i=0

∂F

∂xi

(A)αi =
(

n∑

i=0

∂F

∂xi

xi

)

(A) = kF (A).

The value of F(A) is equal to zero, since the point A lies on the hypersurface X

given by the equation F(A) = 0.
Now to switch to a more familiar situation, let us consider an affine subspace of

P(L), given by the condition x0 �= 0, and let us introduce in it the inhomogeneous
coordinates

yi = xi/x0, i = 1, . . . , n. (11.10)

Let us assume that the point A lies in this subset (that is, its coordinate α0 is nonzero)
and let us write equation (11.3) in coordinates yi . To do so, we must move from
the variables x0, x1, . . . , xn to the variables y1, . . . , yn and rewrite equation (11.3)
accordingly. Here we must set

F(x0, x1, . . . , xn) = xk
0f (y1, . . . , yn), (11.11)

where f (y1, . . . , yn) is a polynomial of degree k ≥ 1, already not necessarily ho-
mogeneous (in contrast to F ). In accord with formula (11.10), let us denote by
a1, . . . , an the inhomogeneous coordinates of the point A, that is,

ai = αi/α0, i = 1, . . . , n.

Using general rules for the calculation of partial derivatives, from the represen-
tation (11.11), taking into account (11.10), we obtain the formulas

∂F

∂x0
= kxk−1

0 f + xk
0

n∑

l=1

∂f

∂yl

∂yl

∂x0
= kxk−1

0 f + xk
0

n∑

l=1

∂f

∂yl

(
− yl

x0

)

= kxk−1
0 f − xk−1

0

n∑

l=1

∂f

∂yl

yl

and

∂F

∂xi

= xk
0

n∑

l=1

∂f

∂yl

∂yl

∂xi

= xk
0

n∑

l=1

∂f

∂yl

(
x−1

0
∂xl

∂xi

)
= xk−1

0
∂f

∂yi

, i = 1, . . . , n.
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Now let us find the values of the derivatives calculated above of the function F at
the point A with inhomogeneous coordinates a1, . . . , an. The value of F(A) is zero,
since the point A lies in the hypersurface X and x0 �= 0. By virtue of the represen-
tation (11.11), we obtain from this that f (a1, . . . , an) = 0. For brevity, we shall em-
ploy the notation f (A) = f (a1, . . . , an) and ∂f

∂yi
(A) = ∂f

∂yi
(a1, . . . , an). Thus from

the two previous relationships, we obtain

∂F

∂x0
(A) = −αk−1

0

n∑

i=1

∂f

∂yi

(A)ai,

∂F

∂xi

(A) = αk−1
0

∂f

∂yi

(A), i = 1, . . . , n.

(11.12)

On substituting expression (11.12) into (11.3), and taking into account (11.10), we
obtain the equation

−αk−1
0

n∑

i=1

∂f

∂yi

(A)aix0 +
n∑

i=1

(
αk−1

0
∂f

∂yi

(A)

)
xi

= αk−1
0 x0

n∑

i=1

∂f

∂yi

(A)(yi − ai) = 0.

Canceling the nonzero common factor αk−1
0 x0, we finally obtain

n∑

i=1

∂f

∂yi

(A)(yi − ai) = 0. (11.13)

This is precisely the equation of the tangent hyperplane TAX in inhomogeneous
coordinates. In analysis and geometry, it is written in the form (11.13) for a function
f of a much more general class than that of polynomials.

We may now return to the case in which the hypersurface X = Q is a nonsin-
gular (and therefore smooth) quadric. Then for every point A ∈ Q, equation (11.3)
determines a hyperplane in L, that is, some line in the dual space L∗, and therefore a
point belonging to the space P(L∗), which we shall denote by Φ(A). Thus we define
the mapping

Φ : Q → P
(
L∗). (11.14)

Our first task consists in determining what the set Φ(Q) ⊂ P(L∗) in fact is. For
this, we express the quadratic form F(x) in the form F(x) = ϕ(x,x), where the
symmetric bilinear form ϕ(x,y) has the form (11.5). By Theorem 6.3, we can write
ϕ(x,y) uniquely as ϕ(x,y) = (x,A(y)), where A : L → L∗ is some linear transfor-
mation. From the definitions, it follows that here, the radical of the form ϕ coincides
with the kernel of the linear transformation A. Since in the case of a nonsingular
form F , the radical ϕ is equal to (0), it follows that the kernel of A is also equal to
(0). Since dim L = dim L∗, we have by Theorem 3.68 that the linear transformation
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A is an isomorphism, and there is thereby determined a projective transformation
P(A) : P(L) → P(L∗).

Let us now write down our mapping (11.14) in coordinates. If the quadratic form
F(x) is written in the form (11.4), then

∂F

∂xi

= 2
n∑

j=0

aij xj , i = 0,1, . . . , n.

On the other hand, in some basis e0, e1, . . . , en of the space L, the bilinear form
ϕ(x,y) has the form (11.5), where the vectors x and y are given by x = x0e0 +
· · · + xnen and y = y0e0 + · · · + ynen. From this, it follows that the matrix of the
transformation A : L → L∗ in the basis e0, e1, . . . , en of the space L and in the dual
basis f 0,f 1, . . . ,f n of the space L∗ is equal to (aij ). Therefore, to the quadratic
form F(x) is associated the isomorphism A : L → L∗, and the mapping (11.14)
that we constructed coincides with the restriction of the projective transformation
P(A) : P(L) → P(L∗) to Q, that is, Φ(Q) = P(A)(Q).

From this arises an unexpected consequence: since the transformation P(A) is a
bijection, the transformation (11.14) is also a bijection. In other words, the tangent
hyperplanes to the nonsingular quadric Q at distinct points A,B ∈ Q are distinct.
Thus we obtain the following result.

Lemma 11.3 The same hyperplane cannot coincide with the tangent hyperplanes
to a nonsingular quadric Q at two distinct points.

This means that in writing a hyperplane of the space P(L) in the form TAQ, we
may omit the point A. And in the case of a nonsingular quadric Q, it makes sense
to say that the hyperplane is tangent to the quadric, and moreover, the point of
tangency A ∈ Q is uniquely determined.

Let us now consider more concretely what the set Φ(Q) looks like. We shall
show that it is also a nonsingular quadric, that is, in some (and therefore in any)
basis of the space L∗ determined by the equation q(x) = 0, where q is a nonsingular
quadratic form.

We saw above that there is an isomorphism A : L ∼→ L∗ that bijectively maps Q

to Φ(Q). Therefore, there exists as well an inverse transformation A−1 : L∗ ∼→ L,
which is also an isomorphism. Then the condition y ∈ Φ(Q) is equivalent to
A−1(y) ∈ Q. Let us choose an arbitrary basis

f 0,f 1, . . . ,f n (11.15)

in the space L∗. The isomorphism A−1 : L∗ ∼→ L carries this basis to the basis

A−1(f 0),A
−1(f 1), . . . ,A

−1(f n) (11.16)

of the space L. Here obviously the coordinates of the vector A−1(y) in the basis
(11.16) coincide with the coordinates of the vector y in the basis (11.15). As we
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saw above, the condition A−1(y) ∈ Q is equivalent to the relationship

F(α0, α1, . . . , αn) = 0, (11.17)

where F is a nonsingular quadratic form, and (α0, α1, . . . , αn) are the coordinates
of the vector A−1(y) in some basis of the space L, for instance, in the basis (11.16).
This means that the condition y ∈ Φ(Q) can be expressed by the same relationship
(11.17). Thus we have proved the following statement.

Theorem 11.4 If Q is a nonsingular quadric in the space P(L), then the set of
tangent hyperplanes to it forms a nonsingular quadric in the space P(L∗).

Repeating verbatim the arguments presented in Sect. 9.1, we may extend the
duality principle formulated there. Namely, we can add to it some additional notions
that are dual to each other that can be interchanged so that the general assertion
formulated on p. 326 remains valid:

nonsingular quadric in P(L) nonsingular quadric in P(L∗)

point in a nonsingular quadric hyperplane tangent to a nonsingular quadric

This (seemingly small) extension of the duality principle leads to completely
unexpected results. By way of an example, we shall introduce two famous theorems
that are duals of each other, that is, equivalent on the basis of the duality principle.
Yet the second of them was published 150 years after the first. These theorems relate
to quadrics in two-dimensional projective space, that is, in the projective plane. In
this case, a quadric is called a conic.1

In the sequel, we shall use the following terminology. Let Q be a nonsingular
conic, and let A1, . . . ,A6 be six distinct points of Q. This ordered (that is, their
order is significant) collection of points is called a hexagon inscribed in the conic Q.
For two distinct points A and B of the projective plane, their projective cover (that
is, the line passing through them) is denoted by AB (cf. the definition on p. 325).
The six lines A1A2,A2A3, . . . ,A5A6,A6A1 are called the sides of the hexagon.2

Here the following pairs of sides will be called opposite sides: A1A2 and A4A5,
A2A3 and A5A6, A3A4 and A6A1.

Theorem 11.5 (Pascal’s theorem) Pairs of opposite sides of an arbitrary hexagon
inscribed in a nonsingular cone intersect in three collinear points. See Fig. 11.1.

1A clarification of this term, that is, an explanation of what this has to do with a cone, will be given
somewhat later.
2Here we move away somewhat from the intuition of elementary geometry, where by a side we
mean not the entire line passing through two points, but only the segment connecting them. This
extended notion of a side is necessary if we wish to include the case of an arbitrary field K, for
instance, K = C.
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Fig. 11.1 Hexagon inscribed
in a conic

Before formulating the dual theorem to Pascal’s theorem, let us make a few com-
ments.

With the selection of a homogeneous system of coordinates (x0 : x1 : x2) in the
projective plane, the equation of the conic Q can be written in the form

F(x0 : x1 : x2) = a1x
2
0 + a2x0x1 + a3x0x2 + a4x

2
1 + a5x1x2 + a6x

2
2 = 0.

There are six coefficients on the right-hand side of this equation. If we have k points
A1, . . . ,Ak , then the condition of their belonging to the conic Q reduces to the
relationships

F(Ai) = 0, i = 1, . . . , k, (11.18)

which yield a system consisting of k linear homogeneous equations in the six un-
knowns a1, . . . , a6. We must find a nontrivial solution to this system. If we have
k = 6, then this question falls under Corollary 2.13 as a special case (and this ex-
plains our interest in hexagons inscribed in a conic). By this corollary, we have still
to verify that the determinant of the system (11.18) for k = 6 is equal to zero. It is
Pascal’s theorem that gives a geometric interpretation of this condition.

It is not difficult to show that it gives necessary and sufficient conditions for
six points A1, . . . ,A6 to lie on some conic if we restrict ourselves, first of all, to
nonsingular conics, and secondly, to such collections of six points that no three
of them are collinear (this is proved in any sufficiently rigorous course in analytic
geometry).

Now let us formulate the dual theorem to Pascal’s theorem. Here six distinct
lines L1, . . . ,L6 tangent to a conic Q will be called a hexagon circumscribed about
the conic. Points L1 ∩ L2, L2 ∩ L3, L3 ∩ L4, L4 ∩ L5, L5 ∩ L6, and L6 ∩ L1 are
called the vertices of the hexagon. Here the following pairs of vertices will be called
opposite: L1 ∩ L2 and L4 ∩ L5, L2 ∩ L3 and L5 ∩ L6, L3 ∩ L4 and L6 ∩ L1.

Theorem 11.6 (Brianchon’s theorem) The lines connecting opposite vertices of an
arbitrary hexagon circumscribed about a nonsingular conic intersect at a common
point. See Fig. 11.2.
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Fig. 11.2 Hexagon
circumscribed about a conic

It is obvious that Brianchon’s theorem is obtained from Pascal’s theorem if we
replace in it all the concepts by their duals according to the rules given above. Thus
by virtue of the general duality principle, Brianchon’s theorem follows from Pascal’s
theorem. Pascal’s theorem itself can be proved easily, but we will not present a
proof, since its logic is connected with another area, namely algebraic geometry.3

Here it is of interest to observe only that the duality principle makes it possible to
obtain certain results from others that appear at first glance to be entirely unrelated.
Indeed, Pascal proved his theorem in the seventeenth century (when he was 16 years
old), while Brianchon proved his theorem in the nineteenth century, more than 150
years later. And moreover, Brianchon used entirely different arguments (the general
duality principle was not yet understood at the time).

11.2 Quadrics in Complex Projective Space

Let us now consider the projective space P(L), where L is a complex vector space,
and as before, let us limit ourselves to the case of nonsingular quadrics. As we saw
in Sect. 6.3 (formula (6.27)), a nonsingular quadratic form in a complex space has
the canonical form x2

0 + x2
1 + · · · + x2

n . This means that in some coordinate system,
the equation of a nonsingular quadric can be written as

x2
0 + x2

1 + · · · + x2
n = 0, (11.19)

that is, every nonsingular quadric can be transformed into the quadric (11.19) by
some projective transformation. In other words, in a complex projective space there
exists (defined up to a projective transformation) only one nonsingular quadric
(11.19). It is this quadric that we shall now investigate.

In view of what we have said above, it suffices to consider any one arbitrary
nonsingular quadric on the projective space P(L) of a given dimension. For example,

3Such a proof can be found, for example, in the book Algebraic Curves, by Robert Walker
(Springer, 1978).
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we may choose the quadric given by the equation F(x) = 0, where the matrix of the
quadratic form F(x) has the form

⎛

⎜⎜⎜
⎜⎜
⎝

0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0

⎞

⎟⎟⎟
⎟⎟
⎠

. (11.20)

A simple calculation shows that the determinant of the matrix (11.20) is equal to +1
or −1, that is, it is nonzero.

A fundamental topic that we shall study in this and the following sections is
projective subspaces contained in a quadric. Let the quadric Q be given by the
equation F(x) = 0, where x ∈ L, and let a projective subspace have the form P(L′),
where L′ is a subspace of the vector space L. Then the projective subspace P(L′) is
contained in Q if and only if F(x) = 0 for all vectors x ∈ L′.

Definition 11.7 A subspace L′ ⊂ L is said to be isotropic with respect to a quadratic
form F if F(x) = 0 for all vectors x ∈ L′.

Let ϕ be the symmetric bilinear form associated with the quadratic form F , ac-
cording to Theorem 6.6. Then by virtue of (6.14), we see that ϕ(x,y) = 0 for all
vectors x,y ∈ L′. Therefore, we shall also say that the subspace L′ ⊂ L is isotropic
with respect to the bilinear form ϕ.

We have already encountered the simplest example of isotropic subspaces, in
Sect. 7.7 in our study of pseudo-Euclidean spaces. There we encountered lightlike
(also called isotropic) vectors on which a quadratic form (x2) defining a pseudo-
Euclidean space becomes zero. Every nonnull lightlike vector e clearly determines
a one-dimensional subspace 〈e〉.

The basic technique that will be used in this and the following sections consists in
how to reformulate our questions about subspaces contained in a quadric F(x) = 0
in terms of a vector space L, a symmetric bilinear form ϕ(x,y) defined on L and
corresponding to the quadratic form F(x), and subspaces isotropic with respect to
F and ϕ. Then everything is determined almost trivially on the basis of the simplest
properties of linear and bilinear forms.

Theorem 11.8 The dimension of an arbitrary isotropic subspace L′ ⊂ L relative to
an arbitrary nonsingular quadratic form F does not exceed half of dim L.

Proof Let us consider (L′)⊥, the orthogonal complement of the subspace L′ ⊂ L
with respect to the bilinear form ϕ(u,v) associated with F(x). The quadratic form
F(x) and bilinear form ϕ(u,v) are nonsingular. Therefore, we have relationship
(7.75), from which follows the equality dim(L′)⊥ = dim L − dim L′.
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That the space L′ is isotropic means that L′ ⊂ (L′)⊥. From this we obtain the
inequality

dim L′ ≤ dim
(
L′)⊥ = dim L − dim L′,

from which it follows that dim L′ ≤ 1
2 dim L, as asserted in the theorem. �

In the sequel, we shall limit our study of isotropic subspaces to those of the
greatest possible dimension, namely 1

2 dim L when the number dim L is even and
1
2 (dim L − 1) when it is odd. The general case dim L′ ≤ 1

2 dim L is easily reduced to
this limiting case and is studied completely analogously.

Let us consider some of the simplest cases, known from analytic geometry.

Example 11.9 The simplest case of all is dim L = 2, and therefore, dimP(L) = 1.
In coordinates (x0 : x1), the quadratic form with matrix (11.20) has the form x0x1.
Clearly, the quadric x0x1 = 0 consists of two points (0 : 1) and (1 : 0), corresponding
to the vectors e1 = (0,1) and e2 = (1,0) in the plane L. Each of the two points
determines an isotropic subspace L′

i = 〈ei〉.
Example 11.10 Next in complexity is the case dim L = 3, and correspondingly,
dimP(L) = 2. In this case, we are dealing with quadrics in the projective plane;
their points determine one-dimensional isotropic subspaces in L that therefore form
a continuous family. (If the equation of the quadric is F(x0, x1, x2) = 0, then in the
space L, it determines a quadratic cone whose generatrices are isotropic subspaces.)

Example 11.11 The following case corresponds to dim L = 4 and dimP(L) = 3.
These are quadrics in three-dimensional projective space. For isotropic subspaces
L′ ⊂ L, Theorem 11.8 gives dim L′ ≤ 2. Isotropic subspaces of maximal dimension
are obtained for dim L′ = 2, that is, dimP(L′) = 1. These are projective lines lying
on the quadric. In coordinates (x0 : x1 : y0 : y1), the quadratic form with matrix
(11.20) gives the equation

x0y0 + x1y1 = 0. (11.21)

We must find all two-dimensional isotropic subspaces L′ ⊂ L. Let a basis of
the two-dimensional subspace L′ consist of vectors e = (a0, a1, b0, b1) and e′ =
(a′

0, a
′
1, b

′
0, b

′
1). Then the fact that L′ is isotropic is expressed, in view of formula

(11.21), by the relationship
(
a0u + a′

0v
)(

b0u + b′
0v

)+ (
a1u + a′

1v
)(

b1u + b′
1v

) = 0, (11.22)

which is satisfied identically for all u and v. The left-hand side of equation (11.22)
represents a quadratic form in the variables u and v, which can be identically equal
to zero only in the case that all its coefficients are equal to zero. Removing paren-
theses in (11.22), we obtain

a0b0 + a1b1 = 0, a0b
′
0 + a′

0b0 + a1b
′
1 + a′

1b1 = 0,

a′
0b

′
0 + a′

1b
′
1 = 0.

(11.23)
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The first equation from (11.23) means that the rows (a0, a1) and (b1,−b0) are
proportional. Since they cannot both be equal to zero simultaneously (then all coor-
dinates of the basis vector e would be equal to zero, which is impossible), it follows
that one of them is the product of the other and some (uniquely determined) scalar β .
For definiteness, let a0 = βb1, a1 = −βb0 (the case b1 = βa0, b0 = −βa1 is con-
sidered analogously). In just the same way, from the third equation of (11.23), we
obtain that a′

0 = γ b′
1, a′

1 = −γ b′
0 with some scalar γ . Substituting the relationships

a0 = βb1, a1 = −βb0, a′
0 = γ b′

1, a′
1 = −γ b′

0 (11.24)

into the second equation of (11.23), we obtain the equality (β − γ )(b′
0b1 −

b0b
′
1) = 0. Therefore, either b′

0b1 − b0b
′
1 = 0 or γ = β .

In the first case, from the equality b′
0b1 − b0b

′
1 = 0 it follows that the rows

(b0, b
′
0) and (b1, b

′
1) are proportional, and we obtain the relationships b1 = −αb0

and b′
1 = −αb′

0 with some scalar α (the case b0 = −αb1 and b′
0 = −αb1 is consid-

ered similarly). Let us assume that b1 and b′
1 are not both equal to zero. Then α �= 0,

and taking into account the relationships (11.24), we obtain

a0u + a′
0v = a0u + a′

0v = βb1u + γ b′
1v = −α

(
βb0u + γ b′

0v
) = α

(
a1u + a′

1v
)
,

b0u + b′
0v = −α−1(b1u + b′

1v
)
.

In the second case, let us suppose that a0 and a1 are not both equal to zero. Then
β �= 0, and taking into account relationship (11.24), we obtain

a0u + a′
0v = a0u + a′

0v = β
(
b1u + b′

1v
)
,

b0u + b′
0v = −β−1(a1u + a′

1v
)
.

Thus with the assumptions made for an arbitrary vector subspace L′ with coordi-
nates (x0, y0, x1, y1), we have either

x0 = αx1, y0 = −α−1y1 (11.25)

or

x0 = βy1, y0 = −β−1x1, (11.26)

where α and β are certain nonzero scalars.
In order to consider the excluded cases, namely α = 0 (b1 = b′

1 = 0) and β = 0
(a0 = a1 = 0), let us introduce points (a : b) ∈ P

1 and (c : d) ∈ P
1, that is, pairs

of numbers that are not simultaneously equal to zero, and let us consider them as
defined up to multiplication by one and the same nonzero scalar. Then as is easily
verified, a homogeneous representation of relationships (11.25) and (11.26) that also
includes both previously excluded cases will have the form

ax0 = bx1, by0 = −ay1 (11.27)
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and

cx0 = dy1, dy0 = −cx1 (11.28)

respectively. Indeed, equality (11.25) is obtained from (11.27) for a = 1 and b = α,
while (11.26) is obtained from (11.28) for c = 1 and d = β .

Relationships (11.27) give the isotropic plane L′ ⊂ L or the line P(L′) in P(L),
which belongs to the quadric (11.21). It is determined by the point (a : b) ∈ P

1. Thus
we obtain one family of lines. Similarly, relationships (11.28) determine a second
family of lines. Together, they give all the lines contained in our quadric (called a
hyperboloid of one sheet). These lines are called the rectilinear generatrices of the
hyperboloid.

On the basis of the formulas we have written down, it is easy to verify some
properties known from analytic geometry: two distinct lines from one family of
rectilinear generatrices do not intersect, while two lines from different families do
intersect (at a single point). For every point of the hyperboloid, there is a line from
each of the two families that passes through it.

In the following section, we shall consider the general case of projective sub-
spaces of maximum possible dimension on a nonsingular quadric of arbitrary di-
mension in complex projective space.

11.3 Isotropic Subspaces

Let Q be a nonsingular quadric in a complex projective space P(L) given by the
equation F(x) = 0, where F(x) is a nonsingular quadratic form on the space L. In
analogy to what we discussed in the previous section, we shall study m-dimensional
subspaces L′ ⊂ L that are isotropic with respect to F , assuming that dim L = 2m if
dim L is even, and dim L = 2m + 1 if dim L is odd.

The special cases that we studied in the preceding section show that isotropic
subspaces look different for different values of dim L. Thus for dim L = 3, we found
one family of isotropic subspaces, continuously parameterized by the points of the
quadric Q. For dim L = 2 or 4, we found two such families. This leads to the idea
that the number of continuously parameterized families of isotropic subspaces on
a quadric depends on the parity of the number dim L. As we shall now see, such is
indeed the case.

The cases of even and odd dimension will be treated separately.

Case 1. Let us assume that dim L = 2m. Consequently, we are interested in isotropic
subspaces M ⊂ L of dimension m. (This is the most interesting case, since here we
shall see how the families of lines on a hyperbola of one sheet are generalized.)

Theorem 11.12 For every m-dimensional isotropic subspace M ⊂ L, there exists
another m-dimensional isotropic subspace N ⊂ L such that

L = M ⊕ N. (11.29)
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Proof Our proof is by induction on the number m. For m = 0, the statement of the
theorem is vacuously true.

Let us assume now that m > 0, and let us consider an arbitrary nonnull vector
e ∈ M. Let ϕ(x,y) be the symmetric bilinear form associated with the quadratic
form F(x). Since the subspace M is isotropic, it follows that ϕ(e, e) = 0. In view of
the nonsingularity of F(x), the bilinear form ϕ(x,y) is likewise nonsingular, and
therefore, its radical is equal to (0). Then the linear function ϕ(e,x) of a vector
x ∈ L is not identically equal to zero (otherwise, the vector e would be in the radical
of ϕ(x,y), which is equal to (0)).

Let f ∈ L be a vector such that ϕ(e,f ) �= 0. Clearly, the vectors e,f are linearly
independent. Let us consider the plane W = 〈e,f 〉 and denote by ϕ′ the restriction
of the bilinear form ϕ to W. In the basis e,f , the matrix of the bilinear form ϕ′ has
the form

Φ ′ =
⎛

⎝
0 ϕ(e,f )

ϕ(e,f ) ϕ(f ,f )

⎞

⎠ , ϕ(e,f ) �= 0.

It is obvious that |Φ ′| = −ϕ(e,f )2 �= 0, and therefore, the bilinear form ϕ′ is non-
singular.

Let us define the vector

g = f − ϕ(f ,f )

2ϕ(e,f )
e.

Then as is easily verified, ϕ(g,g) = 0, ϕ(e,g) = ϕ(e,f ) �= 0, and the vectors e,g

are linearly independent, that is, W = 〈e,g〉. In the basis e,g, the matrix of the
bilinear form ϕ′ has the form

Φ ′′ =
⎛

⎝
0 ϕ(e,g)

ϕ(e,g) 0

⎞

⎠ .

As a result of the nondegeneracy of the bilinear form ϕ′, we have by Theorem 6.9
the decomposition

L = W ⊕ L1, L1 = W⊥
ϕ , (11.30)

where dim L1 = 2m − 2. Let us set M1 = L1 ∩ M and show that M1 is a subspace of
dimension m − 1 isotropic with respect to the restriction of the bilinear form ϕ to
L1.

By construction, the subspace M1 consists of the vectors x ∈ M such that
ϕ(x, e) = 0 and ϕ(x,g) = 0. But the first equality holds in general for all x ∈ M,
since e ∈ M and M is isotropic with respect to ϕ. Thus in the definition of the sub-
space M1, there remains only the second equality, which means that M1 ⊂ M is
determined by what is sent to zero by the linear function f (x) = ϕ(x,g), which
is not identically equal to zero (since f (e) = ϕ(e,g) �= 0). Therefore, dim M1 =
dim M − 1 = m − 1.
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Thus M1 is a subspace of L1 of half the dimension of L1, defined by formula
(11.30), and we can apply the induction hypothesis to it to obtain the decomposition

L1 = M1 ⊕ N1, (11.31)

where N1 ⊂ L1 is some other (m − 1)-dimensional isotropic subspace.
Let us note that M = 〈e〉 ⊕ M1 and let us set N = 〈g〉 ⊕ N1. Since the subspace

N1 is isotropic in L1, the subspace N is isotropic in L, and taking into account that
ϕ(g,g) = 0, we have for all vectors x ∈ N1 the equality ϕ(g,x) = 0. Formulas
(11.30) and (11.31) together give the decomposition

L = 〈e〉 ⊕ 〈g〉 ⊕ M1 ⊕ N1 = M ⊕ N,

which is what was to be proved. �

In the terminology of Theorem 11.12, an arbitrary vector z ∈ N determines a
linear function f (x) = ϕ(z,x) on the vector space L, that is, an element of the
dual space L∗. The restriction of this function to the subspace M ⊂ L is obviously a
linear function on M, that is, an element of the space M∗. This defines the mapping
F : N → M∗. A trivial verification shows that F is a linear transformation.

The decomposition (11.29) established by Theorem 11.12 has an interesting con-
sequence.

Lemma 11.13 The linear transformation F : N → M∗ constructed above is an iso-
morphism.

Proof Let us determine the kernel of the transformation F : N → M∗. Let us assume
that F (z0) = 0 for some z0 ∈ N, that is, ϕ(z0,y) = 0 for all vectors y ∈ M. But by
Theorem 11.12, every vector x ∈ L can be represented in the form x = y + z, where
y ∈ M and z ∈ N. Thus

ϕ(z0,x) = ϕ(z0,y) + ϕ(z0,z) = ϕ(z0,z) = 0,

since both vectors z and z0 belong to the isotropic subspace N. From the nonsin-
gularity of the bilinear form ϕ, it then follows that z0 = 0, that is, the kernel of F
consists of only the null vector. Since dim M = dimN , we have by Theorem 3.68
that the linear transformation F is an isomorphism. �

Let e1, . . . , em be some basis in M, and f 1, . . . ,f m the dual basis in M∗. The iso-
morphism F that we constructed creates a correspondence between this dual basis
and a certain basis g1, . . . ,gm in the space N according to the formula F (gi ) = f i .
From decomposition (11.29) established in Theorem 11.12, it follows that vectors
e1, . . . , em,g1, . . . ,gm form a basis in L. In this basis, the bilinear form ϕ has the
simplest possible matrix Φ . Indeed, recalling the definitions of concepts that we
have used, we obtain that

Φ =
(

0 E

E 0

)
, (11.32)
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where E and 0 are the identity and zero matrices of order m. For the corresponding
quadratic form F and vector

x = x1e1 + · · · + xmem + xm+1g1 + · · · + x2mgm,

we obtain

F(x) =
m∑

i=1

xixm+i . (11.33)

Conversely, if in some basis e1, . . . , e2m of the vector space L, the bilinear form ϕ

has matrix (11.32), then the space L can be represented in the form

L = M ⊕ N, M = 〈e1, . . . , em〉,N = 〈em+1, . . . , e2m〉,
in accordance with Theorem 11.12. Let us recall that in our case (in a complex pro-
jective space), all nonsingular bilinear forms are equivalent, and therefore, every
nonsingular bilinear form ϕ has matrix (11.32) in some basis. In particular, we see
that in the 2m-dimensional space L, there exists an m-dimensional isotropic sub-
space M.

In order to generalize known results from analytic geometry for m = 2 to the case
of arbitrary m (see Example 11.11), we shall provide several definitions that natu-
rally generalize some concepts about Euclidean spaces familiar to us from Chap. 7.

Definition 11.14 Let ϕ(x,y) be a nonsingular symmetric bilinear form in the space
L of arbitrary dimension. A linear transformation U : L → L is said to be orthogonal
with respect to ϕ if

ϕ
(
U(x),U(y)

) = ϕ(x,y) (11.34)

for all vectors x,y ∈ L.

This definition generalizes the notion of orthogonal transformation of a Eu-
clidean space and Lorentz transformation of a pseudo-Euclidean space. Similarly,
we shall call a basis e1, . . . , en of a space L orthonormal with respect to a bilinear
form ϕ if ϕ(ei , ei ) = 1 and ϕ(ei , ej ) = 0 for all i �= j . Every orthogonal trans-
formation takes an orthonormal basis into an orthonormal basis, and for any two
orthonormal bases, there exists a unique orthogonal transformation taking the first
of them to the second. The proofs of these assertions coincide word for word with
the analogous assertions from Section 7.2, since there we nowhere used the positive
definiteness of the bilinear form (x,y), but only its nonsingularity.

The condition (11.34) can be expressed in matrix form. Let the bilinear form
ϕ have matrix Φ in some basis e1, . . . , en of the space L. Then the transformation
U : L → L will be orthogonal with respect to ϕ if and only if its matrix U in this
basis satisfies the relationship

U∗ΦU = Φ. (11.35)
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This is proved just as was the analogous equality (7.18) for orthogonal transforma-
tions of Euclidean spaces, and (7.18) is a special case of formula (11.35) for Φ = E.

It follows from formula (11.35) that |U∗|· |Φ| · |U | = |Φ|, and taking into account
the nonsingularity of the form ϕ (|Φ| �= 0), that |U∗| · |U | = 1, that is, |U |2 = 1.
From this we finally obtain the equality |U | = ±1, in which |U | can be replaced by
|U|, since the determinant of a linear transformation does not depend on the choice
of basis in the space, and consequently, coincides with the determinant of the matrix
of this transformation.

The equality |U| = ±1 generalizes a well-known property of orthogonal trans-
formations of a Euclidean space and provides justification for an analogous defini-
tion.

Definition 11.15 A linear transformation U : L → L orthogonal with respect to a
symmetric bilinear form ϕ is said to be proper if |U| = 1 and improper if |U| = −1.

It follows at once from Theorem 2.54 on the determinant of the product of ma-
trices that proper and improper transformations multiply just like the numbers +1
and −1. Similarly, the transformation U−1 corresponds to the same type (of proper
or improper orthogonal transformation) as U.

The concepts that we have introduced can be applied to the theory of isotropic
subspaces on the basis of the following result.

Theorem 11.16 For any two m-dimensional isotropic subspaces M and M′ of a 2m-
dimensional space L, there exists an orthogonal transformation U : L → L taking
one of the subspaces to the other.

Proof Since Theorem 11.12 can be applied to each of the subspaces M and M′, there
exist m-dimensional isotropic subspaces N and N′ such that

L = M ⊕ N = M′ ⊕ N′.

As we have noted above, from the decomposition L = M ⊕ N, it follows that in the
space L, there exists a basis e1, . . . , e2m comprising the bases of the subspaces M
and N in which the matrix of the bilinear form ϕ is equal to (11.32). The second
decomposition L = M′ ⊕ N′ gives us a similar basis e′

1, . . . , e
′
2m.

Let us define the transformation U by the action on the vectors of the basis
e1, . . . , e2m according to the formula U(ei ) = e′

i for all i = 1, . . . ,2m. It is obvious
that then the image U(M) is equal to M′. Furthermore, for any two vectors x =
x1e1 + · · · + x2me2m and y = y1e1 + · · · + y2me2m, their images U(x) and U(y)

have, in the basis e′
1, . . . , e

′
2m, decompositions with the same coordinates: U(x) =

x1e
′
1 + · · · + x2me′

2m and U(y) = y1e
′
1 + · · · + y2me′

2m. From this it follows that

ϕ
(
U(x),U(y)

) =
2m∑

i=1

xiym+i = ϕ(x,y),
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showing that U is an orthogonal transformation. �

Let us note that Theorem 11.16 does not assert the uniqueness of such a trans-
formation U. In fact, such is not the case. Let us consider this question in more
detail. Let U1 and U2 be the two orthogonal transformations that were the subject
of Theorem 11.16. Applying to both sides of the equality U1(M) = U2(M) the trans-
formation U−1

1 , we obtain U0(M) = M, where U0 = U−1
1 U2 is also an orthogonal

transformation. Our further considerations are based on the following result.

Lemma 11.17 Let M be an m-dimensional isotropic subspace of a 2m-dimensional
space L, and let U0 : L → L be an orthogonal transformation taking M to itself.
Then the transformation U0 is proper.

Proof By assumption, M is an invariant subspace of the transformation U0. This
means that in an arbitrary basis of the space L whose first m vectors form a basis of
M, the matrix of the transformation U0 has the block form

U0 =
(

A B

0 C

)
, (11.36)

where A, B , C are square matrices of order m.
The orthogonality of the transformation U0 is expressed by the relationship

(11.35), in which, as we have seen, with the selection of a suitable basis, we may
consider that relationship (11.32) is satisfied. Setting in (11.35) in place of U the
matrix (11.36), we obtain

(
A∗ 0
B∗ C∗

)
·
(

0 E

E 0

)
·
(

A B

0 C

)
=

(
0 E

E 0

)
.

Multiplying the matrices on the left-hand side of this equality brings it into the form
(

0 A∗C
C∗A D

)
=

(
0 E

E 0

)
, where D = C∗B + B∗C.

From this, we obtain in particular A∗C = E, and this means that |A∗| · |C| = 1. But
in view of |A∗| = |A|, from (11.36) we have |U0| = |A| · |C| = 1, as asserted. �

From Lemma 11.17 we deduce the following important corollary.

Theorem 11.18 If M and M′ are two m-dimensional isotropic subspaces of a 2m-
dimensional space L, then the orthogonal transformations U : L → L taking one of
these subspaces into the other are either all proper or all improper.

Proof Let U1 and U2 be two orthogonal transformations such that Ui (M) = M′. It
is clear that then U−1

i (M′) = M. Setting U0 = U−1
1 U2, from the equality U1(M) =

U2(M) we obtain that U0(M) = M. By Lemma 11.17, |U0| = 1, and from the rela-
tionship U0 = U−1

1 U2, it follows that |U1| = |U2|. �
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Theorem 11.18 determines in an obvious way a partition of the set of all m-
dimensional isotropic subspaces M of a 2m-dimensional space L into two families
M1 and M2. Namely, M and M′ belong to one family if an orthogonal transfor-
mation U taking one of these subspaces into the other (which always exists, by
Theorem 11.16) is proper (it follows from Theorem 11.18 that this definition does
not depend on the choice of a specific transformation U).

Now we can easily prove the following property, which was established in the
previous section for m = 2, for any m.

Theorem 11.19 Two m-dimensional isotropic subspaces M and M′ of a 2m-
dimensional space L belong to one family Mi if and only if the dimension of their
intersection M ∩ M′ has the same parity as m.

Proof Let us recall that natural numbers k and m have the same parity if k + m

is even, or equivalently, if (−1)k+m = 1. Recalling now the definition of the parti-
tion of the set of m-dimensional isotropic subspaces into families M1 and M2 and
setting k = dim(M ∩ M′), we may formulate the assertion of the theorem as follows:

|U| = (−1)k+m, (11.37)

where U is an arbitrary orthogonal transformation taking M to M′, that is, a trans-
formation such that U(M) = M′.

Let us begin the proof of relationship (11.37) with the case k = 0, that is, the case
that M ∩ M′ = (0). Then in view of the equality dim M + dim M′ = dim L, the sum of
subspaces M + M′ = M ⊕ M′ coincides with the entire space L. This means that M′
exhibits all the properties of the isotropic subspace N constructed for the proof of
Theorem 11.12. In particular, there exist bases e1, . . . , em in M and f 1, . . . ,f m in
M′ such that

ϕ(ei ,f i ) = 1 for i = 1, . . . ,m, ϕ(ei ,f j ) = 0 for i �= j.

We shall determine the transformation U : L → L by the conditions U(ei ) = f i

and U(f i ) = ei for all i = 1, . . . ,m. It is clear that U(M) = M′ and U(M′) = M. It
is equally easy to see that in the basis e1, . . . , em,f 1, . . . ,f m, the matrices of the
transformation U and bilinear form ϕ coincide and have the form (11.32). Substi-
tuting the matrix (11.32) in place of U and Φ into formula (11.35), we see that it is
converted to a true equality, that is, the transformation U is orthogonal.

On the other hand, we have, therefore, the equality |U| = |Φ| = (−1)m. It is
easy to convince oneself that |Φ| = (−1)m by transposing the rows of the matrix
(11.32) with indices i and m + i for all i = 1, . . . ,m. Here we shall carry out m

transpositions and obtain the identity matrix of order 2m with determinant 1. As
a result, we arrive at the equality |U| = (−1)m, that is, at relationship (11.37) for
k = 0.

Now let us examine the case k > 0. Let us define the subspace M1 = M∩M′. Then
k = dim M1. By Theorem 11.12, there exists an m-dimensional isotropic subspace
N ⊂ L such that L = M ⊕ N. Let us choose in the subspace M a basis e1, . . . , em
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such that its first k vectors e1, . . . , ek form a basis in M1. Then clearly, we have the
decomposition

M = M1 ⊕ M2, where M1 = 〈e1, . . . , ek〉,M2 = 〈ek+1, . . . , em〉.
Above (see Lemma 11.13), we constructed the isomorphism F : N ∼→ M∗ and

with its help, defined a basis g1, . . . ,gm in the space N by formula F (gi ) = f i ,
where f 1, . . . ,f m is a basis of the space M∗, the dual basis to e1, . . . , em. We obvi-
ously have the decomposition

N = N1 ⊕ N2, where N1 = 〈g1, . . . ,gk〉,N2 = 〈gk+1, . . . ,gm〉,
where by our construction, F : N1

∼→ M∗
1 and F : N2

∼→ M∗
2.

Let us consider the linear transformation U0 : L → L defined by the formula

U0(ei ) = gi , U0(gi ) = ei for i = 1, . . . , k,

U0(ei ) = ei , U0(gi ) = gi for i = k + 1, . . . ,m.

It is obvious that the transformation U0 is orthogonal, and also U2
0 = E and

U0(M1) = N1, U0(M2) = M2,

U0(N1) = M1, U0(N2) = N2.
(11.38)

In the basis e1, . . . , em,g1, . . . ,gm that we constructed in the space L, the matrix of
the transformation U0 has the block form

U0 =

⎛

⎜⎜
⎝

0 0 Ek 0
0 Em−k 0 0
Ek 0 0 0
0 0 0 Em−k

⎞

⎟⎟
⎠ ,

where Ek and Em−k are the identity matrices of orders k and m − k. As is evident,
U0 becomes the identity matrix after the transposition of its rows with indices i and
m + i, i = 1, . . . , k. Therefore, |U0| = (−1)k .

Let us prove that U0(M′) ∩ M = (0). Since U2
0 = E , this is equivalent to

M′ ∩ U0(M) = (0). Let us assume that x ∈ M′ ∩ U0(M). From the membership
x ∈ U0(M) and decomposition M = M1 ⊕ M2, taking into account (11.38), it fol-
lows that x ∈ N1 ⊕ M2, that is,

x = z1 + y2, where z1 ∈ N1,y2 ∈ M2. (11.39)

Thus for every vector y1 ∈ M1, we have the equality

ϕ(x,y1) = ϕ(z1,y1) + ϕ(y2,y1). (11.40)

The left-hand side of equality (11.40) equals zero, since x ∈ M′, y1 ∈ M1 ⊂ M′,
and the subspace M′ is isotropic with respect to ϕ. The second term ϕ(y2,y1)
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on the right-hand side is equal to zero, since yi ∈ Mi ⊂ M, i = 1,2, and the sub-
space M is isotropic with respect to ϕ. Thus from relationship (11.40), it follows
that ϕ(z1,y1) = 0 for every vector y1 ∈ M1.

This last conclusion means that for the isomorphism F : N1
∼→ M∗

1, there cor-
responds to the vector z1 ∈ N1, a linear function on M1 that is identically equal to
zero. But that can be the case only if the vector z1 itself is equal to 0. Thus in the
decomposition (11.39), we have z1 = 0, and therefore, the vector x = y2 is con-
tained in the subspace M2. On the other hand, by virtue of the inclusions M2 ⊂ M
and x ∈ M′ ∩U0(M), taking into account the definition of the subspace M1 = M∩M′,
this vector is also contained in M1. As a result, we obtain that x ∈ M1 ∩ M2, while
by virtue of the decomposition M = M1 ⊕ M2, this means that x = 0.

Thus the subspaces U0(M′) and M are included in the case k = 0 already consid-
ered, and relationship (11.37) has been proved for them. By Theorem 11.16, there
exists an orthogonal transformation U1 : L → L such that U1(U0(M′)) = M. Then,
as we have proved, |U1| = (−1)m. The orthogonal transformation U = U1U0 takes
the isotropic subspace M′ to M, and for it we have the relationship

|U| = |U1| · |U0| = (−1)m(−1)k = (−1)k+m,

which completes the proof of the theorem. �

We note two corollaries to Theorem 11.19.

Corollary 11.20 The families M1 and M2 do not have an m-dimensional isotropic
subspace in common.

Proof Let us assume that two such m-dimensional isotropic subspaces M1 ∈ M1

and M2 ∈ M2 are to be found such that M1 = M2. Then we clearly have the equality
dim(M1 ∩ M2) = m, and by Theorem 11.19, M1 and M2 cannot belong to different
families M1 and M2. �

Corollary 11.21 If two m-dimensional isotropic subspaces intersect in a subspace
of dimension m − 1, then they belong to different families M1 and M2.

This follows from the fact that m and m − 1 have opposite parity.

Case 2. Now we may proceed to an examination of the second case, in which the
dimension of the space L is odd. It is considerably easier and can be reduced to the
already considered case of even dimensionality.

In order to retain the previous notation used in the even-dimensional case, let
us denote by L the space of odd dimension 2m + 1 under consideration and let us
embed it as a hyperplane in a space L of dimension 2m + 2. Let us denote by F a
nonsingular quadratic form on L and by F its restriction to L. Our further reasoning
will be based on the following fact.
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Lemma 11.22 For every nonsingular quadratic form F there exists a hyperplane
L ⊂ L such that the quadratic form F is nonsingular.

Proof In a complex projective space, all nonsingular quadratic forms are equivalent.
And therefore, it suffices to prove the required assertion for any one form F . For F ,
let us take the nonsingular form (11.33) that we encountered previously with m

replaced by m + 1. Thus for a vector x ∈ L with coordinates (x1, . . . , x2m+2), we
have

F(x) =
m+1∑

i=1

xixm+1+i . (11.41)

Let us define a hyperplane L ⊂ L by the equation x1 = xm+2. The coordinates in L are
collections (x1, . . . , xm+1, x̆m+2, xm+3, . . . , x2m+2), where the symbol ˘ indicates
the omission of the coordinate underneath it, and the quadratic form F in these
coordinates takes the form

F(x) = x2
1 +

m+1∑

i=2

xixm+1+i . (11.42)

The matrix of the quadratic form (11.42) has the block form
⎛

⎜
⎜⎜⎜⎜
⎝

1 0 · · · 0
0
...

∣∣∣∣∣
�

∣∣∣∣∣
0

⎞

⎟
⎟⎟⎟⎟
⎠

,

where Φ is the matrix from formula (11.32). Since the determinant |Φ| is nonzero,
it follows that the quadratic form (11.42) is nonsingular. �

We shall further investigate the m-dimensional subspaces M ⊂ L, isotropic with
respect to the nonsingular quadratic form F , which is the restriction to the hyper-
plane L of the nonsingular quadratic form F given in the surrounding space L. Since
in the complex projective space L all nonsingular quadratic forms are equivalent, it
follows that all our results will be valid for an arbitrary nonsingular quadratic form
on L.

Let us consider an arbitrary (m+ 1)-dimensional subspace M ⊂ L, isotropic with
respect to F , and let us set M = M ∩ L. It is obvious that the subspace M ⊂ L is
isotropic with respect to F . Since in the space L, the hyperplane L is defined by a
single linear equation, it follows that either M ⊂ L (and then M = M), or dim M =
dim M−1 = m. But the first case is impossible, since dim M ≤ 1

2 dim L = 1
2 (2m+1),

and dim M = m + 1. Thus there remains the second case: dim M = m. Let us show
that such an association with an (m + 1)-dimensional isotropic subspace M ⊂ L of
an m-dimensional isotropic subspace M ⊂ L gives all the subspaces M of interest to
us and in a certain sense, it is unique.
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Theorem 11.23 For every m-dimensional subspace M ⊂ L isotropic with respect to
F , there exists an (m + 1)-dimensional subspace M ⊂ L, isotropic with respect to
F , such that M = M ∩ L. Moreover, in each of the families M1 and M2 of subspaces
isotropic with respect to F , there exists such an M, and it is unique.

Proof Let us consider an arbitrary m-dimensional subspace M ⊂ L, isotropic with

respect to F , and let us denote by M
⊥

its orthogonal complement with respect to the
symmetric bilinear form ϕ associated with the quadratic form F in the surrounding

space L. According to our previous notation, it should have been denoted by M
⊥
ϕ ,

but we shall suppress the subscript, since the bilinear form ϕ will be always one and
the same. From relationship (7.75), which is valid for a nondegenerate (with respect
to the form ϕ) space L and an arbitrary subspace of it (p. 267), it follows that

dim M
⊥ = dim L − dim M = 2m + 2 − m = m + 2.

Let us denote by ϕ̃ the restriction of the bilinear form ϕ to M
⊥

, and by F̃ the

restriction of the quadratic form F to M
⊥

. The forms ϕ̃ and F̃ are singular in general.

By definition (p. 198), the radical of the bilinear form ϕ̃ is equal to M
⊥ ∩ (M

⊥
)⊥ =

M
⊥ ∩ M. But since M is isotropic, it follows that M ⊂ M

⊥
, and therefore, the radical

of the bilinear form ϕ̃ coincides with M. By relationship (6.17) from Sect. 6.2, the
rank of the bilinear form ϕ̃ is equal to

dim M
⊥ − dim

(
M

⊥)⊥ = dim M
⊥ − dim M = (m + 2) − m = 2,

and in the subspace M
⊥

, we may choose a basis e1, . . . , em+2 such that its last m

vectors are contained in M (that is, in the radical ϕ̃), and the restriction of ϕ to
〈e1, e2〉 has matrix

( 0 1
1 0

)
.

Thus we have the decomposition M
⊥ = 〈e1, e2〉 ⊕ M, where the restriction of the

quadratic form F to 〈e1, e2〉 in our basis has the form x1x2, and the restriction of F

to M is identically equal to zero.
Let us set Mi = M ⊕ 〈ei〉, i = 1,2. Then M1 and M2 are (m + 1)-dimensional

subspaces in L. It follows from this construction that the Mi are isotropic with respect
to the bilinear form ϕ. Here Mi ∩ L = M, since on the one hand, from considerations
of dimensionality, Mi �⊂ L, and on the other hand, M ⊂ Mi and M ⊂ L. We have thus
constructed two isotropic subspaces Mi ⊂ L such that Mi ∩ L = M. That they belong
to different families Mi and that in neither of these families are there any other
subspaces with these properties, follows from Corollary 11.21. �

Thus we have shown that there exists a bijection between the set of m-
dimensional isotropic subspaces M ⊂ L and each of the families Mi of (m + 1)-
dimensional isotropic subspaces M ⊂ L. This fact is expressed by saying that m-
dimensional subspaces M ⊂ L isotropic with respect to a nonsingular quadratic form
F form a single family.
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Of course, our partition of the set of isotropic subspaces into families is a matter
of convention. It is mostly a tribute to tradition originating in the special cases con-
sidered in analytic geometry. However, it is possible to give a more precise meaning
to this partition by describing these subspaces in terms of Plücker coordinates.

In the previous chapter, we showed that k-dimensional subspaces M of an n-
dimensional space L are in one-to-one correspondence with the points of some pro-
jective algebraic variety G(k,n), called the Grassmannian. Suppose we are given
some nonsingular quadratic form F on the space L. Let us denote by I (k, n) the
subset of points of the Grassmannian G(k,n) that correspond to the k-dimensional
isotropic subspaces.

We shall state the following propositions without proof, since they relate not to
linear algebra, but rather to algebraic geometry.4

Proposition 11.24 The set I (k, n) is a projective algebraic variety.

In other words, this proposition asserts that the property of a subspace being
isotropic can be described by certain homogeneous relationships among its Plücker
coordinates.

A projective algebraic variety X is said to be irreducible if it cannot be rep-
resented in the form of a union X = X1 ∪ X2, where Xi are projective algebraic
varieties different from X itself.

Suppose the space L has odd dimension n = 2m + 1.

Proposition 11.25 The set I (m,2m + 1) is an irreducible projective algebraic va-
riety.

Now let the space L have even dimension n = 2m. We shall denote by Ii(m,2m)

the subset of the projective algebraic variety I (m,2m) whose points correspond to
m-dimensional isotropic subspaces of the family Mi . Theorem 11.19 and its corol-
laries show that

I (m,2m) = I1(m,2m) ∪ I2(m,2m), I1(m,2m) ∩ I2(m,2m) = ∅.

This suggests the idea that the projective algebraic variety I (m,2m) is reducible.

Proposition 11.26 The sets Ii(m,2m), i = 1,2, are irreducible projective algebraic
varieties.

Finally, we have the following assertion, which relates to the isotropism of a
subspace whose dimension is less than maximal.

Proposition 11.27 For all k < n/2, the projective algebraic variety I (k, n) is irre-
ducible.

4The reader can find them, for example, in the book Methods of Algebraic Geometry, by Hodge
and Pedoe (Cambridge University Press, 1994).
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11.4 Quadrics in a Real Projective Space

Let us consider a projective space P(L), where L is a real vector space. As before, we
shall restrict our attention to the case of nonsingular quadrics. As we saw in Sect. 6.3
(formula (6.28)), a nonsingular quadratic form in a real space has the canonical form

x2
0 + x2

1 + · · · + x2
s − x2

s+1 − · · · − x2
n = 0. (11.43)

Here the index of inertia r = s + 1 will be the same in every coordinate system in
which the quadric is given by the canonical equation.

If we multiply equation (11.43) by −1, we obviously do not change the quadric
that it defines, and therefore, we may assume that s + 1 ≥ n − s, that is, s ≥
(n − 1)/2. Moreover, s ≤ n, but in the case s = n, from equation (11.43) we ob-
tain x0 = 0, x1 = 0, . . . , xn = 0, and there is no such point in projective space.

Thus, in contrast to a complex projective space, in a real projective space of given
dimension n, there exists (up to a projective transformation) not one, but several
nonsingular quadrics. However, there is only a finite number of them; they corre-
spond to various values s, where we may assume that

n − 1

2
≤ s ≤ n − 1. (11.44)

To be sure, it is still necessary to prove that the quadrics corresponding to the various
values of s are not projectively equivalent. But we shall consider this question (in
an even more complex situation) in the next section.

Thus the number of projectively inequivalent nonsingular quadrics in a real pro-
jective space of dimension n is equal to the number of integers s satisfying inequal-
ity (11.44). If n is odd, n = 2m + 1, then inequality (11.44) gives m ≤ s ≤ 2m, and
the number of projectively inequivalent quadrics is equal to m+ 1. And if n is even,
n = 2m, then there are m of them. In particular, for n = 2, all nonsingular quadrics
in the projective plane are projectively equivalent. The most typical example is the
circle x2 +y2 = 1, which is contained entirely in the affine part of x2 �= 0 if the equa-
tion is written as x2

0 + x2
1 − x2

2 = 0 in homogeneous coordinates (x0 : x1 : x2) (here
inhomogeneous coordinates are expressed by the formulas x = x0/x2, y = x1/x2).

In three-dimensional projective space, there exist two types of projectively in-
equivalent quadrics. In homogeneous coordinates (x0 : x1 : x2 : x3), one of them is
given by the equation x2

0 + x2
1 + x2

2 − x2
3 = 0. Here we always have x3 �= 0, the

quadric lies in the affine part, and it is given in inhomogeneous coordinates (x, y, z)

by the equation x2 + y2 + z2 = 1, where x = x0/x3, y = x1/x3, z = x2/x3. This
quadric is a sphere. The second type is given by the equation x2

0 +x2
1 −x2

2 −x2
3 = 0.

This is a hyperboloid of one sheet.
Their projective inequivalence can be seen at the very least from the fact that

not a single real line lies on the first of them (the sphere), while on the second
(hyperboloid of one sheet), there are two families each consisting of an infinite
number of lines, called the rectilinear generatrices.

Of course, we can embed a real space L into a complex space LC, and similarly,
embed P(L) into P(LC). Therefore, everything that was said in Sect. 11.3 about
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isotropic subspaces is applicable in our case. However, although our quadric is real,
the isotropic subspaces obtained in this way can turn out to be complex. The single
exception is the case in which if the number n is odd, then s = (n − 1)/2, or if n is
even, then s = n/2.

In the first instance, we may combine the coordinates into pairs (xi, xs+1+i ) and
set ui = xi + xs+1+i and vi = xi − xs+1+i . Then taking into account the equalities

x2
i − x2

s+1+i = (xi + xs+1+i )(xi − xs+1+i ),

equation (11.43) can be written in the form

u0v0 + u1v1 + · · · + usvs = 0. (11.45)

But this is the case of the quadric (11.33), which we considered in the previous
section. It is easy to see that the reasoning used in Sect. 11.3 gives us a description
of the real subspaces of a quadric.

The case s = n/2 for even n also does not remove us from the realm of real sub-
spaces and also leads to the case considered in the previous section. Moreover, if the
equation of a quadric has the form (11.45) over an arbitrary field K of characteristic
different from 2, then the reasoning from the previous section remains in force.

In the general case, it is still possible to determine the dimensions of the spaces
contained in a quadric. For this, we may make use of considerations already used in
the proof of the law of inertia (Theorem 6.17 from Sect. 6.3). There we observed that
the index of inertia (in the given case, the index of inertia of the quadratic form from
(11.43), equal to s+1) coincides with the maximal dimension of the subspaces L′ on
which the restriction of the form is positive definite. (Let us note that this condition
gives a geometric characteristic of the index of inertia, that is, it depends only on
the set of solutions of the equation F(x) = 0, and not on the form F that defines it.)

Indeed, let the quadric Q be given by the equation F(x) = 0. If the restric-
tion F ′ of the form F to the subspace L′ is positive definite, then it is clear
that Q ∩ P(L′) = ∅. Thus if we are dealing with a projective space P(L), where
dim L = n + 1, then in L there exists a subspace L of dimension s + 1 such that the
restriction of the form F to it is positive definite. This means that Q ∩ P(L) = ∅

(however, such a subspace L is also easily determined explicitly on the basis of
equation (11.43)). If L′ ⊂ L is a subspace such that P(L′) ⊂ Q, then L′ ∩ L = (0).
Hence by Corollary 3.42, we obtain the inequality dim L + dim L′ ≤ dim L = n + 1.
Consequently, dim L′ + s + 1 ≤ n + 1, and this means that dim L′ ≤ n − s. Thus
for the space P(L′) belonging to the quadric given by equation (11.43), we obtain
dim L′ ≤ n − s and therefore dimP(L′) ≤ n − s − 1.

On the other hand, it is easy to produce a subspace of dimension n−s−1 actually
belonging to the quadric (11.43). To this end, let us combine in pairs the unknowns
appearing in equation (11.43) with different signs and let us equate the unknowns
in one pair, for example x0 = xs+1, and so on. Since we have assumed that s + 1 ≥
n− s, we may form n− s such pairs, and therefore, we obtain n− s linear equations.
How many unknowns remain? Since we have combined 2(n − s) unknowns into
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pairs, and in all there were n + 1 of them, there remain n + 1 − 2(n − s) unknowns
(it is possible that this number will be equal to zero). Thus we obtain

(n − s) + n + 1 − 2(n − s) = n + 1 − (n − s)

linear equations in coordinates in the space L. Since different unknowns occur in
all these equations, these equations are linearly independent and determine in L a
subspace L′ of dimension n − s. Then dimP(L′) = n − s − 1. Of course, since L′ is
contained in Q, an arbitrary subspace P(L′′) ⊂ P(L′) for L′′ ⊂ L′ is also contained
in Q. Thus in the quadric Q are contained subspaces of all dimensions r ≤ n−s −1.

We have therefore proved the following result.

Theorem 11.28 If a nonsingular quadric Q in a real projective space of dimension
n is given by the equation F(x0, . . . , xn) = 0 and the index of inertia of the quadratic
form F is equal to s + 1, then in Q are contained projective subspaces only of
dimension r ≤ n − s − 1, and for each such number r there can be found in Q a
projective subspace of dimension r (when s + 1 ≥ n − r , which is always possible
to attain without changing the quadric Q, but changing only the quadratic form F

that determines it to −F ).

We have already considered an example of a quadric in real three-dimensional
projective space (n = 3). Let us note that in this space there are only two nonempty
quadrics: for s = 1 and s = 2.

For s = 2, equation (11.43) can be written in the form

x2
0 + x2

1 + x2
2 = x2

3 . (11.46)

As we have already said, for points of a real quadric, we have x3 �= 0. This means
that our quadric is entirely contained in this affine subset. Setting x = x0/x3, y =
x1/x3, z = x2/x3, we shall write its equation in the form

x2 + y2 + z2 = 1.

This is the familiar two-dimensional sphere S2 in three-dimensional Euclidean
space. Let us discover what lines lie on it. Of course, no real line can lie on a sphere,
since every line has points that are arbitrarily distant from the center of the sphere,
while for all points of the sphere, their distance from the center of the sphere is equal
to 1. Therefore, we can be talking only about complex lines of the space P(LC). If
in equation (11.46) we make the substitution x2 = iy, where i is the imaginary unit,
we obtain the equation x2

0 + x2
1 − y2 − x2

3 = 0, which in the new coordinates

u0 = x0 + y, v0 = x0 − y, u1 = x1 + x3, v1 = x1 − x3

takes the form

u0v0 + u1v1 = 0. (11.47)
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Fig. 11.3 Hyperboloid of
one sheet

We studied such an equation in Sect. 11.2 (see Example 11.11). As an example
of a line lying in the given quadric, we may take the line given by equations (11.25):
u0 = λu1, v0 = −λ−1v1 with arbitrary complex number λ �= 0 and arbitrary u1, v1.
In general, such a line contains not a single real point of our quadric (that is, points
corresponding to real values of the coordinates x0, . . . , x3). Indeed, if the number λ

is not real, then the equality u0 = λu1 contradicts the fact that u0 and u1 are real.
The case u0 = u1 = 0 would correspond to a point with coordinates x1 = x3 = 0,
for which x2

0 + x2
2 = 0, that is, all xi are equal to zero.

Thus on the sphere lies a set of complex lines containing not a single real point.
If desired, all of them could be described by formulas (11.27) and (11.28) after
changes in coordinates that we described earlier. However, of greater interest are
the complex lines lying on the sphere and containing at least one real point. For
each such line l containing a real point of the sphere P , the complex conjugate line
l (that is, consisting of points Q, where Q takes values on the line l) also lies on
the sphere and contains the point P . But by Theorem 11.19, through every point
P pass exactly two lines (even if complex). We see that through every point of the
sphere there pass exactly two complex lines, which are the complex conjugates of
each other.

Finally, the case s = 1 leads to the equation

x2
0 + x2

1 − x2
2 − x2

3 = 0, (11.48)

which after a change of coordinates

u0 = x0 + x1, v0 = x0 − x1, u1 = x2 + x3, v1 = x2 − x3,

also assumes the form (11.47). For this equation, we have described all the lines con-
tained in a quadric by formulas (11.27) and (11.28), where clearly, real values must
be assigned to the parameters a, b, c, d in these formulas. In this case, the obtained
quadric is a hyperboloid of one sheet, and the lines are its rectilinear generatrices.
See Fig. 11.3.

Let us visualize what this surface looks like; that is, let us find a more familiar
set that is homeomorphic to this surface. To this end, let us choose one line in each
family of rectilinear generatrices: in the first, l0; in the second, l1. As we saw in
Sect. 9.4, every projective line is homeomorphic to the circle S1. On the other hand,
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Fig. 11.4 A torus

every line in the second family of generatrices is uniquely determined by its point of
intersection with the line l0, and similarly, every line of the first family is determined
by its point of intersection with the line l1. Finally, through every point of the surface
pass exactly two lines: one from the first family of generatrices, and the other from
the second.

Thus is established a bijection between the points of a quadric given by equation
(11.48) and pairs of points (x,y), where x ∈ l0, y ∈ l1, that is, the set S1 × S1.
It is easily ascertained that this bijection is a homeomorphism. The set S1 × S1 is
called a torus. It is most simply represented as the surface obtained by rotating a
circle about an axis lying in the same plane as the circle but not intersecting it. See
Fig. 11.4. Such a surface looks like the surface of a bagel. As a result, we obtain that
the quadric given by equation (11.48) in three-dimensional real projective space is
homeomorphic to a torus. See Fig. 11.4.

11.5 Quadrics in a Real Affine Space

Now we proceed to the study of quadrics in a real affine space (V ,L). Let us choose
in this space a frame of reference (O; e1, . . . , en). Then every point A ∈ V is given
by its coordinates (x1, . . . , xn). A quadric is the set of all points A ∈ V such that

F(x1, . . . , xn) = 0, (11.49)

where F is some second-degree polynomial. There is now no reason to consider the
polynomial F to be homogeneous (as was the case in a projective space).

Collecting in F(x) terms of the second, first, and zeroth degrees, we shall write
them in the form

F(x) = ψ(x) + f (x) + c, (11.50)

where ψ(x) is a quadratic form, f (x) is a linear form, and c is a scalar. The quadrics
F(x) = 0 thus obtained for n = 2 and 3 represent the curves and surfaces of order
two studied in courses in analytic geometry.

Let us note that according to our definition of a quadric as a set of points satisfy-
ing relationship (11.49), we obtain even in the simplest cases, n = 2 and 3, sets that
generally do not belong to curves or surfaces of degree two. The same “strange”
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examples show that dissimilar-looking second-degree polynomials can define one
and the same quadric, that is, the solution set of equation (11.49).

For example, in real three-dimensional space with coordinates x, y, z, the equa-
tion x2 + y2 + z2 + c = 0 has no solution in x, y, z if c > 0, and therefore for any
c > 0, it defines the empty set. Another example is the equation x2 + y2 = 0, which
is satisfied only with x = y = 0 but for all z, that is, this equation defines a line,
namely the z-axis. But the same line (z-axis) is defined, for example, by the equa-
tion ax2 + by2 = 0 with any numbers a and b of the same sign.

Let us prove that if we exclude such “pathological” cases, then every quadric is
defined by an equation that is unique up to a nonzero constant factor. Here it will be
convenient to consider the empty set a special case of an affine subspace.

Theorem 11.29 If a quadric Q does not coincide with a set of points of any affine
subspace and can be given by two different equations F1(x) = 0 and F2(x) = 0,
where the Fi are second-degree polynomials, then F2 = λF1, where λ is some
nonzero real number.

Proof Since by the given condition, the quadric Q is not empty, it must contain
some point A. By Theorem 8.14, there exists another point B ∈ Q such that the line
l passing through A and B does not lie entirely in Q.

Let us select in the affine space V , a frame of reference (O; e1, . . . , en) in which
the point O is equal to A and the vector e1 is equal to

−→
AB . The line passing through

the points A and B consists of points with coordinates (x1,0, . . . ,0) for all possible
real values x1. Let us write down the equation Fi(x) = 0, i = 1,2, defining our
quadric after arranging terms in order of the degree of x1. As a result, we obtain the
equations

Fi(x1, . . . , xn) = aix
2
1 + fi(x2, . . . , xn)x1 + ψi(x2, . . . , xn) = 0, i = 1,2,

where fi(x2, . . . , xn) and ψi(x2, . . . , xn) are inhomogeneous polynomials of first
and second degree in the variables x2, . . . , xn. After defining fi(0, . . . ,0) = fi(O)

and ψi(0, . . . ,0) = ψi(O), we may say that the relationship

aix
2
1 + fi(O)x1 + ψi(O) = 0 (11.51)

holds for x1 = 0 (point A) and for x1 = 1 (point B), but does not hold identically
for all real values x1. From this it follows that ψi(O) = 0 and ai + fi(O) = 0. This
means that ai �= 0, for otherwise, we would obtain that relationship (11.51) was
satisfied for all x1. By multiplying the polynomial Fi by a−1

i , we may assume that
ai = 1.

Let us denote by x the projection of the vector x onto the subspace 〈e2, . . . , en〉
parallel to the subspace 〈e1〉, that is, x = (x2, . . . , xn). Then we may say that the
two equations

x2
1 + f1(x)x1 + ψ1(x) = 0 and x2

1 + f2(x)x1 + ψ2(x) = 0, (11.52)
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where fi(x) are first-degree polynomials and ψi(x) are second-degree polynomi-
als of the vector x, have identical solutions. Furthermore, we know that they both
have two solutions, x1 = 0 and x1 = 1, for x = 0, that is, the discriminant of each
quadratic trinomial

pi(x1) = x2
1 + fi(x)x1 + ψi(x), i = 1,2,

with coefficients depending on the vector x, for x = 0, is positive.
The coefficients of the trinomial pi(x1) can be viewed as polynomials in the

variables x2, . . . , xn, that is, the coordinates of the vector x. Consequently, the dis-
criminant of the trinomial pi(x1) is also a polynomial in the variables x2, . . . , xn,
and therefore, it depends on them continuously. From the definition of continuity,
it follows that there exists a number ε > 0 such that the discriminant of each tri-
nomial pi(x1) is positive for all x such that |x2| < ε, . . . , |xn| < ε. This condition
can be written compactly in the form of the single inequality |x| < ε, assuming that
the space of vectors x is somehow converted into a Euclidean space in which is
defined the length of a vector |x|. For example, it can be defined by the relationship
|x|2 = x2

2 + · · · + x2
n .

Thus the quadratic trinomials pi(x1) with leading coefficient 1 and coefficients
fi(x) and ψi(x), depending continuously on x, each have two roots for all |x| < ε.
But as is known from elementary algebra, such trinomials coincide. Therefore,
f1(x) = f2(x) and ψ1(x) = ψ2(x) for all |x| < ε. Hence on the basis of the fol-
lowing lemma, we obtain that these equalities are satisfied not only for |x| < ε, but
in general for all vectors x. �

Lemma 11.30 If for some number ε > 0, the polynomials f (x) and g(x) coincide
for all x such that |x| < ε, then they coincide identically for all x.

Proof Let us represent each of the polynomials f (x) and g(x) as a sum of homo-
geneous terms:

f (x) =
N∑

k=0

fk(x), g(x) =
N∑

k=0

gk(x). (11.53)

Let us set x = αy, where |y| < ε and the number α is in [0,1]. Then the condition
|x| < ε is clearly satisfied, and this means that f (x) = g(x). Setting x = αy in
equality (11.53), we obtain

N∑

k=0

αkfk(y) =
N∑

k=0

αkgk(y). (11.54)

On the one hand, equality (11.54) holds for all α ∈ [0,1], of which there are in-
finitely many. On the other hand, (11.54) represents an equality between two poly-
nomials in the variable α. As is well known, polynomials of a single variable taking
the same values for an infinite number of values of the variable coincide identi-
cally, that is, they have the same coefficients. Therefore, we obtain the equalities
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fk(y) = gk(y) for all k = 0, . . . ,N and all y for which |y| < ε. But since the poly-
nomials fk and gk are homogeneous, it follows that these equalities hold in general
for all y.

Indeed, every vector y can be represented in the form y = αz with some scalar
α and vector z for which |z| < ε. For example, it suffices to set α = (2/ε)|y|.
Consequently, we obtain fk(z) = gk(z). But if we multiply both sides of this
equality by αk and invoke the homogeneity of fk and gk , we obtain the equality
fk(αz) = gk(αz), that is, fk(y) = gk(y), which is what was to be proved. �

Let us note that we might have posed this same question about the uniqueness
of the correspondence between quadrics and their defining equations with regard
to quadrics in projective space. But in projective space, the polynomial defining a
quadric is homogeneous, and this question can be resolved even more easily. So that
we wouldn’t have to repeat ourselves, we have considered the question in the more
complex situation.

Let us now investigate a question that is considered already in a course in analytic
geometry for spaces of dimension 2 and 3: into what simplest form can equation
(11.49) be brought by a suitable choice of frame of reference in an affine space
of arbitrary dimension n? This question is equivalent to the following: under what
conditions can two quadrics be transformed into each other by a nonsingular affine
transformation?

We shall consider quadrics in an affine space (V ,L) of dimension n, assuming
that for smaller values of n, this problem has already been solved. In this regard, we
shall not consider quadrics that are cylinders, that is, having the form

Q = h−1(Q′),

where (h,A) is an affine transformation of the space (V ,L) into the affine space
(V ′,L′) of dimension m < n, and Q′ is some subset of V ′. Let us ascertain that in
this case, Q′ is a quadric in V ′.

Let the quadric Q in a coordinate system associated with some frame of reference
of the affine space V be defined by the second-degree equation F(x1, . . . , xn) = 0.
Let us choose in the m-dimensional affine space V ′ some frame of reference
(O ′; e′

1, . . . , e
′
m). Then e′

1, . . . , e
′
m is a basis in the vector space L′. In the defini-

tion of a cylinder, one has the condition A(L) = L′. Let us denote by e1, . . . , em

vectors ei ∈ L such that A(ei ) = e′
i , i = 1, . . . ,m, and let us consider the subspace

M = 〈e1, . . . , em〉 that they span. By Corollary 3.31, there exists a subspace N ⊂ L
such that L = M ⊕ N. Let O ∈ V be an arbitrary point such that h(O) = O ′. Then
in the coordinate system associated with the frame of reference (O ′; e′

1, . . . , e
′
m),

the projection of the space L onto M parallel to the subspace N and the associated
projection h of the affine space V onto V ′ are defined by the condition

h(x1, . . . , xn) = (
x′

1, . . . , x
′
m

)
,

where x′
i are the coordinates of (O ′; e′

1, . . . , e
′
m), the associated frame of refer-

ence. Then the fact that Q is a quadric means that its second-degree equation
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F(x1, . . . , xn) = 0 is satisfied irrespective of the values that we have substituted
for the variables xm+1, . . . , xn if the point with coordinates (x1, . . . , xm) belongs
to the set Q′. For example, we may set xm+1 = 0, . . . , xn = 0. Then the equation
F(x′

1, . . . , x
′
n,0, . . . ,0) = 0 will be precisely the equation of the quadric Q′.

The same reasoning shows that if a polynomial F depends on fewer than n un-
knowns, then the quadric Q defined by the equation F(x) = 0 is a cylinder. There-
fore, in the sequel we shall consider only quadrics that are not cylinders. Our goal
will be the classification of these quadrics using nonsingular affine transformations.
Two quadrics that can be mapped one into the other by such a transformation are
said to be affinely equivalent.

First of all, let us consider the effect of a translation on the equation of a quadric.
Let the equation of the quadric Q in coordinates associated with some frame of
reference (O; e1, . . . , en) have the form

F(x) = ψ(x) + f (x) + c = 0, (11.55)

where ψ(x) is a quadratic form, f (x) is a linear form, and c is a number. If Ta is a
translation by the vector a ∈ L, then the quadric Ta(Q) is given by the equation

ψ(x + a) + f (x + a) + c = 0.

Let us consider how the equation of a quadric is transformed under these conditions.
Let ϕ(x,y) be the symmetric bilinear form associated with the quadratic form ψ(x),
that is, ψ(x) = ϕ(x,x). Then

ψ(x + a) = ϕ(x + a,x + a) = ϕ(x,x) + 2ϕ(x,a) + ϕ(a,a)

= ψ(x) + 2ϕ(x,a) + ψ(a).

As a result, we obtain that after a translation Ta :

(a) The quadratic part ψ(x) does not change.
(b) The linear part f (x) is substituted by f (x) + 2ϕ(x,a).
(c) The constant term c is substituted by c + f (a) + ψ(a).

Using statement (b), then with the aid of a translation Ta , it is sometimes possible
to eliminate the first-degree terms in the equation of a quadric. More precisely, this
is possible if there exists a vector a ∈ L such that

f (x) = −2ϕ(x,a) (11.56)

for an arbitrary x ∈ L. By Theorem 6.3, any bilinear form ϕ(x,y) can be repre-
sented in the form ϕ(x,y) = (x,A(y)) via some linear transformation A : L → L∗.
Then condition (11.56) can be written in the form (x,f ) = −2(x,A(a)) for all
x ∈ L, that is, in the form f = −2A(a) = A(−2a). This means that the condition
(11.56) amounts to the linear function f ∈ L∗ being contained in the image of the
transformation A.



11.5 Quadrics in a Real Affine Space 419

First of all, let us investigate those quadrics for which condition (11.56) is satis-
fied. In this case, there exists a frame of reference of the affine space in which the
quadric can be represented by the equation

F(x) = ψ(x) + c = 0. (11.57)

This equation exhibits a remarkable symmetry: it is invariant under a change of the
vector x into −x. Let us investigate this further.

Definition 11.31 Let V be an affine space and A a point of V . A central symmetry
with respect to a point A is a mapping V → V that maps each point B ∈ V to the

point B ′ ∈ V such that
−−→
AB ′ = −−→

AB .

It is obvious that by this condition, the point B ′, and therefore the mapping,
is uniquely determined. A trivial verification shows that this mapping is an affine
transformation and its linear part is equal to −E .

Definition 11.32 A set Q ⊂ V is said to be centrally symmetric with respect to a
point A ∈ V if it is invariant under a central symmetry with respect to the point A,
which in this case is called the center of the set Q.

It follows from the definition that a point A on a quadric is a center if and only
if the quadric is transformed into itself by the linear transformation −E , that is,
x 	→ −x, where x = −→

AX for every point X of this quadric.

Theorem 11.33 If a quadric does not coincide with an affine space, is not a cylin-
der, and has a center, then the center is unique.

Proof Let A and B be two distinct centers of the quadric Q. This means, by defini-
tion, that for every point X ∈ Q, there exists a point X′ ∈ Q such that

−→
AX = −−−→

AX′, (11.58)

and for every point Y ∈ Q, there exists a point Y ′ ∈ Q such that

−→
BY = −−−→

BY ′. (11.59)

Let us apply relationship (11.58) to an arbitrary point X ∈ Q, and relationship
(11.59) to the associated point X′ = Y . Let us denote the point Y ′ obtained as a
result of these actions by X′′. It is obvious that

−−→
XX′′ = −→

XA + −→
AB + −−→

BX′′, (11.60)

and from relationships (11.58) and (11.59), it follows that
−→
XA = −−→

AX′ and
−−→
BX′′ =−−→

X′B . Substituting the last expressions into (11.60), we obtain that
−−→
XX′′ = 2

−→
AB . In

other words, this means that if the vector e is equal to 2
−→
AB , then the quadric Q is
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Fig. 11.5 Similar triangles

invariant under the translation Te; see Fig. 11.5. This assertion also follows from an
examination of the similar triangles ABX′ and XX′′X′ in Fig. 11.5.

Since A �= B , the vector e is nonnull. Let us choose an arbitrary frame of ref-
erence (O; e1, . . . , en), where e1 = e. Let us set L′ = 〈e2, . . . , en〉 and consider
the affine space V ′ = (L′,L′) and mapping h : V → V ′, defined by the follow-
ing conditions: h(O) = O , h(A) = O if

−→
OA = λe, and h(Ai) = ei if

−−→
OAi = ei

(i = 2, . . . , n). It is obvious that the mapping h is a projection and that the set Q is a
cylinder. Since by our assumption, the quadric Q is not a cylinder, we have obtained
a contradiction. �

Thus we obtain that by choosing a system of coordinates with the origin at the
center of the quadric, one can define an arbitrary quadric satisfying the conditions
of Theorem 11.33 by the equation

ψ(x1, . . . , xn) = c, (11.61)

where ψ is a nonsingular quadratic form (in the case of a singular form ψ , the
quadric would be a cylinder).

If c �= 0, then we may assume that c = 1 by multiplying both sides of equality
(11.61) by c−1. Finally, we may execute a linear transformation that preserves the
origin and brings the quadratic form ψ into canonical form (6.22). As a result, the
equation of the quadric takes the form

x2
1 + · · · + x2

r − x2
r+1 − · · · − x2

n = c, (11.62)

where c = 0 or 1, and the number r is the index of inertia of the quadratic form ψ .
If c = 0 and r = 0 or r = n, then it follows that x1 = 0, . . . , xn = 0, that is,

the quadric consists of a single point, the origin, which contradicts the assumption
made above that it does not coincide with some affine subspace. Likewise, for c =
1 and r = 0, we obtain that −x2

1 − · · · − x2
n = 1, and this is impossible for real

x1, . . . , xn, so that the quadric consists of the empty set, which again contradicts our
assumption.

We have thus proved the following assertion.

Theorem 11.34 If a quadric does not coincide with an affine subspace, is not a
cylinder, and has a center, then in some coordinate system, it is defined by equation
(11.62). Moreover, 0 < r ≤ n, and if c = 0, then r < n.

In the case c = 0, it is possible, by multiplying the equation of a quadric by −1,
to obtain that in (11.62), the number of positive terms is not less than the number of
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negative terms, that is, r ≥ n − r , or equivalently, r ≥ n/2. In the sequel, we shall
always assume that in the case c = 0, this condition is satisfied.

Theorem 11.34 asserts that every quadric that is not an affine subspace or a cylin-
der and that has a center can be transformed with the help of a suitable nonsingular
affine transformation into a quadric given by equation (11.62). For c = 0 (and only
in this case), the quadric (11.62) is a cone (with its vertex at the origin), that is, for
every one of its points x, it also contains the entire line 〈x〉. It is possible to indicate
another characteristic property of a quadric given by equation (11.62) for c = 0: it
is not smooth, while in the case c = 1, the quadric is smooth. This follows at once
from the definition of singular points (the equalities F = 0 and ∂F

∂xi
= 0).

Let us now consider quadrics without a center. Such a quadric Q is defined by
the equation

F(x) = ψ(x) + f (x) + c = 0, (11.63)

where ψ(x) is a quadratic form, f (x) a linear form, c a scalar. As earlier, we shall
write a symmetric bilinear form ϕ(x,y) corresponding to a quadratic form ψ(x)

as ϕ(x,y) = (x,A(y)), where A : L → L∗ is a linear transformation. We have seen
that for a quadric Q not to have a center is equivalent to the condition f /∈ A(L).

Let us choose an arbitrary basis e1, . . . , en−1 in the hyperplane L′ = 〈f 〉a defined
in the space L by the linear homogeneous equation f (x) = 0, and let us extend this
basis to a basis of the entire space L by means of a vector en ⊥ L′ such that f (en) = 1
(here, of course, orthogonality is understood in the sense of being with respect to the
bilinear form ϕ(x,y)). In the obtained frame of reference (O; e1, . . . , en), equation
(11.63) can be written in the form

F(x) = ψ ′(x1, . . . , xn−1) + αx2
n + xn + c = 0, (11.64)

where ψ ′ is the restriction of the quadratic form ψ to the hyperplane L′.
Let us now choose in L′ a new basis e′

1, . . . , e
′
n−1, in which the quadratic form

ψ ′ has the canonical form

ψ ′(x1, . . . , xn−1) = x2
1 + · · · + x2

r − x2
r+1 − · · · − x2

n−1. (11.65)

It is obvious that in this case, the coordinate origin O and the vector en remain
unchanged. If as a result, the quadratic form ψ ′ turned out to depend on fewer than
n − 1 variables, then the polynomial F in equation (11.63) would depend on fewer
than n variables, and that, as we have seen, means that the quadric Q is a cylinder.

Let us show that in formula (11.64), the number α is equal to 0. If α �= 0, then by
virtue of the obvious relationship αx2

n +xn +c = α(xn +β)2 +c′, where β = 1/(2α)

and c′ = c − β/2, we obtain that via the translation Ta by the vector a = −βen,
equation (11.64) is transformed into

F(x) = ψ ′(x1, . . . , xn−1) + αx2
n + c′ = 0,

where ψ ′ has the form (11.65). But such an equation, as is easily seen, gives a
quadric with a center.

Thus assuming that the quadric Q is not a cylinder and does not have a center,
we obtain that its equation has the form
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x2
1 + · · · + x2

r − x2
r+1 − · · · − x2

n−1 + xn + c = 0.

Now let us perform a translation Ta by the vector a = −cen. As a result, the co-
ordinates x1, . . . , xn−1 are unchanged, while xn is changed to xn − c. In the new
coordinates, the equation of the quadric assumes the form

x2
1 + · · · + x2

r − x2
r+1 − · · · − x2

n−1 + xn = 0. (11.66)

By multiplying the equation of the quadric by −1 and changing the coordinate xn

to −xn, we can obtain that the number of positive squares in equation (11.66) is
not less than the number of negative squares, that is, r ≥ n − r − 1, or equivalently,
r ≥ (n − 1)/2.

We have thereby obtained the following result.

Theorem 11.35 Every quadric that is not an affine subspace or a cylinder and does
not have a center can be given in some coordinate system by equation (11.66), where
r is a number satisfying the condition (n − 1)/2 ≤ r ≤ n − 1.

Thus by combining Theorems 11.34 and 11.35, we obtain the following result:
Every quadric that is not an affine subspace or a cylinder can be given in some
coordinate system by equation (11.62) if it doesn’t have a center and by equation
(11.66) if it does have a center. We call these equations canonical.

Theorems 11.34 and 11.35 do more than give the simplest form into which the
equation of a quadric can be transformed through a suitable choice of coordinate
system. Beyond that, it follows from these theorems that quadrics having a canonical
form (11.62) or (11.66) can be affinely equivalent (that is, transformable into each
other by a nonsingular affine transformation) only if their equations coincide.

On the way to proving this assertion, we shall first establish that quadrics defined
by equation (11.66) never have a center. Indeed, writing the equation of a quadric
in the form (11.50), we may say that it has a center only if f ∈ A(L). But a simple
verification shows that this condition is not satisfied for quadrics defined by equation
(11.66). Indeed, if in some basis e1, . . . , en of the space L, the quadratic form ψ(x)

is given as

x2
1 + · · · + x2

r − x2
r+1 − · · · − x2

n−1,

then on choosing the dual basis f 1, . . . ,f n, of the dual space L∗, we obtain
that the linear transformation A : L → L∗ associated with ψ by the relationship
ϕ(x,y) = (x,A(y)), in which ϕ(x,y) is a symmetric bilinear form determined by
the quadratic form ψ , has the form A(ei ) = f i for i = 1, . . . , r , A(ei ) = −f i for
i = r +1, . . . , n−1, and A(en) = 0, and the linear form xn coincides with f n. Thus
A(L) = 〈f 1, . . . ,f n−1〉 and f = f n /∈ A(L).

We may now formulate the fundamental theorem on the classification of quadrics
with respect to nonsingular affine transformations.

Theorem 11.36 Any quadric that is not an affine subspace or cylinder can be rep-
resented in some coordinate system by the canonical equation (11.62) or (11.66),
where the number r satisfies the conditions indicated in Theorems 11.34 and 11.35
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respectively. And conversely, every pair of quadrics having the canonical equation
(11.62) or (11.66) in some coordinate systems can be transformed into each other
by a nonsingular affine transformation only if their canonical equations coincide.

Proof Only the second part of the theorem remains to be proved. We have already
seen that quadrics given by equations (11.62) and (11.66) cannot be mapped into
each other by nonsingular affine transformations, since in the first case, the quadric
has a center, while in the second case, it does not. Therefore, we may consider each
case separately.

Let us begin with the first case. Let there be given two quadrics Q1 and Q2,
given by different canonical equations of the form (11.62) (we note that the canon-
ical equations in this case differ by the value c = 0 or 1 and index r), and where
Q2 = g(Q1), with (g,A) a nonsingular affine transformation. By assumption, each
quadric has a unique center, which in its chosen coordinate system coincides with
the point O = (0, . . . ,0).

Let us write down the transformation g in the form (8.19): g = Tag0, where
g0(O) = O . By assumption, Q2 = g(Q1), and this means that g(O) = O , that is,
the vector a is equal to 0. In the equations of the quadrics, which we may write in
the form Fi(x) = ψi(x) + ci = 0, i = 1 and 2, it is clear that Fi(0) = ci , and this
means that the constants ci coincide (in the sequel, we shall denote them by c). Thus
the equations of the quadrics Q1 and Q2 differ only in the quadratic part ψi(x).

By Theorem 11.29, the transformation g takes the polynomial F1(x) − c into
λ(F2(x) − c), where λ is some nonzero real number. Consequently, the quadratic
form ψ1(x) is transformed into λψ2(x) by the linear transformation A. If we de-
note the indices of inertia of the quadratic forms ψi(x) by ri , then from the law of
inertia, it follows that either r2 = r1 (for λ > 0) or r2 = n − r1 (for λ < 0). In the
case c = 0, we may assume that ri ≥ n/2, and the equality r2 = n − r1 is possible
only for r2 = r1. In the case c = 1, this same result follows from the fact that the
transformation A takes the polynomial ψ1(x) − 1 into λ(ψ1(x) − 1). Comparing
the constant terms, we obtain λ = 1.

In the case that the quadric has no center, we may repeat the same arguments. We
again obtain that the quadratic form ψ1(x) is carried into λψ2(x) by a nonsingular
linear transformation. Since each form ψi(x) contains by assumption the term x2

1 ,
it follows that λ = 1, and from the law of inertia, it follows that r2 = r1 (for λ > 0),
or r2 = n − 1 − r1 (for λ < 0). Since by assumption, ri ≥ (n − 1)/2, the equality
r2 = n − 1 − r1 is possible only for r2 = r1. �

Thus we see that in a real affine space of dimension n, there exists only a finite
number of affinely inequivalent quadrics that are not affine subspaces or cylinders.
Each of them is equivalent to a quadric that can be represented in the form of equa-
tion (11.62) or equation (11.66).

It is possible to compute the number of types of affinely inequivalent quadrics.
Equation (11.62) for c = 1 gives n possibilities. The remaining cases depend on the
parity of the number n. If n = 2m, then equation (11.62) for c = 0 gives m different
types, and the same number is given by equation (11.66). Altogether, we obtain
n + 2m = 2n different types in the case of even n. If n = 2m + 1, then equation
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(11.62) for c = 0 gives m different types, and the same number is given by equation
(11.66). Altogether in this case we obtain n+2m−1 = 2n−2 different types. Thus
in a real affine space of dimension n, the number of types of affinely inequivalent
quadrics that are not affine subspaces or cylinders is equal to 2n if n is even, and to
2n − 2 if n is odd.

Remark 11.37 It is easy to see that the content of this section is reduced to the clas-
sification of second-degree polynomials F(x1, . . . , xn) up to a nonsingular affine
transformation of the variables and multiplication by a nonzero scalar coefficient.
The connection with the geometric object—the quadric—is established by Theo-
rem 11.29. That we excluded from consideration the case of affine subspaces is
related to the fact that we wished to emphasize the differences among the geometric
objects that arise.

The assumption that the quadric was not a cylinder was made exclusively to
emphasize the inductive nature of the classification. The limitations that we intro-
duced could have been done without. By repeating precisely the same arguments,
we obtain that an arbitrary set in n-dimensional affine space given by equating a
second-degree polynomial in n variables—the coordinates of a point—to zero is
affinely equivalent to one of the sets defined by the following equations:

x2
1 + · · · + x2

r − x2
r+1 − · · · − x2

m = 1, 0 ≤ r ≤ m ≤ n, (11.67)

x2
1 + · · · + x2

r − x2
r+1 − · · · − x2

m = 0, r ≥ m

2
,m ≤ n, (11.68)

x2
1 + · · · + x2

r − x2
r+1 − · · · − x2

m−1 + xm = 0, r ≥ m − 1

2
,m < n. (11.69)

After this, it is easy to see that in the case of (11.67) for r = 0, the empty set is ob-
tained, while in the case (11.68) for r = 0 or r = m, the result is an affine subspace.
In the remaining cases, it is easy to find a line that intersects the given set in two
distinct points and is not entirely contained in it. By virtue of Theorem 8.14, this
means that such a set is not an affine subspace.

In conclusion, let us say a bit about the topological properties of affine quadrics.
If in equation (11.62), we have c = 1 and the index of inertia r is equal to 1, then

this equation can be rewritten in the form x2
1 = 1 + x2

2 + · · · + x2
n , from which it

follows that x2
1 ≥ 1, that is, x1 ≥ 1 or x1 ≤ −1. Clearly, it is impossible for a point

of the quadric whose coordinate x1 is greater than 1 to be continuously deformed
into a point whose coordinate x1 is less than or equal to −1 while remaining on the
quadric (see the definition on p. xx). Therefore, a quadric in this case consists of two
components, that is, it consists of two subsets such that no two points lying one in
each of these subsets can be continuously deformed into each other while remaining
on the quadric. It can be shown that each of these components is path connected (see
the definition on p. xx), just as is every quadric given by equation (11.66).

The simplest example of a quadric consisting of two path-connected components
is a hyperbola in the plane; see Fig. 11.6.
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Fig. 11.6 A hyperbola

The topological property that we described above has a generalization to quadrics
defined by equation (11.62) for c = 1 with smaller values of the index r , but still
assuming that r ≥ 1. Here we shall say a few words about them, without giving a
rigorous formulation and also omitting proofs.

For r = 1 we can find two points, (1,0, . . . ,0) and (−1,0, . . . ,0), that cannot be
transformed into each other by a continuous motion along the quadric (they could
be given as the sphere x2

1 = 1 in one-dimensional space). For an arbitrary value of
r , the quadric contains the sphere

x2
1 + · · · + x2

r = 1, xr+1 = 0, . . . , xn = 0.

One can prove that this sphere cannot be contracted to a single point by continu-
ous motion along the surface of the quadric. But for every m < r and continuous
mapping f of the sphere Sm−1 : y2

1 + · · · + y2
m = 1 into the quadric, the image of

the sphere f (Sm−1) can be contracted to a point by continuous motion along the
quadric (it should be clear to the reader what is meant by continuous motion of a set
along a quadric, something that we have already encountered in the case r = 1).

11.6 Quadrics in an Affine Euclidean Space

It remains to us to consider nonsingular quadrics in an affine Euclidean space V .
We shall, as before, exclude the cases in which the quadrics are affine subspaces
or cylinders. The classification of such quadrics up to metric equivalence uses pre-
cisely the same arguments as those used in Sect. 11.5. To some extent, the results
of that section can be applied in our case, since motions are affine transformations.
Therefore, we shall only cursorily recall the line of reasoning.

Generalizing the statement of the problem, which goes back to analytic geometry
(where cases dimV = 2 and 3 are considered), we shall say that two quadrics are
metrically equivalent if they can be transformed into each other by some motion
of the space V . This definition is a special case of metric equivalence of arbitrary
metric spaces (see p. xxi), to which belong, as is easily verified, all quadrics in an
affine Euclidean space.

First of all, let us consider quadrics given by equations whose linear part can be
annihilated by a translation. These are quadrics that have a center (which, as we
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have seen, is unique). Choosing a coordinate origin (that is, a point O of the frame
of reference (O; e1, . . . , en)) in the center of the quadric, we bring its equation into
the form

ψ(x1, . . . , xn) = c,

where ψ(x1, . . . , xn) is a nonsingular quadratic form, c a number. If c �= 0, then by
multiplying the equation by c−1, we may assume that c = 1. For c = 0, the quadric
is a cone.

Using an orthogonal transformation, the quadratic form ψ can be brought into
canonical form

ψ(x1, . . . , xn) = λ1x
2
1 + λ2x

2
2 + · · · + λnx

2
n,

where all the numbers λ1, . . . , λn are nonzero, since by assumption, our quadric
is nonsingular and is neither an affine subspace nor a cylinder, which means that
the quadratic form ψ is nonsingular. Let us separate the positive numbers from the
negative: suppose λ1, . . . , λk > 0 and λk+1, . . . , λn < 0. By tradition going back
to analytic geometry, we shall set λi = a−2

i for i = 1, . . . , k and λj = −a−2
j for

j = k + 1, . . . , n, where all numbers a1, . . . , an are positive.
Thus every quadric having a center is metrically equivalent to a quadric with

equation

(
x1

a1

)2

+ · · · +
(

xk

ak

)2

−
(

xk+1

ak+1

)2

− · · · −
(

xn

an

)2

= c, (11.70)

where c = 0 or 1. For c = 0, multiplying equation (11.70) by −1, we may, as in the
affine case, assume that k ≥ n/2.

Now let us consider the case that the quadric

ψ(x1, . . . , xn) + f (x1, . . . , xn) + c = 0

does not have a center, that is, f /∈ A(L), where A : L → L∗ is the linear transforma-
tion associated with the quadratic form ψ by the relationship ϕ(x,y) = (x,A(y)),
in which ϕ(x,y) is the symmetric bilinear form that gives the quadratic form ψ . In
this case, it is easy to verify that as in Sect. 11.5, we can find an orthonormal basis
e1, . . . , en of the space L such that

f (e1) = 0, . . . , f (en−1) = 0, f (en) = 1,

and in the coordinate system determined by the frame of reference (O; e1, . . . , en),
the quadric is given by the equation

λ1x
2
1 + λ2x

2
2 + · · · + λn−1x

2
n−1 + xn + c = 0.

Through a translation by the vector −cen, this equation can be brought into the form

λ1x
2
1 + λ2x

2
2 + · · · + λn−1x

2
n−1 + xn = 0,
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in which all the coefficients λi are nonzero, since the quadric is nonsingular and is
not a cylinder.

If λ1, . . . , λk > 0 and λk+1, . . . , λn−1 < 0, then by multiplying the equation of
the quadric and the coordinate xn by −1 if necessary, we may assume that k ≥
(n − 1)/2. Setting, as previously, λi = a−2

i for i = 1, . . . , k and λj = −a−2
j for

j = k + 1, k + 2, . . . , n − 1, where a1, . . . , an > 0, we bring the previous equation
into the form

(
x1

a1

)2

+ · · · +
(

xk

ak

)2

−
(

xk+1

ak+1

)2

− · · · −
(

xn−1

an−1

)2

+ xn = 0. (11.71)

Thus every quadric in an affine Euclidean space is metrically equivalent to a
quadric given by equation (11.70) (type I) or (11.71) (type II). Let us verify (under
the given conditions and restriction on r) that two quadrics of the form (11.70) or
of the form (11.71) are metrically equivalent only if all the numbers a1, . . . , an (for
type I) and a1, . . . , an−1 (for type II) in their equations are the same. Here we may
consider separately quadrics of type I and of type II, since they differ even from the
viewpoint of affine equivalence.

By Theorem 8.39, every motion of an affine Euclidean space is the composi-
tion of a translation and an orthogonal transformation. As we saw in Sect. 11.5, a
translation does not alter the quadratic part of the equation of a quadric. By Theo-
rem 11.29, two quadrics are affinely equivalent only if the polynomials appearing in
their equations differ by a constant factor. But for quadrics of type I for c = 1, this
factor must be equal to 1. In the case of a quadric of type I for c = 0, multiplication
by μ > 0 means that all the numbers ai are multiplied by μ−1/2. For a quadric of
type II, this factor must also be equal to 1 in order to preserve the coefficient 1 in
the linear term xn.

Thus we see that if we exclude quadrics of type I with constant term c = 0
(a cone), then the quadratic parts of the equations must be quadratic forms equiva-
lent with respect to orthogonal transformations. But the numbers λi are defined as
the eigenvalues of the associated linearly symmetric transformation, and therefore,
this also determines the numbers ai . In the case of a cone (quadric of type I for
c = 0), all the numbers λi can be multiplied by a common factor that is a positive
number (because of the assumptions made about r). This means that the numbers ai

can be multiplied by an arbitrary positive common factor.
Let us note that although our line of reasoning was precisely the same as in the

case of affine equivalence, the result that we obtained was different. We obtained
relative to affine equivalence only a finite number of different types of inequivalent
quadrics, while with respect to metric equivalence, the number is infinite: they are
determined not only by a finite number of values of the index r , but also by arbi-
trary numbers ai (which in the case of a cone are defined up to multiplication by a
common positive factor). This fact is presented in a course in analytic geometry; for
example, an ellipse with equation

(
x

a

)2

+
(

y

b

)2

= 1
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is defined by its semiaxes a and b, and if for two ellipses these are different, then
the ellipses cannot be transformed into each other by a motion of the plane.

For arbitrary n, quadrics having a canonical equation (11.70) with k = n and
c = 1 are called ellipsoids. The equation of an ellipsoid can be rewritten in the form

n∑

k=1

(
xi

ai

)2

= 1, (11.72)

from which it follows that |xi/ai | ≤ 1 and hence |xi | ≤ ai . If the largest of these
numbers a1, . . . , an is denoted by a, then we obtain that |xi | ≤ a. This property is
expressed by saying that the ellipsoid is a bounded set. The interested reader can
easily prove that among all quadrics, only ellipsoids have this property.

If we renumber the coordinates in such a way that in the equation of the ellipsoid
(11.72), the coefficients are a1 ≥ a2 ≥ · · · ≥ an, then we obtain

(
xi

a1

)2

≤
(

xi

ai

)2

≤
(

xi

an

)2

,

whence for every point x = (x1, . . . , xn) lying on the ellipsoid, we have the inequal-
ity an ≤ |x| ≤ a1. This means that the distance from the center O of the ellipsoid
to the point x is not greater than to the point A = (a1,0, . . . ,0) and not less than to
the point B = (0, . . . ,0, an). These two points, or more precisely, the segments OA

and OB , are called the semimajor and semiminor axes of the ellipsoid.

11.7 Quadrics in the Real Plane*

In this section, we shall not be proving any new facts. Rather, our goal is to estab-
lish a connection between results obtained earlier with facts familiar from analytic
geometry, in particular, the interpretation of quadrics in the real plane as conic sec-
tions, which was known already to the ancient Greeks.

Let us begin by considering the simplest example, in which it is possible to see
the difference between the affine and projective classifications of quadrics, that is,
quadrics in the real affine and real projective planes. But for this, we must first refine
(or recall) the statement of the problem.

By the definition from Sect. 9.1, we may represent a projective space of arbitrary
dimension n in the form P(L), where L is a vector space of dimension n + 1. An
affine space of the same dimension n can be considered the affine part of P(L),
determined by the condition ϕ �= 0, where ϕ is some nonnull linear function on L. It
can also be identified with the set Wϕ , defined by the condition ϕ(x) = 1. This set is
an affine subspace of L (we may view L as its own space of vectors). In the sequel,
we shall make use of precisely this construction of an affine space.

A quadric Q in a projective space P(L) is given by an equation F(x) = 0, where
F is a homogeneous second-degree polynomial. In the space L, the collection of all
vectors for which F(x) = 0 forms a cone K . Let us recall that a cone is a set K
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such that for every vector x ∈ K , the entire line 〈x〉 containing x is also contained
in K . A cone associated with a quadric is called a quadratic cone. From this point
of view, the projective classification of quadrics coincides with the classification of
quadratic cones with respect to nonsingular linear transformations.

Thus an affine quadric Q can be represented in the form Wϕ ∩ K using the
previously given notation Wϕ and K . Quadrics Q1 ⊂ Wϕ1 and Q2 ⊂ Wϕ2 are
by definition affinely equivalent if there exists a nonsingular affine transformation
Wϕ1 → Wϕ2 mapping Q1 to Q2. This means that we have a nonsingular linear trans-
formation A of the vector space L for which

A(Wϕ1) = Wϕ2 and A(Wϕ1 ∩ K1) = Wϕ2 ∩ K2,

where K1 and K2 are quadratic cones associated with the quadrics Q1 and Q2.
First of all, let us examine how the mapping A acts on the set Wϕ . To this end,

let us recall that in the space L∗ of linear functions on L there are defined dual
transformations A∗ for which

A∗(ϕ)(x) = ϕ
(
A(x)

)

for all vectors x ∈ L and ϕ ∈ L∗. In other words, this means that if A∗(ϕ) = ψ ,
then the linear function ψ(x) is equal to ϕ(A(x)). Since the transformation A is
nonsingular, the dual transformation A∗ is also nonsingular, and therefore, there
exists an inverse transformation (A∗)−1. By definition, (A∗)−1(ϕ)(A(x)) = 1 if
ϕ(x) = 1, that is, A takes Wϕ into the set W(A∗)−1(ϕ).

Since in previous sections, we considered only nonsingular projective quadrics, it
is natural to set corresponding restrictions in the affine case as well. To this end, we
shall use, as earlier, the representation of affine quadrics in the form Q = Wϕ ∩ K .
A quadratic cone K determines some projection to the quadric Q. It is easy to ex-
press this correspondence in coordinates. If we choose in L a system of coordinates
(x0, x1, . . . , xn), then in Wx0 are defined inhomogeneous coordinates y1, . . . , yn by
the formula yi = xi/x0. If the quadric Q is given by the second-degree equation

f (y1, . . . , yn) = 0,

then the quadric Q (and cone K) is given by the equation

F(x0, x1, . . . , xn) = 0, where F = x2
0f

(
x1

x0
, . . . ,

xn

x0

)
.

Thus the projective quadric Q is uniquely defined by the affine quadric Q.

Definition 11.38 An affine quadric Q is said to be nonsingular if the associated
projective quadric Q is nonsingular.

In a space of arbitrary dimension n, all quadrics with canonical equations
(11.67)–(11.69) for m < n are singular. Furthermore, a quadric of type (11.68) is
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singular as well for m = n. Both these assertions can be verified directly from the
definitions; we have only to designate the coordinates x1, . . . , xn by y1, . . . , yn, in-
troduce homogeneous coordinates x0 : x1 : · · · : xn, setting yi = xi/x0, and multiply
all the equations by x2

0 . It is very easy to write down the matrix of a quadratic form
F(x0, x1, . . . , xn).

In particular, for n = 2, we obtain three equations:

y2
1 + y2

2 = 1, y2
1 − y2

2 = 1, y2
1 + y2 = 0. (11.73)

From the results of Sect. 11.5, it follows that for n = 2, every nonsingular affine
quadric is affinely equivalent to a quadric of one (and only one) of these three types.
The corresponding quadrics are called ellipses, hyperbolas, and parabolas.

On the other hand, in Sect. 11.4, we saw that all nonsingular projective quadrics
are projectively equivalent. This result can serve as a graphic representation of affine
quadrics. As we have seen, every affine quadric can be represented in the form
Q = Wϕ ∩K , where K is some quadratic cone. It is affinely equivalent to the quadric

A(Wϕ ∩ K) = W(A∗)−1(ϕ) ∩ A(K),

where A is an arbitrary nonsingular linear transformation of the space L.
Here arises the specific nature of the case n = 2 (dim L = 3). By what has been

proved earlier, every cone K associated with a nonsingular quadric can be mapped
to every other such cone by a nonsingular transformation A. In particular, we may
assume that A(K) = K0, where the cone K0 is given in some coordinate system
x0, x1, x2 of the space L by the equation x2

1 + x2
2 = x2

0 . This cone is obtained by
the rotation of one of its generatrices, that is, a line lying entirely on the cone (for
example, the line x1 = x0, x2 = 0) about the axis x0 (that is, the line x1 = x2 = 0). In
the cone K0 that we have chosen, the angle between the generatrix and the axis x0
is equal to π/4. In other words, this means that each pole of the cone K0 is obtained
by a rotation of the sides of an isosceles right triangle around its bisector.

Setting (A∗)−1(ϕ) = ψ , we obtain that an arbitrary nonsingular affine quadric
is affinely equivalent to the quadric Wψ ∩ K0. Here Wψ is an arbitrary plane in the
space L not passing through the vertex of the cone K0, that is, through the point
O = (0,0,0). Thus every nonsingular affine quadric is affinely equivalent to a pla-
nar section of a right circular cone. This explains the terminology conic used for
quadrics in the plane.

It is well known from analytic geometry how the three conics that we have found
(ellipses, hyperbolas, and parabolas) are obtained from a single (from the point of
view of projective classification) curve. If we begin with equations (11.73), then the
difference in the three types is revealed by writing these equations in homogeneous
coordinates. Setting y1 = x1/x0 and y2 = x2/x0, we obtain the equations

x2
1 + x2

2 = x2
0 , x2

1 − x2
2 = x2

0 , x2
1 − x0x2 = 0. (11.74)

The differences among these equations can be found in the different natures of the
sets of intersection with the infinite line l∞ given by the equation x0 = 0. For an
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Fig. 11.7 Intersection of a conic with an infinite line

ellipse, this set is empty; for a hyperbola, it consists of two points, (0 : 1 : 1) and
(0 : 1 : −1), and for a parabola, it consists of the single point (0 : 0 : 1) (substitution
into equation (11.73) shows that the line l∞ is tangent to the parabola at the point of
intersection); see Fig. 11.7.

We saw in Sect. 9.2 that an affine transformation coincides with a projective
transformation that preserves the line l∞. Therefore, the type of set Q ∩ l∞ (empty
set, two points, one point) should be the same for affinely equivalent quadrics Q. In
our case, the actual content of what we proved in Sect. 11.4 is that the type of set
Q ∩ l∞ determines the quadric Q up to affine equivalence.

But if we begin with the representation of a conic as the intersection of the cone
K0 with the plane Wψ , then different types appear due to a different disposition of
the plane Wψ with respect to the cone K0. Let us recall that the vertex O of the cone
K0 partitions it into two poles. If the equation of the cone has the form x2

1 +x2
2 = x2

0 ,
then each pole is determined by the sign of x0.

Let us denote by Lψ the plane parallel to Wψ and passing through the point O .
This plane is given by the equation ψ = 0. If Lψ has no points of intersection with
the cone K0 other than O , then Wψ intersects one of its poles (for example, the one
within which lie the point of intersection Wψ and the axis x0). In this case, the conic
Wψ ∩ K0 lies within one pole and is an ellipse.

For example, in the special case in which the plane Wψ is orthogonal to the axis
x0, we obtain a circle. If we move the plane Wψ (for example, decrease its angle with
the axis x0), then in its intersection with the cone K0, an ellipse is obtained whose
eccentricity increases as the angle is decreased; see Fig. 11.8(a). The limiting posi-
tion is reached when the plane Lψ is tangent to the cone K0 on a generatrix. Then
Wψ again intersects in one pole (the one that contains the intersection with the axis
x0). This intersection is a parabola; see Fig. 11.8(b). And if the plane Lψ intersects
K0 in two different generatrices, then Wψ intersects both of its poles (on the side of
the plane Lψ on which is located the plane Wψ parallel to it). This intersection is a
hyperbola; see Fig. 11.8(c).

The connection between planar quadrics and conic sections is revealed particu-
larly clearly by the metric classification of such quadrics, which forms part of any
sufficiently rigorous course in analytic geometry. Let us recall only the main results.

As was done in Sect. 11.5, we must exclude from consideration those conics that
are cylinders and those that are unions of vector subspaces (that is, in our case, lines
or points). Then the results obtained in Sect. 11.5 give us (in coordinates x, y) the
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Fig. 11.8 Conic sections

following three types of conic:

x2

a2
+ y2

b2
= 1,

x2

a2
− y2

b2
= 1, x2 + a2y = 0, (11.75)

where a > 0 and b > 0. From the point of view of affine classification presented
above, curves of the first type are ellipses, those of the second type are hyperbolas,
and those of the third type are parabolas.

Let us recall that in a course in analytic geometry, these curves are defined as
geometric loci of points of the plane satisfying certain conditions. Namely, an ellipse
is the geometric locus of points the sum of whose distances from two given points
in the plane is constant. A hyperbola is defined analogously with sum replaced by
difference. A parabola is the geometric locus of points equidistant from a given point
and a given line that does not pass through the given point.

There is an elegant and elementary proof of the fact that all ellipses, hyperbolas,
and parabolas are not only affinely, but also metrically, that is, as geometric loci of
points, equivalent to planar sections of a right circular cone. Let us recall that by
right circular cone we mean a cone K in three-dimensional space obtained as the
result of a rotation of a line about some other line, called the axis of the cone. The
lines forming the cone are called its generatrices; they intersect the axis of the cone
in one common point, called its vertex.

In other words, this result means that the section of a right circular cone with a
plane not passing through the vertex of the cone is either an ellipse, a hyperbola, or a
parabola, and every ellipse, hyperbola, and parabola coincides with the intersection
of a right circular cone with a suitable plane.5

5The proof of this fact is due to the Franco-Belgian mathematician Germinal Pierre Dandelin. It
can be found, for example, in A.P. Veselov and E.V. Troitsky, Lectures in Analytic Geometry (in
Russian); B.N. Delone and D.A. Raikov, Analytic Geometry (in Russian); P. Dandelin, Mémoire
sur l’hyperboloïde de révolution, et sur les hexagones de Pascal et de M. Brianchon; D. Hilbert
and S. Cohn-Vossen, Geometry and the Imagination.



Chapter 12
Hyperbolic Geometry

The discovery of hyperbolic (or Lobachevskian) geometry had an enormous impact
on the development of mathematics and on how the relationship between mathemat-
ics and the real world was understood. The discussions that swirled around the new
geometry also seem to have influenced the views of many in the humanities, who, in
this regard, unfortunately were too much taken by a literary image: the contrast be-
tween “down-to-earth” Euclidean geometry and the “otherworldly” non-Euclidean
geometry invented by learned mathematicians. It seemed that the difference between
the two geometries was that in the first geometry, as was clear to everyone, parallel
lines did not intersect, while in the second, what to normal intelligence was difficult
of comprehension, they do intersect. However, of course, this is exactly the opposite
of the truth: in the non-Euclidean geometry of Lobachevsky, given a point external
to a given line, it is possible for infinitely many lines to pass through the point with-
out intersecting the line. It is this that distinguishes Lobachevsky’s geometry from
that of Euclid.

Ivan Karamazov, in Dostoevsky’s novel The Brothers Karamazov, likely sowed
confusion among those in the humanities with the following literary image:

At the same time there were and are even now geometers and philosophers, even some of the
most outstanding among them, who doubt that the whole universe, or, even more broadly,
the whole of being, was created purely in accordance with Euclidean geometry; they even
dare to dream that two parallel lines, which according to Euclid cannot possibly meet on
earth, may perhaps meet somewhere in infinity.

Around the time this novel was being written, Friedrich Engels wrote Anti-
Dühring, where an even more vivid image is used:

But in higher mathematics, another contradiction is achieved, that lines that intersect before
our eyes, nevertheless a mere five or six centimeters from their point of intersection are to
be considered parallel, that is, lines that cannot intersect even when extended to infinity.

In this, the author sees the manifestation of some sort of “dialectic.”
And even up to the present, it is possible to encounter, in print, such literary

images that oppose Euclidean and non-Euclidean geometries by saying that in the
former, parallel lines do not intersect, while in the latter, they “intersect somewhere
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DOI 10.1007/978-3-642-30994-6_12, © Springer-Verlag Berlin Heidelberg 2013

433

http://dx.doi.org/10.1007/978-3-642-30994-6_12


434 12 Hyperbolic Geometry

or other.” Usually, by non-Euclidean geometry is meant the hyperbolic geometry of
Lobachevsky, which is quite understandable by anyone who has passed a college
course in some technical subject, and there are many such people today. To be sure,
nowadays, this is presented in mathematics departments in more advanced courses
in differential geometry. But hyperbolic geometry is so tightly linked to a first course
in linear algebra, that it would be a pity not to say something about it here.

12.1 Hyperbolic Space*

In this chapter we shall be dealing exclusively with real vector spaces.
We shall define hyperbolic space of dimension n, which we shall hereinafter

denote by Ln or simply L if we do not need to indicate the dimension, as a part of
n-dimensional projective space P(L), where L is a real vector space of dimension
n + 1. We shall denote the dimension of the space L by dimL.

Let us equip L with a pseudo-Euclidean product (x,y); see Sect. 7.7. Let us
recall that there, the quadratic form (x2) has index of inertia n, and in some basis
e1, . . . , en+1 (called orthonormal) for the vector

x = α1e1 + · · · + αnen + αn+1en+1, (12.1)

it takes the form
(
x2) = α2

1 + · · · + α2
n − α2

n+1. (12.2)

In the pseudo-Euclidean space L, let us consider the light cone V defined by the
condition (x2) = 0. We say that a vector a lies inside the cone V if (a2) < 0 (recall
that in Chap. 7, we called such vectors timelike). It is obvious that the same then
holds as well for all vectors on the line 〈a〉, since ((αa)2) = α2(a2) < 0, and we
shall consider this space over the field of real numbers. Such lines are also said to
lie inside the light cone V .

Points of the projective space P(L) corresponding to lines of the space L lying in-
side the light cone V are called points of the space L. Consequently, they correspond
to those lines 〈x〉 of the space L that in the form (12.1) satisfy the inequality

α2
1 + · · · + α2

n < α2
n+1. (12.3)

In view of condition (12.3), the set L ⊂ P(L) is contained in one affine subset
αn+1 �= 0 (see Sect. 9.1). Indeed, in the case αn+1 = 0, we would obtain in (12.3) the
inequality α2

1 +· · ·+α2
n < 0, which is impossible in view of the fact that α1, . . . , αn

are real. As we did previously in Sect. 9.1, we can identify the affine subset αn+1 �= 0
with the affine subspace E : αn+1 = 1 and hence view L as a part of E; see Fig. 12.1.

The space of vectors of the affine space E is the vector subspace E0 ⊂ L defined
by the condition αn+1 = 0. In other words, E0 = 〈e1, . . . , en〉. Let us note that the
space of vectors E0 is not simply a vector space. As a subspace of the pseudo-
Euclidean space L, it would seem that it should also be a pseudo-Euclidean space.
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Fig. 12.1 Model of
hyperbolic space

But in fact, as can be seen from formula (12.2), the inner product (x,y) makes it
a Euclidean space, in which the vectors e1, . . . , en form an orthonormal basis. This
means that E is an affine Euclidean space, and the basis e1, . . . , en+1 of the space L
forms within it a frame of reference with respect to which a point of the hyperbolic
space L ⊂ E with coordinates (y1, . . . , yn) is characterized by the relationship

y2
1 + · · · + y2

n < 1, yi = αi

αn+1
, i = 1, . . . , n. (12.4)

This set is called the interior of the unit sphere in E and will be denoted by U .
Let us now turn our attention to identifying the subspaces of a hyperbolic space.

They correspond to those vector spaces L′ ⊂ L that have a common point with
the interior of the light cone V , that is, they contain a timelike vector a ∈ L′.
The inner product (x,y) defined in L is clearly also defined for all vectors in
the subspace L′ ⊂ L. The space L′ contains the timelike vector a, and therefore,
by Lemma 7.53, it is a pseudo-Euclidean space, and therefore, the associated hy-
perbolic space L

′ ⊂ P(L′) is defined. Since P(L′) ⊂ P(L) is a projective subspace,
it follows that L

′ ⊂ P(L). But hyperbolic space L
′ is defined by the condition

(x2) < 0 both in P(L) and in P(L′), and therefore, L′ ⊂ L. Here by definition,
dimL

′ = dimP(L′) = dim L′ − 1. The hyperbolic space L′ thus constructed is called
a subspace in L.

In particular, if L′ is a hyperplane in L, then dimL
′ = dimL − 1, and then the

subspace L
′ ⊂ L is called a hyperplane in L.

In the sequel we shall require the partition of L into two parts by the hyperplane
L

′ ⊂ L:

L \L′ = L
+ ∪L

−, L
+ ∩L

− = ∅, (12.5)

similar to how in Sect. 3.2, the partition of the vector space L into two half-spaces
was accomplished with the help of the hyperplane L′ ⊂ L.

The partition (12.5) of the space L cannot be accomplished by an analogous
partition of the projective space P(L). Indeed, if we use the definition of the subsets
L+ and L− from Sect. 3.2, then we see that for a vector x ∈ L+, the vector αx is in
L− if α < 0, so that the condition x ∈ L+ does not hold for the line 〈x〉. But such a
partition is possible for the affine Euclidean space E; it was constructed in Sect. 8.2
(see p. 299).

Let us recall that the partition of the affine space E by the hyperplane E′ ⊂ E

was defined via the partition of the space of vectors E0 of the affine space E with
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Fig. 12.2 Hyperbolic
half-spaces

the aid of the hyperplane E′
0 ⊂ E0 corresponding to the affine hyperplane E′, that

is, consisting of vectors
−→
AB , where A and B are all possible points of E′. If we

are given a partition E0 \ E′
0 = E+

0 ∪ E−
0 , then we must choose an arbitrary point

O ∈ E′ and define E+ as the collection of all points A ∈ E such that
−→
OA ∈ E+

0 (E−
is defined analogously). The sets E+ and E− thus obtained are called half-spaces,
and they do not depend on the choice of point O ∈ E′. Thus we have partitioned the
set E \ E′ into two half-spaces: E \ E′ = E+ ∪ E−.

Let L′ be a hyperplane in the pseudo-Euclidean space L having nonempty inter-
section with the interior of the light cone V , and let E′ be the associated hyperplane
in the affine space E, that is, E′ = E ∩ P(L′). Then E′ has nonempty intersection
with the interior of the unit sphere U , given by relationship (12.4), and for the set
L ⊂ E, we obtain the partition (12.5), where

L
′ = L∩ E′, L

+ = E+ ∩L, L
− = E− ∩L. (12.6)

The sets L
+ and L

− defined by relationships (12.6) are called half-spaces of the
space L.

To put it more simply, the hyperplane E′ divides the interior of the sphere U ⊂ E

identified with the space L into two parts, U+ and U− (see Fig. 12.2), which corre-
spond to the half-spaces L+ and L

−.
Let us show that both half-spaces L+ and L

− are nonempty, although Fig. 12.2
is sufficiently convincing by itself. We give the proof for L+ (for L−, the proof is
similar).

Let us consider an arbitrary point O ∈ E′ ∩ L. It corresponds to the vector a =
α1e1 + · · · + αnen + en+1 with (a2) < 0 (see the definition of the affine space E on
p. 434). Let c ∈ E+

0 and B ∈ E+ be points such that
−→
OB = c. Let us consider vectors

bt = a + tc ∈ L and points Bt ∈ E for which
−−→
OBt = bt for varying values of t ∈ R.

Let us note that if t > 0, then Bt ∈ E+, and if here (b2
t ) < 0, then Bt ∈ E+ ∩ L =

L
+. As can be seen without difficulty, the scalar square (b2

t ) is a quadratic trinomial
in t :

(
b2

t

) = (
(a + tc)2) = (

a2)+ 2t (a, c) + t2(c2) = P(t). (12.7)

By our selection, the vector c �= 0 belongs to the Euclidean space E0, and there-
fore, (c2) > 0. On the other hand, by assumption, we have (a2) < 0. This yields that
the discriminant of the quadratic trinomial P(t) on the right-hand side of relation-
ship (12.7) is positive, and therefore, P(t) has two real roots, t1 and t2, and from the
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condition (a2) < 0 it follows that they have different signs, that is, t1t2 < 0. Then,
as is easy to see, P(t) < 0 for every t between the roots t1 and t2. We will choose a
positive such number t .

Since the hyperbolic space L can be viewed as a part of the affine space E,
then from E we can transfer onto L the notion of line segment, the notion of lying
between for three points on a line segment, and the notion of convexity. An easy
verification (analogous to what we did at the end of Sect. 8.2) shows that the subsets
L

+ and L
− introduced earlier of the set L \ L′ are characterized by the property of

convexity: if two points A,B are in L
+, then all points lying on the segment [A,B]

are also in L
+ (the same clearly holds for the subset L−).

Let us consider linear transformations A of a vector space L that are Lorentz
transformations with respect to a symmetric bilinear form ϕ(x,y) corresponding
to the quadratic form (x2) and the associated projective transformations P(A). The
latter transformations obviously take the set L to itself: given that a transforma-
tion A is a Lorentz transformation and from the condition (x2) < 0, it follows that
(A(x)2) = (x2) < 0. The transformations of the set L that arise in this way are
called motions of the hyperbolic space L.

Thus motions of the space L are projective transformations of the projective
space P(L) containing L and taking the quadratic form (x2) into itself. By what
we have said thus far, the definition of the interior of the light cone V can be written
in homogeneous coordinates in the form

x2
1 + · · · + x2

n − x2
n+1 < 0, (12.8)

and in inhomogeneous coordinates yi = xi/xn+1 in the form

y2
1 + · · · + y2

n < 1. (12.9)

We consider motions of a hyperbolic space as transformations of the set L, that is,
as transformations taking the interior of the unit sphere given by condition (12.9)
into itself.

Let us write down some simple properties of motions:

Property 12.1 The sequential application (composition) of two motions f1 and f2
(as transformations of the set L) is again a motion.

This follows at once from the fact that the composition of nonsingular transfor-
mations A1 and A2 is a nonsingular transformation, and this holds as well for the
corresponding projective transformations P(A1) and P(A2). Moreover, if A1 and
A2 are Lorentz transformations with respect to the bilinear form ϕ(x,y), then the
result of their composition has the same property.

Property 12.2 A motion is a bijection of L to itself.

This assertion follows from the fact that the corresponding transformations A :
L → L and P(A) : P(L) → P(L) are bijections. But by the definition of a hyperbolic
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space, it is also necessary to verify that every line contained in the interior of the light
cone V is the image of a similar such line. If we have the line 〈a〉 with a timelike
vector a, then we know already that there exists a vector b such that A(b) = a.
Since A is a Lorentz transformation of a pseudo-Euclidean space L, we have the
relationship (b2) = (A(b)2) = (a2) < 0, from which it follows that the vector b is
also timelike. Thus the transformation A takes the line 〈b〉 lying inside V into the
line 〈a〉, also inside V .

Property 12.3 Like every bijection, a motion f has an inverse transformation f −1.
It is also a motion.

The verification of this property is trivial.
At first glance, it is not obvious that there are “sufficiently many” motions of a

hyperbolic space. We shall establish this a bit later, but for now, we shall point out
some important types of motions.

A transformation g is of type (a) if g = P(A), where A is a Lorentz transforma-
tion of the space L such that A(en+1) = en+1.

Since the basis e1, . . . , en+1 of the pseudo-Euclidean space L is orthonormal, we
have the decomposition

L = 〈en+1〉 ⊕ 〈en+1〉⊥, 〈en+1〉⊥ = 〈e1, . . . , en〉, (12.10)

and all transformations A : L → L with the indicated property take the subspace
E0 = 〈e1, . . . , en〉 into itself.

Conversely, if we define A : L → L as an orthogonal transformation of the Eu-
clidean subspace E0 and set A(en+1) = en+1, then P(A) will of course be a mo-
tion of the hyperbolic space. In other words, these transformations can be described
as orthogonal transformations of inhomogeneous coordinates. All thus constructed
motions of the space L have the fixed point O corresponding to the line 〈en+1〉
in L, or in other words, the point O = (0, . . . ,0) in the inhomogeneous system of
coordinates (y1, . . . , yn).

From the point of view of hyperbolic space, the constructed motions precisely co-
incide with those motions that leave the point O ∈ L fixed. Indeed, as we have seen,
the point O corresponds to the line 〈en+1〉, and the motion g is equal to P(A), where
A is a Lorentz transformation of the space L. The condition g(O) = O means that
A(〈en+1〉) = 〈en+1〉, that is, A(en+1) = λen+1. From the fact that A is a Lorentz
transformation, it follows that λ = ±1. By multiplying A by ±1, which obviously
does not change the transformation g = P(A), we can obtain that the conditions
A(en+1) = en+1 are satisfied, whence by definition, it follows that g is a transfor-
mation of type (a).

Type (b) is connected with a certain line L1 ⊂ L of a hyperbolic space. By defini-
tion, the line L1 is determined by the plane L′ ⊂ L, dim L′ = 2. Since by assumption,
the plane L′ must contain at least one timelike vector x, it follows by Lemma 7.53
(p. 271) that it is a pseudo-Euclidean space. From formula (6.28) and Theorem 6.17
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(law of inertia), it follows that all such spaces of a given dimension are isomor-
phic. Therefore, we can choose a basis in L′ with any convenient Gram matrix, pro-
vided only that it defines a pseudo-Euclidean plane. We have seen (in Example 7.49,
p. 269) that it is convenient to choose as such a basis the lightlike vectors f 1,f 2,
for which

(
f 2

1

) = (
f 2

2

) = 0, (f 1,f 2) = 1

2
,

and this means that for every vector x = xf 1 + yf 2, its scalar square (x2) is equal
to xy. In Example 7.61 (p. 277), we found explicit formulas for the Lorentz trans-
formations of a pseudo-Euclidean plane in such a basis:

U(f 1) = αf 1, U(f 2) = α−1f 2 (12.11)

or

U(f 1) = αf 2, U(f 2) = α−1f 1, (12.12)

where α is an arbitrary nonzero number. In the sequel we shall need only transfor-
mations given by formula (12.11).

Since L′ is a nondegenerate space, it follows that by Theorem 6.9, we have the
decomposition L = L′ ⊕ (L′)⊥. Let us now define a linear transformation A of the
space L by the condition

A(x + y) = U(x) + y, where x ∈ L′,y ∈ (
L′)⊥, (12.13)

where U is one of the Lorentz transformations of the pseudo-Euclidean plane L′
defined by formulas (12.11) and (12.12). It is clear that then A is a Lorentz trans-
formation of the space L.

A motion of type (b) of the space L is a transformation P(A) obtained in the
case that in formula (12.13), we take as U the transformation given by relation-
ships (12.11). All motions thus constructed have a fixed line L1 corresponding to
the plane L′.

It is quite obvious that motions of types (a) and (b) do not exhaust all motions of
the hyperbolic plane, even if in the definition of motions of type (b), as U in formula
(12.13) we were to use transformations U given not only by relationships (12.11),
but also by (12.12). For example, they certainly do not include motions associated
with Lorentz transformations that have a three-dimensional cyclic subspace (see
Corollary 7.66 and Example 7.67). However, for our further purposes, it will suffice
to use only motions of these two types.

Example 12.4 In the sequel we are going to require explicit formulas for transfor-
mations of type (b) in the case of the hyperbolic plane (that is, for n = 2). In this
case, L is a three-dimensional pseudo-Euclidean space, and in the orthonormal basis
e1, e2, e3, such that

(
e2

1

) = 1,
(
e2

2

) = 1,
(
e2

3

) = −1,
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the scalar square of the vector x = x1e1 + x2e2 + x3e3 is equal to (x2) = x2
1 +

x2
2 − x2

3 . The points of the hyperbolic plane L are contained in the affine plane
x3 = 1, have inhomogeneous coordinates x = x1/x3 and y = x2/x3, and satisfy the
relationship x2 + y2 < 1.

For writing the transformation A, let us consider the pseudo-Euclidean plane
L′ = 〈e1, e3〉 and let us choose in it a basis consisting of lightlike vectors f 1,f 2
associated with vectors e1, e3 by the relationships

f 1 = e1 + e3

2
, f 2 = e1 − e3

2
, (12.14)

from which we also obtain the inverse formulas e1 = f 1 + f 2 and e3 = f 1 − f 2.
Let us note that the orthogonal complement (L′)⊥ equals 〈e2〉, and by Theo-

rem 6.9, we have the decomposition L = L′ ⊕ 〈e2〉. Then in accord with formula
(12.13), for the vector z = x + y, where x ∈ L′ and y ∈ 〈e2〉, we obtain the value
A(z) = U(x) + y, where U : L′ → L′ is the Lorentz transformation defined in the
basis f 1,f 2 by formula (12.11). From this, taking into account expression (12.14),
we obtain

U(e1) = α + α−1

2
e1 + α − α−1

2
e3, U(e3) = α − α−1

2
e1 + α + α−1

2
e3.

Let us set

a = α + α−1

2
, b = α − α−1

2
. (12.15)

Then a + b = α and a2 − b2 = 1. It is obvious that any numbers a and b satisfying
these relationships can be defined in terms of the number α = a + b by formulas
(12.15). Therefore, we obtain the linear transformation A : L → L, for which

A(e1) = ae1 + be3, A(e2) = e2, A(e3) = be1 + ae3.

It is easy to see that for such a transformation, the vector x = x1e1 + x2e2 + x3e3 is
carried to the vector

A(x) = (ax1 + bx3)e1 + x2e2 + (bx1 + ax3)e3.

In inhomogeneous coordinates, x = x1/x3 and y = x2/x3. This means that a point
with coordinates (x, y) is carried to the point with coordinates (x′, y′), where

x′ = ax + b

bx + a
, y′ = y

bx + a
, a2 − b2 = 1. (12.16)

This particular type of motion yields, however, an important general property:

Theorem 12.5 For every pair of points of a hyperbolic space there exists a motion
taking one point into the other.
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Proof Let the first point correspond to the line 〈a〉, and the second to the line 〈b〉,
where a,b ∈ L. If the vectors a and b are proportional, that is, 〈a〉 = 〈b〉, then our
requirements will be satisfied by the identity transformation of the space L (which
can be obtained in the form P(E), where E is the identity transformation of the
space L).

But if 〈a〉 �= 〈b〉, that is, dim〈a,b〉 = 2, then let us set L′ = 〈a,b〉. Let us consider
the Lorentz transformation U : L′ → L′ of type (b) given by formula (12.11), the
corresponding Lorentz transformation A : L → L defined by formula (12.13), and
the projective transformation P(A) : P(L) → P(L).

Let us show that the constructed projective transformation P(A) takes a point
corresponding to the line 〈a〉 to a point corresponding to the line 〈b〉, that is, the
linear transformation A : L → L takes the line 〈a〉 to the line 〈b〉. Since vectors a
and b are contained in the plane L′, then by definition, it suffices for us to prove
that for an appropriate choice of number α, the transformation U : L′ → L′ given by
formula (12.11) takes the line 〈a〉 to the line 〈b〉.

This is easily verified by a simple calculation using the basis f 1,f 2, given by
formula (12.14), in the pseudo-Euclidean plane L′. Let us consider the timelike
vectors a = a1f 1 + a2f 2 and b = b1f 1 + b2f 2. Since in the chosen basis, the
scalar square of a vector is equal to the product of its coordinates, it follows that
(a2) = a1a2 < 0 and (b2) = b1b2 < 0. From this, it follows in particular that all
numbers a1, a2, b1, b2 are nonzero.

We obtain from formula (12.11) that U(a) = αa1f 1 + α−1a2f 2, and the condi-
tion 〈U(a)〉 = 〈b〉 means that U(a) = μb for some μ �= 0. This yields the relation-
ships αa1 = μb1 and α−1a2 = μb2, that is,

μ = αa1

b1
, a2 = αμb2 = α2a1b2

b1
, α2 = a2b1

a1b2
= a1a2b1b2

(a1b2)2
.

It is obvious that the latter relationship can be solved for a real number α if
a1a2b1b2 > 0, and this inequality is satisfied, since by assumption, a1a2 < 0 and
b1b2 < 0. �

Let us note that we have thus far not used motions of type (a). We shall need
them to strengthen the theorem we have just proved. To do so, we shall make use of
the notion of a flag, analogous to that introduced in Sect. 3.2 for real vector spaces.

Definition 12.6 A flag in a space L is a sequence of subspaces

L0 ⊂ L1 ⊂ · · · ⊂ Ln = L (12.17)

such that:

(a) dimLi = i for all i = 0,1, . . . , n;
(b) each pair of subspaces (Li+1,Li ) is directed.

A subspace Li is a hyperplane in Li+1, and as we have seen (see formula (12.5)),
it defines a partition Li+1 into two half-spaces: Li+1 \ Li = L

+
i+1 ∪ L

−
i+1. And as
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earlier, the pair (Li+1,Li ) is said to be directed if the order of the half-spaces is
indicated, for example by denoting them by L

+
i+1 and L

−
i+1. Let us note that in a

flag defined by the sequence (12.17), the subspace L0 has dimension 0, that is, it
consists of a single point. We shall call this point the center of the flag (12.17).

Theorem 12.7 For any two flags of a hyperbolic space, there exists a motion taking
the first flag to the second. Such a motion is unique.

Proof In the space L, let us consider two flags Φ and Φ ′ with centers at the points
P ∈ L and P ′ ∈ L, respectively. Let O ∈ L be the point corresponding to the line
〈en+1〉 in L, that is, the point with coordinates y1 = 0, . . . , yn = 0 in relationship
(12.4). By Theorem 12.5, there exist motions f and f ′ taking P to O and P ′ to O .
Then the flags f (Φ) and f ′(Φ ′) have their centers at the point O . Each flag is by
definition a sequence of subspaces (12.17) in L to which correspond the subspaces
of the vector space L. Thus to the flags f (Φ) and f ′(Φ ′) there correspond two
sequences of vector subspaces,

〈en+1〉 = L0 ⊂ L1 ⊂ · · · ⊂ Ln = L and 〈en+1〉 = L′
0 ⊂ L′

1 ⊂ · · · ⊂ L′
n = L,

where dim Li = dim L′
i = i + 1 for all i = 0,1, . . . , n.

Let us recall that the space L is identified with a part of the affine Euclidean space
E, namely with the interior of the unit sphere U ⊂ E given by relationship (12.4). To
investigate L as a part of E (see Fig. 12.1), it will be convenient for us to associate
with each subspace M ⊂ L containing the vector en+1, the affine subspace N ⊂ E

of dimension one less containing the point O . To this end, let us first associate
with each subspace M ⊂ L containing the vector en+1, the vector subspace N ⊂ M
determined by the decomposition M = 〈en+1〉 ⊕ N. Employing notation introduced
earlier, we obtain that

N = (〈en+1〉⊥ ∩ M
) = (〈e1, . . . , en〉 ∩ M

) ⊂ 〈e1, . . . , en〉 = E0,

that is, N is contained in the space of vectors of the affine space E. Consequently,
the vector subspace N ⊂ E0 determines a set of parallel affine subspaces in E that
are characterized by their spaces of vectors coinciding with N. Such affine subspaces
can be mapped to each other by a translation (see p. 296), and to determine one of
them uniquely, it suffices simply to designate a point contained in this subspace.
As such a point, we shall choose O . Then the vector subspace N ⊂ E0 uniquely
determines the affine subspace N ⊂ E, where clearly, dimN = dim N = dim M − 1.

Thus we have established a bijection between k-dimensional vector subspaces
M ⊂ L containing the vector en+1 and (k − 1)-dimensional affine subspaces N ⊂ E

containing the point O . Here clearly, the notions of directedness for the pair M′ ⊂ M
and N ′ ⊂ N coincide. In particular, flags f (Φ) and f ′(Φ ′) of the space L with
center O correspond to two particular flags of the affine Euclidean space E with
center at the point O .
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By Theorem 8.40 (p. 316), in an affine Euclidean space, there exists for every
pair of flags, a motion that takes the first flag to the second. Since in our case, both
flags have a common center O , it follows that this motion has the fixed point O ,
and by Theorem 8.39, it is an orthogonal transformation A of the Euclidean space
E0. Let us consider g = P(A), the motion of type (a) of the space L corresponding
to this orthogonal transformation A. Clearly, it takes the flag f (Φ) to f ′(Φ ′), that
is, gf (Φ) = f ′(Φ ′). From this, we obtain that f ′−1gf (Φ) = Φ ′, as asserted in the
theorem.

It remains to prove the assertion about uniqueness in the statement of the theo-
rem. Let f1 and f2 be two motions taking some flag Φ with center at the point P

to the same flag, that is, such that f1(Φ) = f2(Φ). Then f = f −1
1 f2 is a motion,

and f (Φ) = Φ . If we prove that f is the identity transformation, then the required
equality f1 = f2 will follow.

By Theorem 12.5, there exists a motion g taking the point P to O . Let us set Φ ′ =
g(Φ). Then Φ ′ is a flag with center at the point O . From the equalities f (Φ) = Φ

and g(Φ) = Φ ′ it follows that gfg−1(Φ ′) = Φ ′. Let us denote the motion gfg−1

by h. It clearly takes the flag Φ ′ to itself, and in particular, has the property that
h(O) = O . From what we said on p. 438, it follows that h is a motion of type (a),
that is, h = P(A), where A is a Lorentz transformation of the space L that in turn,
is determined by a certain orthogonal transformation U of the Euclidean space E0.

Let Φ ′′ be the flag in the Euclidean space E0 corresponding to the flag Φ ′ of the
space L. Then from the condition h(Φ ′) = Φ ′, it follows that U(Φ ′′) = Φ ′′, that
is, the transformation U takes the flag Φ ′′ to itself. Consequently (see p. 225), the
transformation U is the identity, which yields that the motion h that it defines is the
identity. From the relationship h = gfg−1, it then follows that gf = g, that is, f is
the identity transformation. �

Thus motions of a hyperbolic space possess the same property as that established
in Sect. 8.4 (p. 317) for motions of affine Euclidean spaces. It is this that explains
the special place of hyperbolic spaces in geometry. The Norwegian mathematician
Sophus Lie called this property “free mobility.” There exists a theorem (which we
shall not only not prove, but not even formulate precisely) showing that other than
the space of Euclid and the hyperbolic space of Lobachevsky, there is only one
space that exhibits this property, called a Riemann space (we shall have a bit to say
about this in Sect. 12.3). This assertion is called the Helmholtz–Lie theorem. For its
formulation, it would be necessary first of all to define just what we mean here by
“space,” but we are not going to delve into this.

The property that we have deduced (Theorem 12.7) suffices for discussing the
axiomatic foundations of hyperbolic geometry.

12.2 The Axioms of Plane Geometry*

Hyperbolic geometry arose historically as a result of the analysis of the axiomatic
systems of Euclidean geometry. The viewpoint toward geometry as based on a small
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number of postulates from which all the remaining results are derived by way of
formal proof arose in ancient Greece approximately in the sixth century B.C.E. Tra-
dition connects this viewpoint with the name Pythagoras. An account of geometry
with this point of view is contained in Euclid’s Elements (third century B.C.E.). This
point of view was accepted during the development of science in the modern era,
and for a long time, geometry was taught directly from Euclid’s books, and then
later, there appeared simplified accounts. Moreover, this same point of view came
to permeate all of mathematics and physics. In this spirit were written, for example,
Newton’s The Mathematical Principles of Natural Philosophy, known as the Prin-
cipia. In physics and generally in the natural sciences, “laws of nature” played the
role of axioms.

In mathematics, this direction of thought led to a more thorough working out of
the axiom system of Euclidean geometry. Euclid divides the assertions on which his
exposition is based into three types. One he calls “definitions”; another, “axioms”;
and the third, “postulates” (the principle separating the last two of these is unclear
to modern researchers). Many of his “definitions” also seem questionable. For ex-
ample, the following: “A line is a length without width” (definitions of “length”
and “width” are not given). Some “axioms” and “postulates” (we shall call all of
these axioms) are simple corollaries of others, so that they could as well have been
discarded. But what attracted the most attention was the “fifth postulate,” which in
Euclid is formulated thus:

That if a straight line falling on two straight lines makes the interior angles on the same side
less than two right angles, the two straight lines, if produced indefinitely, meet on that side
on which are the angles less than the two right angles.

This axiom differs from the others in that its formulation is notably more com-
plex. Therefore, the following question arose (probably already in antiquity): can
this assertion be proved as a theorem derived from the other axioms? An enormous
number of “proofs of the fifth postulate” appeared, in which, however, there was
always found a logical error. These investigations nevertheless helped in clarifying
the situation. For example, it was proved that in the context of the other axioms,
the fifth postulate is equivalent to the following assertion about parallel lines that is
now usually presented as this postulate: through every point A not lying on a line
a, it is possible to construct exactly one line b parallel to a (lines a and b are said
to be parallel if they do not intersect). Here the existence of a line b parallel to a

and passing through the point A can easily be proved. The entire content of the fifth
postulate is reduced to the assertion about its uniqueness.

Finally, at the beginning of the nineteenth century, a number of researchers, one
of whom was Nikolai Ivanovich Lobachevsky (1792–1856), came up with the idea
that a proof of the fifth postulate is impossible, and so its negation leads to a new
geometry, logically no less perfect than the geometry of Euclid, even though it con-
tains in some respects some unusual propositions and relationships.

The question could be posed more precisely as a result of the development of the
axiomatic method. This was done by Moritz Pasch (1843–1930), Giuseppe Peano
(1858–1932), and David Hilbert (1862–1943) at the end of the nineteenth century.
In his work on the foundations of geometry, Hilbert formulated in particular the
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principles on which an axiomatic system is constructed. Today, such an approach
has become commonplace; we used it to define vectors and Euclidean spaces. The
general principle consists in fixing a certain set of objects, which remain undefined
(for example, in the case of the definition of a vector space, these were scalars and
vectors), and also in fixing certain relations that are to exist among these objects,
which are likewise undefined (in the case of the definition of a vector space, these
were addition of vectors and multiplication of a vector by a scalar). Finally, axioms
are introduced that establish the specific properties of the introduced concepts (in the
case of the definition of a vector space, these were enumerated in Sect. 3.1). With
such a formulation, there remains only the question of consistency of the theory,
that is, whether it is possible from the given axioms to derive simultaneously some
statement as well as its negation. In the sequel, we shall introduce an axiom system
for hyperbolic geometry (restriction to the case of dimension 2) and discuss the
question of its consistency.

Let us begin with a discussion of axioms. The lists of axioms that Hilbert and
his predecessors introduced in their early work turned out to possess certain logi-
cal defects. For example, in deduction, it turned out to be necessary to use certain
assertions that were not contained among the axioms. Hilbert then supplemented
his system of axioms. Later, this system of axioms was simplified for the sake of
clarity. We shall use the axiom system proposed by the German geometer Friedrich
Schur (1856–1932).1 Here we shall restrict our attention (exclusively for the sake of
brevity) to the axiomatics of the plane.

A plane is a certain set Π , whose elements A,B , and so on, are called points.
Certain bijective mappings f : Π → Π are called motions. These are the fundamen-
tal objects. The relationships among them are expressed as follows:

(A) Certain distinguished subsets l, l′, and so on, of the set Π are called lines. That
an element A ∈ Π belongs to the subset l is expressed by saying that “the point
A lies on the line l” or “the line l passes through the point A.”

(B) For three given points A,B,C lying on a given line l, it is specified when the
point C is considered to lie between the points A and B . This must be specified
for every line l and for every three points lying on it.

These objects and relations satisfy the conditions called axioms, which it is con-
venient to collect into several groups:

I. Axioms of relationship
1. For every two points, there exists a line passing through them.
2. If these points are distinct, then such a line is unique.
3. On every line there lie at least two points.
4. For every line, there exists a point not lying on it.

II. Axioms of order
1. If on some line l, the point C lies between points A and B , then it is distinct

from them and also lies between points B and A.

1Here we shall follow the ideas of Boris Nikolaevich Delaunay, or Delone (1890–1980), in his
pamphlet Elementary Proof of the Consistency of Hyperbolic Geometry, 1956.
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Fig. 12.3 Intersection of the
sides of a triangle by a line

2. If A and C are two distinct points on some line, then on this line there is at
least one point B such that C lies between points A and B .

3. Among three points A, B , and C lying on a given line, not more than one of
the points lies between the two others.

Before formulating the last axiom of this group, let us give some new definitions.
The set of all points C on a given line l passing through the points A and B that
lie between them (including the points A and B themselves) is called a segment
with endpoints A and B , and is denoted by [A,B]. Axiom 2 of group II can be
reformulated thus: [A,C] �= l \ (A ∪ C), with the inequality here being understood
as an inequality of sets. That a segment [A,B] contains points other than A and B

is proved on the basis of the axioms of group I and the last axiom of group II, to
the formulation of which we now turn. Three points A,B,C not all lying on any
one line are called a triangle, and this relationship is denoted by [A,B,C]. The
segments [A,B], [B,C], and [C,A] are called the sides of the triangle [A,B,C].
4. Pasch’s axiom. If points A,B,C do not all lie on the same line, none of them

belong to the line l, and the line l intersects one side of the triangle [A,B,C],
then it also intersects another side of the triangle.

In other words, if a line l has a point D in common with the line l′ passing
through points A and B , with D lying between A and B on l′, then the line l either
has a common point E with the line l1 passing through B and C, with E lying
between them on l1, or has a common point F with the line l2 passing through A

and C, with F lying between them on l2. The two cases discussed in this last axiom
are depicted in Fig. 12.3.

III. Axioms of motion
1. For every motion f , the inverse mapping f −1 (which exists by the definition

of a motion as a bijective mapping of the set Π ) is also a motion.
2. The composition of two motions is a motion.
3. A motion preserves the order of points. That is, a motion f takes a line l to

a line f (l), and if the point C on the line l lies between points A and B on
this line, then the point f (C) of the line f (l) lies between points f (A) and
f (B).
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The formulation of the fourth axiom of motion requires certain results that can be
obtained as corollaries of the axioms of relationship and order. We shall not prove
these here, but let us give only the formulations.2

Let us begin with properties of lines. Let us choose a point O on a line l. Points
A and B on this same line, both of them different from O , are said to line on one
side of O if O does not lie between A and B . If we select some point A different
from O , then points B different from O and lying together with A on one side of O

form a subset of the set of points of the line l called a half-line and denoted by l+.
It can be proved that if we choose in this subset another point A′, then the half-line
formed with it will be the same as before. Here what is important is only the choice
of the point O . If we choose a point A1 such that O lies between A and A1, then
the point A1 determines another half-line, denoted by l−. The half-lines l+ and l−
determined by the points A and A1 do not intersect, and their union is l \ O , that is,
l+ ∩ l− = ∅ and l+ ∪ l− = l \ O .

One can verify analogous properties for a line l in the plane Π . Let us consider
two points A and B that do not belong to the line l. One says that they lie on one
side of l if either the line l′ passing through them does not intersect the line l, or the
lines l and l′ intersect in a point C that does not lie between points A and B of the
line l′. The set of points not lying on the line l and lying on the same side of l as the
point A is called a half-plane. Again, it is possible to prove that with the choice of
another point A′ instead of A in this half-plane, we define the same set. There exist
two points A and A′ that do not belong to the same half-plane. However we select
these points (given a fixed line l), we will always obtain two subsets Π+ and Π−
of the plane Π such that Π+ ∩ Π− = ∅ and Π+ ∪ Π− = Π \ l.

Suppose we are given a point O and a line l passing through it. If in the partition
of l \ O into two half-lines, one of them is distinguished, and in the partition Π \ l

into two half-planes, one of them is distinguished (for example, let us denote them
by l+ and Π+, respectively), then the pair (O, l) is called a flag and is denoted
by Φ . As follows from what was discussed in Sect. 12.1, this is a special case (for
n = 2) of the notion of a flag introduced earlier.

Every motion takes a flag to a flag, that is, if f is a motion and Φ is the flag
(O, l), then the sets f (l)+ and f (l)−, whose union is f (l) \ f (O), coincide with
f (l+) and f (l−), where l+ and l− are the half-lines on the line l determined by
the point O . Here their order can change. Analogously, a pair of half-planes f (Π)+
and f (Π)− defined by the line f (l) coincide with the pair f (Π+) and f (Π−),
where Π+ and Π− are the half-planes determined by the line l. Their order also
can change.

We can now formulate the last (fourth) axiom of motion:

4. Axiom of free mobility. For any two flags Φ and Φ ′, there exists a motion f

taking the first flag to the second, that is, f (Φ) = Φ ′. Such a motion is unique,
and it is uniquely determined by the flags Φ and Φ ′.

2Some of these are proved in first courses in geometry, and in any case, elementary proofs of all of
these results can be found in Chap. 2 of the book Higher Geometry, by N.V. Efimov (Mir, 1953).
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IV. Axiom of continuity
1. Let a set of points of some line l be represented arbitrarily as the union of

two sets M1 and M2, where no point of the set M1 lies between two points
of the set M2, and conversely. Then there exists a point O on the line l such
that M1 and M2 coincide with the half-lines of l determined by the point O ,
to either of which the point O can be joined.

This axiom is also called Dedekind’s axiom.
Axioms I–IV that we have presented are called axioms of “absolute geometry.”

They hold for both Euclidean and hyperbolic geometry. These two geometries are
distinguished by the addition of one axiom that deals with parallel lines. Let us
recall that parallel lines are lines having no points in common. Thus in both cases,
one more axiom is added:

V. Axiom of parallel lines

1. In Euclidean geometry: For every line l and every point A not lying on it,
there exists at most one line l′ passing through the point A and parallel to l.

1′. In hyperbolic geometry: For every line l and every point A not lying on it,
there exist at least two distinct lines l′ and l′′ parallel to l.

The justified interest in precisely these two axioms is due to the fact that already
in absolute geometry (that is, with only the axioms from groups I–IV), it is possible
to prove that for every line l and every point A not on l, there exists at least one line
l′ passing through A and parallel to l.

It is now possible to formulate more precisely the goal that mathematics set for
itself in the attempt to “prove the fifth postulate,” that is, to derive assertion 1 in
group V of axioms from axioms in groups I–IV. But Lobachevsky (and other re-
searchers of the same epoch) came to the conclusion that this was impossible, and
this meant that the system comprising groups I–IV and axiom 1′ was consistent.

Strictly speaking, we could have posed such questions even earlier, in connection
with any of the theories that we encountered based on some system of axioms,
such as the theory of vector spaces or that of Euclidean spaces. The question of the
consistency of the concepts of vector spaces or Euclidean spaces is easily answered:
it suffices to show (in the case of real spaces) examples of vector spaces over Rn of
any finite dimension or Euclidean spaces with inner product (x,y) = x1y1 + · · · +
xnyn. Of course, this assumes the construction and proof of the consistency of the
theory of the real numbers, but that lies outside the scope of our investigation, and
we shall not consider it here. However, assuming as given that the properties of real
numbers are defined and do not raise any doubts, we may, for example, say that if
the system of axioms of a real vector space given in Sect. 3.1 were inconsistent, then
we would be able to derive two mutually contradictory assertions about the space
R

n. However, any assertion about the space R
n can be reduced by definition to an

assertion about the real numbers, and then we would obtain a contradiction in the
domain of real numbers.

The same question could be posed in relationship to Euclidean geometry, that
is, with respect to the system of axioms consisting of axioms of groups I–IV and
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axiom 1 of group V. Here the answer is in fact already known, since we have con-
structed the theory of affine Euclidean spaces (even in arbitrary dimension n). It is
easily ascertained that for n = 2, all the axioms of Euclidean geometry that we in-
troduced are satisfied. Some refinements are perhaps necessary only in connection
with the axioms of order.

These axioms do not require an inner product on the space and are formulated
for an arbitrary real affine space V in Sect. 8.2. All the assertions constituting the
axioms of order now follow directly from the properties of order of the real num-
bers, except only Pasch’s axiom. Its idea is that if a line “enters” a triangle, then it
must “exit” from it. Intuitively, this is quite convincing, but with our approach, we
must derive this assertion from the properties of affine spaces. It is a very simple
argument, whose details we leave to the reader.

Specifically, by what is given, points A and B (we shall use the same notation
as in the formulation of the axioms) lie in different half-planes into which the line
l divides the plane Π . Everything depends on the half-plane to which the point C

belongs: to the same one as A, or to the same one as B . In the first case, the line l

has a common point with the line l2, which lies on it between B and C, while in the
second case, the common point is with the line l1, which lies between A and C; see
Fig. 12.3. In each of these two cases, the assertion of Pasch’s axiom is easy to verify
if we recall the definitions.

We in fact checked in one form or another that the remaining axioms are satisfied
even as assertions that relate to arbitrary dimension.

We shall now turn to the axioms of hyperbolic geometry, that is, the axioms of
groups I–IV and axiom 1′ of group V. We shall prove that they are consistent, based
on the consistency of the usual properties (which likewise are easily reduced to
certain axioms) of the set of real numbers R and based on the theory of Euclidean
spaces of dimension 2 and 3 constructed on this basis. On this foundation, we shall
prove the following result.

Theorem 12.8 The system of axioms of hyperbolic geometry is consistent.

Proof We shall consider in the Euclidean plane L the open disk K (given, for exam-
ple, in some coordinate system by the condition x2 + y2 < 1). We shall call the set
of its points a “plane” (denoted by Π ), and we shall call “points” only the points of
this disk. The intersection of every line l of the plane L with the disk K that has at
least one point in common with this disk is the interior of some segment (this was
proved in the previous section). We shall call such nonempty intersections l ∩ K

“lines,” denoted by l, l
′
, and so on. Finally, we shall call a projective transformation

of the plane L taking the disk K into itself a “motion.”
Since the definition of projective transformation assumes a study of the projec-

tive plane, and a projective space of dimension n and its projective transformations
were defined in Chap. 9 in terms of a vector space of dimension n + 1, it follows
that for the analysis of the hyperbolic plane, we must use here a notion connected
with a three-dimensional vector space. However, it would not be difficult to give a
formulation appealing only to properties of the Euclidean plane.
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Fig. 12.4 “Lines” and
“points” of the hyperbolic
plane

Now let us define the fundamental relationships between “lines” and “points.”
That a “line” l passes through a “point” A ∈ Π will be understood to mean the
condition that the line l passes through the point A. Thus an arbitrary “line” l is the
set of “points” that lie on it. Let “points” A,B,C lie on the “line” l. We shall say
that a “point” C lies between “points” A and B if such is the case for A, B , and C as
points on the Euclidean line l that contains l (this makes sense, since l is contained
in Euclidean space).

It remains to verify that the notions and relationships presented satisfy the axioms
of hyperbolic geometry, that is, the axioms of groups I–IV and axiom 1′ of group V.
The verification of this for the axioms of groups I, II, and IV is trivial, since the
corresponding objects and relationships are defined exactly as in the surrounding
Euclidean plane. For the axioms of group III (axioms of motion), the required prop-
erties were proved in the previous section (indeed, for the case of a space of arbitrary
dimension n). It remains only to consider axiom 1′ of group V.

Let l be the “line” associated with the line l in the Euclidean plane L. Then the
line l intersects the boundary S of the disk K in two different points: P ′ and P ′′.
Let A be a “point” of the “plane” Π (that is, a point of the disk K) not lying on
the line l. By the axioms of Euclidean geometry, through the points A and P ′ in
the plane L, there passes some line l′. It determines the “line” l

′ = l′ ∩ K of the
“plane” Π . Similarly, the point P ′′ determines the “line” l

′′ = l′′ ∩K ; see Fig. 12.4.
The lines l′ and l′′ are distinct, since they pass through different points P ′ and

P ′′ of the plane L. Therefore, by the axioms of Euclidean geometry, they have no
common points other than A. But the “lines” l

′
and l

′′
, as nonempty segments of

Euclidean lines excluding the endpoints, contain infinitely many points and in par-
ticular, the “points” B ′ ∈ l

′
and B ′′ ∈ l

′′
, with B ′ �= B ′′. This means that the “lines”

l
′
and l

′′
are distinct. On the other hand, in the sense of our definitions, both of them

are parallel to the “line” l, that is, they have no common “points” with it (points
of the disk K). For example, the line l′ has with l the common point P ′ in the Eu-
clidean plane L, which means that by the axioms of Euclidean geometry, they have
no other common points, and in particular, no common points in the disk K .

We see that assertion 1′ holds for every “line” l ⊂ Π and every “point” A /∈ l.
Let us now assume that from the axioms of hyperbolic geometry there could be
derived an inconsistency (that is, some assertion and its negation). Then we could
apply the same reasoning to the notions that earlier, with the proof of Theorem 12.8,
we wrote in quotation marks: “point,” “plane,” “line,” and “motion.” Since they,
as we have seen, satisfy all the axioms of hyperbolic geometry, we would again
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arrive at a contradiction. But the notions “plane,” “line,” and “motion,” and also
the relationship “lies between” for three points on a line were defined in terms of
Euclidean geometry. Thus we would arrive at a contradiction to Euclidean geometry
itself. �

Let us focus attention on this fine logical construction: we construct objects in
some domain that satisfy a certain system of axioms, and thus we prove the con-
sistency of this system if the consistency of the domain from which the necessary
objects are taken has been accepted. Today, one says that a model of this axiom
system has thereby been constructed in another domain. In particular, we earlier
constructed a model of hyperbolic geometry in the theory of vector spaces. Only by
constructing such a model was the question of the provability of the “fifth postulate”
decided in mathematics.

In conclusion, it is of interest to dwell a bit on the history of this question. In-
dependent of Lobachevsky, a number of researchers came to the conclusion that a
negation of the “fifth postulate” leads to a meaningful and consistent branch of math-
ematics, a “new geometry,” eventually given the designation “non-Euclidean geom-
etry.” There is no question here of priority. All the researchers clearly worked inde-
pendently of one another (Gauss’s correspondence from the 1820s, Lobachevsky’s
publication of 1829, and János Bolyai’s of 1832). Most of these who became known
later were amateurs, not professional mathematicians. But there were some excep-
tions: outside of Lobachevsky, there was the greatest mathematician of that epoch—
Gauss. The majority of such researchers known to us who clearly arrived at the
same conclusions independently became known precisely because of their corre-
spondence with Gauss, which was published along with other of Gauss’s papers
after his death. It is clear from these publications that in his youth, Gauss had at-
tempted to prove the fifth postulate, but later concluded that there existed a meaning-
ful and consistent geometry that did not include this postulate. In his letters, Gauss
discussed the similar views of his correspondents with great interest.

He clearly received the work of Lobachevsky with sympathetic understand-
ing when it began to appear in translation, and on Gauss’s recommendation,
Lobachevsky was elected a member of the Göttingen Academy of Sciences.

In one of Gauss’s diaries can be seen the name Nikolai Ivanovich Lobachevsky,
written in Cyrillic letters:

N I K O L A � I V A N O V I Q L O B A Q E V S K I �

But it is surprising that Gauss himself, throughout his entire life, published not a
line on this subject. Why was that? The usual explanation is that Gauss was afraid
of not being understood. Indeed, in one letter in which he touched on the question
of the “fifth postulate” and non-Euclidean geometry, he wrote, “since I fear the
clamor of the Boeotians.” But it seems that this cannot be the full explanation of
his mysterious silence. In his other works, Gauss did not fear being misunderstood
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by his readers.3 It is possible, however, that there is another explanation for Gauss’s
silence. He was one of the few who realized that however many interesting theorems
of non-Euclidean geometry might be deduced, this would prove nothing definitively;
there would always remain the theoretical possibility that future derivations would
yield a contradictory assertion. And perhaps Gauss understood (or sensed) that at
the time (first half of the nineteenth century), the mathematical concepts had not yet
been developed to pose and solve this question rigorously.

Apparently, Lobachevsky was among the small number of mathematicians in
addition to Gauss who understood this. For him, as with Gauss, there stood the
question of “incomprehensibility.” First of all, for Lobachevsky, there was the lack
of comprehension among Russian mathematicians, especially analysts, who totally
failed to accept his work. In any case, he constantly attempted to find a consistent
foundation for his geometry. For example, he discovered its striking parallel with
spherical geometry and expressed the idea that it was the “geometry of the sphere
with imaginary radius.” His geometry could indeed have been realized in the form
of some other model if the very notion of model had been sufficiently developed at
that time.

Beyond this (as noted by the French mathematician André Weil (1906–1998)),
here we have the simplest case of duality between compact and noncompact sym-
metric spaces, discovered in the twentieth century by Élie Cartan.

Moreover, Lobachevsky proved that in three-dimensional hyperbolic space, there
is a surface (called today a horosphere) such that if we consider only the set of its
points and take as lines the curves of a specific type lying on it (called today horo-
cycles), then all the axioms of Euclidean geometry are satisfied. From this it follows
that if hyperbolic geometry is consistent, then Euclidean geometry is also consistent.
Even if we accept the hypothesis that the “fifth postulate” does not hold, Euclidean
geometry is still realized on the horosphere. Thus in principle, Lobachevsky came
very close to the concept of a model. But he did not succeed in constructing a model
of hyperbolic geometry in the framework of Euclidean geometry. Such a construc-
tion was not easily granted to mathematicians.

The following paragraph offers only a hint, and not a precise formulation, of the
corresponding assertions.

First, in 1868, Eugenio Beltrami (1835–1899) constructed in three-dimensional
Euclidean space a certain surface called a pseudosphere or Beltrami surface, whose
Gaussian curvature (see the definition on p. 265) at every point is the same nega-
tive number. Hyperbolic geometry can be realized on the pseudosphere, where the
role of lines is played by so-called geodesic lines.4 However, here we are talking
about only a piece of the pseudosphere and a piece of the hyperbolic plane. Here the
posing of the question must be radically changed, since the majority of the axioms
that we have given assume (as in, for example, Euclidean geometry) the possibility

3For example, his first published book, Disquisitiones Arithmeticae, was considered for a long time
to be quite inaccessible.
4More about this can be found, for example, in the book A Course of Differential Geometry and
Topology, by A. Mishchenko and A. Fomenko (Mir, 1988).



12.2 The Axioms of Plane Geometry* 453

of continuing lines to infinity. The coincidence of two bounded pieces is under-
stood in the sense of the coincidence of the measures of lengths and angles, about
which, in the case of hyperbolic geometry, more will be said in the following sec-
tion. Moreover, Hilbert later proved that the hyperbolic plane cannot in this sense
be completely identified with any surface in three-dimensional space (much later it
was proved that it is possible for some surface in five-dimensional space).

The model of hyperbolic geometry that we gave for the proof of Theorem 12.8
was constructed by Felix Klein (1849–1925) in 1870. The history of its appearance
was also astounding. Formally speaking, this model was constructed in 1859 by the
English mathematician Arthur Cayley (1821–1895). But he considered it only as a
certain construction in projective geometry and apparently did not notice the con-
nection with non-Euclidean geometry. In 1869, the young (twenty-year-old) Klein
became acquainted with his work. He recalled that in 1870, he gave a talk on the
work of Cayley at the seminar of the famous mathematician Weierstrass, and, as he
writes, “I finished with a question whether there might exist a connection between
the ideas of Cayley and Lobachevsky. I was given the answer that these two sys-
tems were conceptually widely separated.” As Klein puts it, “I allowed myself to
be convinced by these objections and put aside this already mature idea.” However,
in 1871, he returned to this idea, formulated it mathematically, and published it.
But then his work was not understood by many. In particular, Cayley himself was
convinced as long as he lived that there was some logical error involved. Only after
several years were these ideas fully understood by mathematicians.

Of course, one can ask not only about the existence of Euclidean and hyperbolic
geometries, but also about a number of different (in a certain sense) geometries.
Here we shall formulate only the results that are relevant to the current discussion.5

First of all, we must give a precise sense to what we mean by “different” or
“identical” geometries. This can be done with the help of the notion of isomorphism
of geometries, which is analogous to the notion of isomorphism of vector spaces
introduced earlier. Within the framework of a system of axioms used in this section,
this can be done as follows. Let Π and Π ′ be two planes satisfying the axioms of
groups I–IV, and let G and G′ be sets of motions of the respective planes. Mappings
ϕ : Π → Π ′ and ψ : G → G′ define an isomorphism (ϕ,ψ) of these geometries if
the following conditions are satisfied:

(1) Both mappings ϕ and ψ are bijections.
(2) The mapping ϕ takes every line l in the plane Π to some line ϕ(l) in the

plane Π ′.
(3) The mapping ϕ preserves the relationship “lies between.” This means that if

points A, B , and C lie on the line l, with C lying between A and B , then the
point ϕ(C) lies between ϕ(A) and ϕ(B) on the line ϕ(l).

(4) The mappings ϕ and ψ agree in the following sense: for every motion f ∈ G,
its image ψ(f ) is equal to ϕf ϕ−1. This means that for every point A ∈ Π , the
equality (ψ(f ))(ϕ(A)) = ϕ(f (A)) holds.

5Their proofs are given in every course in higher geometry, for example, in the book Higher Ge-
ometry, by N.V. Efimov, mentioned earlier.
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(5) For every motion f ∈ G, the equality ψ(f −1) = ψ(f )−1 holds, and for every
pair of motions f1, f2 ∈ G, we have ψ(f1f2) = ψ(f1)ψ(f2).

Let us note that some of these conditions can be derived from the others, but for
brevity, we shall not do this.

We shall consider geometries up to isomorphism as just described, that is, we
shall consider two geometries the same if there exists an isomorphism between
them. In particular, geometries with respective axioms 1 and 1′ in group V are
clearly not isomorphic to each other, that is, they are two different geometries. From
this point of view, geometries (in the plane) satisfying axioms 1 and 1′ are funda-
mentally different from each other. Namely, it has been proved that all geometries
satisfying axiom 1 in group V are isomorphic.6 But geometries that satisfy axiom
1′ in group V are characterized up to isomorphism by a certain real number c called
their curvature. This number is usually assumed to be negative, and then it can take
on any value c < 0.

Klein suggested that Euclidean geometry can be viewed as the limiting case of
hyperbolic geometry as the curvature c approaches zero.7 As Klein further observed,
if axiom 1 (of Euclid) is satisfied in our world, then we shall never know it. Since
every physical measurement is taken with a certain degree of error, to establish the
precise equality c = 0 is impossible, for there always remains the possibility that the
number c is less than zero, but it is so small in absolute value that it lies beyond the
limits of our measurements.

12.3 Some Formulas of Hyperbolic Geometry*

First of all, we shall define the distance between points in the hyperbolic plane using
its definition as the set of points of the projective plane P(L) corresponding to the
lines of the three-dimensional pseudo-Euclidean space L lying within the light cone
and its interpretation as the set of points on the unit circle U in the affine Euclidean
plane E; see Sect. 12.1.

The meaning of the notion of distance is that it should be preserved under mo-
tions of the hyperbolic plane. But we have defined a motion as a certain special
projective transformation P(A) of the projective plane P(L). Theorem 9.16 shows
that in general, it is impossible to associate a number that does not change under
an arbitrary projective transformation not only with two points, but even with three
points of the projective line. But we shall use the fact that motions of the hyperbolic
plane are not arbitrary projective transformations P(L), but only those that take the
light cone in the space L into itself.

Namely, to two arbitrary points A and B correspond the lines 〈a〉 and 〈b〉, lying
inside the light cone. We shall show that they determine two additional points, P

6Of course, here we are assuming that they all satisfy the axioms of groups I–IV.
7Felix Klein. Nicht-Euklidische Geometrie, Göttingen, 1893. Reprinted by AMS Chelsea, 2000.
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Fig. 12.5 The segment [PQ]

and Q, that correspond to lines lying on the light cone. But four points of a projec-
tive space lying on a line already determine a number that does not change under
arbitrary projective transformations, namely their cross ratio (defined in Sect. 9.3).
We shall use this number for defining the distance between points A and B . This
definition has the special feature that it uses points corresponding to lines lying on
the light cone (P and Q), which are thus not points of the hyperbolic plane.

We shall assume that the points A and B are distinct (if they coincide, then the
distance between them is zero by definition). This means that the vectors a and b are
linearly independent. It is obvious that then a unique projective line l passes through
these points; it corresponds to the plane L′ = 〈a,b〉. The line l determines a line l′
in the affine Euclidean space E, depicted in Figs. 12.1 and 12.2. Since the line l′
contains the points A and B , which lie inside the circle U , it intersects its boundary
in two points, which we shall take as P and Q. This was in fact already proved in
Sect. 12.1, but we shall now repeat the corresponding argument.

The points of l are the lines 〈x〉 consisting of all vectors proportional to the
vectors x = −→

OA + t
−→
AB , where t is an arbitrary real number. Here the vector

−→
OA

equals a, and the vector
−→
AB = c belongs to the subspace E0 if we assume that the

points A,B and the line l lie in the affine space E. This means that x = a + tc,
where the vector c can be taken as fixed, and the number t as variable. Points x at
the intersection of the line l′ with the light cone V ⊂ L are given by the condition
(x2) = 0, that is,

(
(a + tc)2) = (

a2)+ 2(a, c)t + (
c2)t2 = 0. (12.18)

We know that (a2) < 0, and the vector c belongs to E0. Since E0 is a Euclidean
space and the points A and B are distinct, it follows that (c2) > 0. From this it
follows that the quadratic equation (12.18) in the unknown t has two real roots t1
and t2 of opposite signs. Suppose for the sake of definiteness that t1 < t2. Then
for t1 < t < t2, the value of ((a + tc)2) is negative, and all points of the line l′
corresponding to the values t in this interval belong to L. We see that the line l

intersects the light cone V in two points corresponding to the values t = t1 and
t = t2, while the values t1 < t < t2 are associated with the points of the line L1

(that is, one-dimensional hyperbolic space) passing through A and B . Thus the line
L1 coincides with the line segment l ⊂ E whose endpoints are P and Q, which
correspond to the values t = t1 and t = t2; see Fig. 12.5.

It is clear that point A is contained in the interval (P,Q). Applying the same
argument to the point B , we obtain that the point B is also in the interval (P,Q).

Let us label the points P and Q in such a way that P will denote the endpoint of
the interval (P,Q) that is closer (in the sense of Euclidean distance) to the point A,
and by Q the endpoint that is closer to B , as depicted in Fig. 12.5.
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Now it is possible to give a definition of the distance between points A and B ,
which we shall denote by r(A,B):

r(A,B) = log DV(A,B,Q,P ), (12.19)

where DV(A,B,Q,P ) is the cross ratio (see p. 337). Let us note that in the defi-
nition (12.19), we have not indicated the base of the logarithm. We could take any
base greater than 1, since a change in base results simply in multiplying all distances
by some fixed positive constant. But in any case, the length of a segment AB can be
defined only up to a multiplicative factor that corresponds to the arbitrariness in the
selection of a unit length on a line.

We shall explain a bit later why the logarithm appears in definition (12.19). The
reason for using the cross ratio is explained by the following theorem.

Theorem 12.9 The distance r(A,B) does not change under any motion f of the
hyperbolic plane, that is, r(f (A),f (B)) = r(A,B).

Proof The assertion of the theorem follows at once from the fact that a motion f of
the hyperbolic plane is determined by a certain projective transformation P(A). This
transformation P(A) carries the line l′ passing through points A and B to the line
passing through the points P(A)(A) and P(A)(B). This means that the transforma-
tion takes the points P and Q, the intersection of the line l′ with the boundary of the
disk U , to the points P ′ and Q′, the intersection of the line P(A)(l′) with this bound-
ary. That is, P ′ = P(A)(P ) and Q′ = P(A)(Q), or conversely, Q′ = P(A)(P ) and
P ′ = P(A)(Q). Moreover, the transformation P(A) preserves the cross ratio of four
points on a line (Theorem 9.17). �

To explain the role of the cross ratio, we jumped a bit ahead and skipped the
verification that the argument of the logarithm in formula (12.19) was a number
greater than 1 and also that in the definition of r(A,B), all the conditions entering
into the definition of a distance (p. xvii) were satisfied. We now return to this.

Let us assume that the points P,A,B,Q are arranged in the order shown in
Fig. 12.5. For the cross product, we may use formula (9.28),

DV(A,B,Q,P ) = |AQ| · |PB|
|BQ| · |PA| > 1, (12.20)

since clearly, |AQ| > |BQ| and |PB| > |PA|. Therefore, the argument of the loga-
rithm in formula (12.19) is a number greater than 1, and so the logarithm is a positive
real number. Therefore, r(A,B) > 0 for all pairs of distinct points A and B .

Let us note that it would be possible to make do without the order of the points P

and Q that we chose. For this, it would be sufficient to verify (this follows directly
from the definition of the cross ratio) that under a transposition of the points P and
Q, the cross ratio d is converted into 1/d . Thus the logarithm (12.19) that gives the
distance is defined up to sign, and we can define the distance as the absolute value.
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If we interchange the positions of A and B , then the points P and Q defined in
the agreed-upon way also exchange places. It is easy to verify that the cross ratio
determines a distance according to formula (12.19) that will not change. In other
words, we have the equality

r(B,A) = r(A,B). (12.21)

For any third point C collinear with A and B and lying between them, the con-
dition

r(A,B) = r(A,C) + r(C,B) (12.22)

is satisfied. It follows from the fact that (in the notation we have adopted)

DV(A,B,Q,P ) = |AQ| · |BP |
|BQ| · |AP | = DV(A,C,Q,P ) · DV(C,B,Q,P ), (12.23)

since

DV(A,C,Q,P ) = |AQ| · |CP |
|CQ| · |AP | , DV(C,B,Q,P ) = |CQ| · |BP |

|BQ| · |CP | . (12.24)

For the verification, it remains only to substitute the expressions (12.24) into for-
mula (12.23).

In any sufficiently complete course in geometry, it is proved without using the
parallel postulate (that is, in the framework of “absolute geometry”) that there exists
a function r(A,B) of a pair of points A and B that satisfies the following condi-
tions:

1. r(A,B) > 0 if A �= B , and r(A,B) = 0 if A = B;
2. r(B,A) = r(A,B) for all points A and B;
3. r(A,B) = r(A,C)+ r(C,B) for every point C collinear with A and B and lying

between them;

and most importantly,

4. the function r(A,B) is invariant under motions.

Using the definitions given at the beginning of this book, we may say in short that
r(A,B) is a metric on the set of points in the plane under consideration and motions
are isometries of this metric space.

Such a function is unique if we fix two distinct points A0 and B0 for which
r(A0,B0) = 1 (“unit of measurement”). This means that these assertions also hold
in hyperbolic geometry, and formula (12.19) defines this distance (and the base of
the logarithm in (12.19) is chosen in correspondence with the chosen “unit of mea-
surement”).

Every triple of points A,B,C satisfies the condition

r(A,B) ≤ r(A,C) + r(B,C). (12.25)
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Fig. 12.6 The triangle
inequality

This is the familiar triangle inequality, and in many courses in geometry, it is derived
without use of the parallel postulate, that is, as a theorem of “absolute geometry.”
Thus inequality (12.25) holds as well in hyperbolic geometry. But we shall now give
a direct (that is, resting directly on formula (12.19)) proof of this due to Hilbert.

Let us recall that in the model that we have considered, the points of the hyper-
bolic plane are points of the disk K in the Euclidean plane L, and the lines of the
hyperbolic plane are the line segments of the plane L that lie inside the disk K .

Let us consider three points A,B,C in the disk K . We shall denote the points
of intersection of a line passing through A and B with the boundary of the disk K

by P and Q, and the analogous points for the line passing through A and C will be
denoted by U and V , and for the line passing through B and C, by S and T . See
Fig. 12.6.

Let us denote the point of intersection of the line AB and the line SU by X, and
the point of intersection of the line AB and the line T V by Y . Then we have the
inequality

DV(A,B,Y,X) ≥ DV(A,B,Q,P ). (12.26)

Indeed, the left-hand side of (12.26) is equal by definition to

DV(A,B,Y,X) = |AY | · |BX|
|BY | · |AX| , (12.27)

and its right-hand side is given by the relationship (12.20). Therefore, inequality
(12.26) follows from the fact that

|AY |
|BY | >

|AQ|
|BQ| and

|BX|
|AX| >

|BP |
|AP | . (12.28)

Let us prove the first of inequalities (12.28). Let us define a = |AB|, t1 = |BQ|,
and t2 = |BY |. Then we obviously obtain the expressions |AQ|/|BQ| = (a + t1)/t1
and |AY |/|BY | = (a + t2)/t2. For a > 0, the function (a + t)/t in the variable t

decreases monotonically with increasing t , and therefore, from the fact that t2 < t1
(which is obvious from Fig. 12.6) follows the first of inequalities (12.28). Defining
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a = |AB|, t1 = |AX|, and t2 = |AP |, using completely analogous arguments, we
may prove the second inequality of (12.28).

Let us denote the intersection of the lines SU and T V by W , let us connect this
line with the point C, and let us denote the point of intersection of the line thus ob-
tained with the line AB by D. Then the points X,A,D,Y and points U,A,C,V are
obtained from each other by a perspective mapping just as was done for the points
Y,B,D,X and T ,B,C,S. Then in view of Theorem 9.19, we have the relationships

|AY | · |DX|
|DY | · |AX| = |AV | · |CU |

|CV | · |AU | ,
|BX| · |DY |
|DX| · |AY | = |BS| · |CT |

|CS| · |BT | .

Multiplying these equalities, we have

|AY | · |BX|
|BY | · |AX| = |AV | · |CU |

|CV | · |AU | · |BS| · |CT |
|CS| · |BT | .

Taking the logarithm of the last equality, and taking into account (12.27) for
DV(A,B,Y,X), the analogous expression for DV(A,C,U,V ) and that for DV(B,

C,S,T ), and definition (12.19), we obtain the relationship

log DV(A,B,Y,X) = r(A,C) + r(B,C),

from which, taking into account (12.26), we obtain the required inequality (12.25).
Let us note that if the point B approaches Q along the segment PQ (see

Fig. 12.6), then |BQ| approaches zero, and consequently, r(A,B) approaches in-
finity. This means that despite that fact that the line passing through the points A

and B is represented in our figure by a segment of finite length, its length in the
hyperbolic plane in infinite.

The measurement of angles is similar to that of line segments. As we know, an
arbitrary point O on a line l partitions it into two half-lines. One half-line together
with the point O is called a ray h with center O . Two rays h and k with common
center O are called an angle; we shall assume that the ray h is obtained from k by a
counterclockwise rotation. This angle is denoted by ∠(h, k).

In “absolute geometry,” it is proved that for each angle with vertex at the point
O , there is a unique real number �(h, k) satisfying the following four conditions:

1. �(h, k) > 0 for all h �= k;
2. �(k,h) =�(h, k);
3. if f is a motion and f (h) = h′, f (k) = k′, and O ′ = f (O) is the vertex of the

angle ∠(h′, k′), then �(h′, k′) = �(h, k).

To formulate the fourth property, we must introduce some additional concepts.
Let the rays h and k forming the angle ∠(h, k) lie on lines l1 and l2. The points in
the plane lying on the same side of the line l1 as the points of the half-line k and on
the same side of the line l2 as the points of the half-line h are called interior points
of the angle ∠(h, k). A ray l with the same center O as the rays h and k is said to
be an interior ray of the angle ∠(h, k) if it consists of interior points of this angle.

We can now formulate the last property:
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4. If l is an interior ray of the angle ∠(h, k), then �(h, l) +�(l, k) = �(h, k).

As in the case of distance between points, the measure of an angle is defined
uniquely if we choose a “unit measurement,” that is, if we take a particular angle
∠(h0, k0) as the “unit angle measure.”

We shall point out an explicit method of defining the measure of angles in hyper-
bolic geometry that is realized in the disk K given by the relationship x2 + y2 < 1
in the Euclidean plane L with coordinates x, y.

Let ∠(h′, k′) be the angle with center at the point O ′, and let f be an arbitrary
motion taking the point O ′ to the center O of the disk K . From the definitions, it is
obvious that f takes the half-lines h′ and k′ to some half-lines h and k with center at
the point O . Let us set the measure of �(h′, k′) equal to the Euclidean angle between
the half-lines h and k. The main difficulty in this definition is that it uses a motion
f , and therefore, we must prove that the measure of the angle thus obtained does not
depend on the choice of the motion f (of course, with the condition f (O ′) = O).

Let g be another motion with the same property that g(O ′) = O . Then g−1(O) =
O ′, and this means that fg−1(O) = O , that is, the motion fg−1 leaves the point O

fixed. As we saw in Sect. 12.1 (p. 438), a motion possessing such a property is
of type (a), which means that fg−1 corresponds to an orthogonal transformation
of the Euclidean plane L; that is, the angle ∠(h, k) is taken to the angle ∠(h, k)

via the orthogonal transformation fg−1, which preserves the inner product in L
and therefore does not change the measure of angles. This proves the correctness
of the definition of angle measure that we have introduced. Equally easy are the
verifications of properties 1–3.

The best-known property of angles in hyperbolic geometry is the following.

Theorem 12.10 In hyperbolic geometry, the sum of the angles of a triangle is less
than two right angles, that is, less than π .

Since we are talking about a triangle, we can restrict our attention to the plane
in which this triangle lies and assume that we are working in the hyperbolic plane.
The key result is related to the fact that an angle ∠(h, k) in hyperbolic geometry
also determines a Euclidean angle, and we may then compare the measures of these
angles. We shall denote the measure of the angle ∠(h, k) in hyperbolic geometry, as
before, by �(h, k), and its Euclidean measure by �E(h, k).

Lemma 12.11 If one ray of the angle ∠(h, k) (for example, h) passes through the
center O of the disk K , then the measure of this angle in the sense of hyperbolic
geometry is less than the Euclidean measure, that is,

�(h, k) < �E(h, k). (12.29)

First, we shall show how easily Theorem 12.10 follows from the lemma, and then
we shall prove the lemma itself.

Proof of Theorem 12.10 Let us denote the vertices of the triangle in question by
A,B,C. Since the measure of an angle is invariant under a motion, it follows by
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Fig. 12.7 A triangle in the
hyperbolic plane

Theorem 12.5 that we can choose a motion taking one of the vertices of the triangle
(for example, A) to the center O of the disk K . Let the vertices B and C be taken
to B ′ and C′. See Fig. 12.7.

It suffices to prove the theorem for the triangle OB ′C′. But for the angle
∠B ′OC′, we have by definition the equality

�B ′OC′ = �EB ′OC′,

and for the two remaining angles, we have by the lemma, the inequalities

�OB ′C′ < �EOB ′C′, �OC′B ′ < �EOC′B ′.

Adding, we obtain for the sum of the angles of triangle OB ′C′ the inequality

�B ′OC′ +�OB ′C′ +�OC′B ′ < �EB ′OC′ +�EOB ′C′ +�EOC′B ′.

By a familiar theorem of Euclidean geometry, the sum on the right-hand side is
equal to π , and this proves Theorem 12.10. �

Proof of Lemma 12.11 We shall have to use the explicit form of the definition of the
measure of an angle. Let the ray h of the angle ∠(h, k) pass through the point O .
To describe the disk K , we shall introduce a Euclidean rectangular system of co-
ordinates (x, y) and assume that the vertex of angle ∠(h, k) is located at the point
O ′ with coordinates (λ,0), where λ �= 0. For this, it is necessary to execute a ro-
tation about the center of the disk in such a way that the point O ′ passes through
some point of the line y = 0 and use the fact that angles are invariant under such a
rotation.

Now we must write down explicitly a motion f of the hyperbolic plane taking the
point O to O ′. We already constructed such a motion in Sect. 12.1; see Example 12.4
on p. 439. There, we proved that there exists a motion of the hyperbolic plane that
takes the point with coordinates (x, y) to the point with coordinates (x′, y′), given
by the relationships

x′ = ax + b

bx + a
, y′ = y

bx + a
, a2 − b2 = 1. (12.30)
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Fig. 12.8 Angles in the
hyperbolic plane

If we want the point O ′ = (λ,0) to be sent to the origin O = (0,0), then we
should set aλ + b = 0, or equivalently, λ = −b/a. It is not difficult to verify that it
is possible to represent any number λ in this form. Thus the mapping (12.30) has
the form

x′ = x − λ

1 − λx
, y′ = y

a(1 − λx)
. (12.31)

Let the ray k intersect the y-axis at the point A with coordinates (0,μ); see Fig. 12.8.
(We note that this point is not required to be in the disk K .)

From formula (12.31), it is clear that our transformation takes a vertical line x = c

to a vertical line x = c′. The point O is taken to the point O = (−λ,0), the point
A = (0,μ) to the point A = (−λ,μ/a), and the vertical line OA to the vertical line
OA. By the definition of an angle in hyperbolic geometry, �OO ′A = �EOOA.
The tangents of the Euclidean angles are known to us:

tan
(
�EOO ′A

) = μ

λ
, tan(�EOOA) = OA

λ
= μ

λa
;

see Fig. 12.8. Since a2 = 1+b2, we have a > 1, and we see that in Euclidean geom-
etry, we have the inequality tan(�EOOA) < tan(�EOO ′A). The tangent is a strictly
increasing function, and therefore we have the inequality �EOOA < �EOO ′A for
angles that are Euclidean. But �OO ′A = �EOOA, and this means that �OO ′A <

�EOO ′A. �

It is of interest to compare Theorem 12.10 with the analogous result for spheri-
cal geometry. We have not yet encountered spherical geometry in this course, even
though it was developed in detail much earlier than hyperbolic geometry, indeed
in antiquity. In spherical geometry, the role of lines in played by great circles on
the sphere, that is, sections of the sphere obtained by all possible planes passing
through its center. The analogy between great circles on the sphere and lines in the
plane consists in the fact that the arc of the great circle joining points A and B has
length no greater than that of any other curve on the sphere with endpoints A and B .
This arc length of a great circle (which, of course, depends also on the radius R of
the sphere) is called the distance on the sphere from point A to point B .
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Fig. 12.9 A triangle on the
sphere

The measurement of lengths and angles on the sphere can generally be defined
in exactly the same way as in Euclidean or hyperbolic geometry. Here the angle
between two “lines” (that is, great circles) is equal to the value of the dihedral angle
formed by the planes passing through these great circles. We have the following
result.

Theorem 12.12 The sum of the angles of a triangle on the sphere is greater than
two right angles, that is, greater than π .

Proof Let there be given a triangle with vertices A,B,C on a sphere of radius R.
Let us draw all the great circles whose arcs are the sides AB , AC, and BC of triangle
ABC. See Fig. 12.9.

Let us denote by ΣA the part of the sphere enclosed between the great circle
passing through the points A,B and the great circle passing through A,C. We in-
troduce the analogous notation ΣB and ΣC . Let us denote by Â the measure of the
dihedral angle B̂AC and similarly for B̂ and Ĉ. Then the assertion of the theorem
is equivalent to asserting that Â + B̂ + Ĉ > π .

But it is easy to see that the area of ΣA is the same fraction of the area of the
sphere as 2Â is of 2π . Since the area of the sphere is equal to 4πR2, it follows that
the area of ΣA is equal to

4πR2 · 2Â

2π
= 4R2Â.

Similarly, we obtain expressions for the areas ΣB and ΣC ; they are equal to 4R2B̂

and 4R2Ĉ respectively. Let us now observe that the regions ΣA, ΣB , and ΣC to-
gether cover the entire sphere. Here each point of the sphere not part of triangle
ABC or of triangle A′B ′C′ symmetric to it on the sphere belongs to only one of
the regions ΣA, ΣB , and ΣC , and every point in triangle ABC or the symmetric
triangle A′B ′C′ is contained in all three regions. We therefore have

4R2(Â + B̂ + Ĉ) = 4πR2 + 2S�ABC + 2S�A′B ′C′ = 4πR2 + 4S�ABC.



464 12 Hyperbolic Geometry

From this we obtain the relationship

Â + B̂ + Ĉ = π + S�ABC

R2
, (12.32)

from which it follows that Â + B̂ + Ĉ > π . �

Formula (12.32) gives an example of a series of relationships systematically de-
veloped by Lobachevsky: if we were to assume that R2 < 0 (that is, R is a purely
imaginary number), then clearly, we would obtain from (12.32) the inequality

Â + B̂ + Ĉ < π,

which is Theorem 12.10 of hyperbolic geometry. This is why Lobachevsky con-
sidered that his geometry is realized “on a sphere of imaginary radius.” However,
the analogy between theorems obtained on the basis of the negation of the “fifth
postulate” and formulas obtained from those of spherical geometry by replacing R2

with a negative number had been already noted by many mathematicians working
on these questions (some even as early as the eighteenth century).

The reader should be warned that spherical geometry is entirely inconsistent with
the system of axioms that we considered in Sect. 12.2. That system does not in-
clude one of the fundamental axioms of relationship: several different lines can pass
through two distinct points. Indeed, infinitely many great circles pass through any
two antipodal points on the sphere. In connection with this, Riemann proposed an-
other geometry less radically different from Euclidean geometry. We shall describe
it in the two-dimensional case.

For this, we shall use a description of the projective plane Π as the collection of
all lines in three-dimensional space passing through some point O . Let us consider
the sphere S with center at O . Every point P ∈ S together with the center O of
the sphere determines a line l, that is, some point Q of the projective plane Π . The
association P → Q defines a mapping of the sphere S to the projective plane Π

whereby great circles on the sphere are taken precisely to lines of Π . Clearly, exactly
two points of the sphere are mapped to a single point Q ∈ Π : together with the point
P , there is also the second point of the intersection of the line l with the sphere, that
is, the antipodal point P ′. But Euclidean motions taking the sphere S into itself (we
might call them motions of spherical geometry) give certain transformations defined
on the projective plane Π and satisfying the axioms of motion. It is possible as well
to transfer the measures of lengths and angles from the sphere S to the projective
plane Π . Then we have the analogue of Theorem 12.12 from spherical geometry.

This branch of geometry is called elliptic geometry.8 In elliptic geometry, every
pair of lines intersect, since such is the case in the projective plane. Thus there are no
parallel lines. However, in “absolute geometry,” it is proved that there exists at least

8Elliptic geometry is sometimes called Riemannian geometry, but that term is usually reserved for
the branch of differential geometry that studies Riemannian manifolds.
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Fig. 12.10 Elliptic geometry

one line passing through any given point A not lying on a given line l that is parallel
to l. This means that in elliptic geometry, not all the axioms of “absolute geometry”
are satisfied. The reason for this is easily ascertained: in elliptic geometry, there
in no natural concept of “lying between.” Indeed, a great circle of the sphere S is
mapped to a line l of the projective plane Π , where two antipodal points of the
sphere (A and A′, B and B ′, C and C′, and so on) are taken to one point of the
plane Π . See Fig. 12.10. It is clear from the figure that in elliptic geometry, we may
assume equally well that the point C does or does not lie between A and B .

Nevertheless, elliptic geometry possesses the property of “free mobility.” More-
over, one can prove (Helmholtz–Lie theorem) that among all geometries (assuming
some rigorous definition of this term), only three of them—Euclidean, hyperbolic,
and elliptic—possess this property.



Chapter 13
Groups, Rings, and Modules

13.1 Groups and Homomorphisms

The concept of a group is defined axiomatically, analogously to the notions of vec-
tor, inner product, and affine space. Such an abstract definition is justified by the
wealth of examples of groups throughout all of mathematics.

Definition 13.1 A group is a set G on which is defined an operation that assigns
to each pair of elements of this set some third element; that is, there is defined
a mapping G × G → G. The element associated with the elements g1 and g2 by
this rule is called their product and is denoted by g1 · g2 or simply g1g2. For this
mapping, the following conditions must also be satisfied:

(1) There exists an element e ∈ G such that for every g ∈ G, we have the relation-
ships eg = g and ge = g. This element is called the identity.1

(2) For each element g ∈ G, there exist an element g′ ∈ G such that gg′ = e and an
element g′′ ∈ G such that g′′g = e. The element g′ is called a right inverse, and
the element g′′ is called a left inverse of the element g.

(3) For every triple of elements g1, g2, g3 ∈ G, the following relationship holds:

(g1g2)g3 = g1(g2g3). (13.1)

This last property is called associativity, and it is a property that we have already
met repeatedly, for example in connection with the composition of mappings and
matrix multiplication, and also in the construction of the exterior algebra. We con-
sidered the associative property in its most general form on p. xv, where we proved
that equality (13.1) makes it possible to define the product of an arbitrary number
of factors g1g2 · · ·gk , which then depends only on the order of the factors and not

1The identity element of a group is unique. Indeed, if there existed another identity element e′ ∈ G,
then by definition, we would have the equalities ee′ = e′ and ee′ = e, from which it follows that
e = e′.
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on the arrangement of parentheses in the product. The reasoning given there applies,
obviously, to every group.

The condition of associativity has other important consequences. From it, de-
rives, for example, the fact that if g′ is a right inverse of g, and g′′ is a left inverse,
then

g′′(gg′) = g′′e = g′′, g′′(gg′) = (
g′′g

)
g′ = eg′ = g′,

from which it follows that g′ = g′′. Thus the left and right inverses of any given
element g ∈ G coincide. This unique element g′ = g′′ is called simply the inverse
of g and is denoted by g−1.

Definition 13.2 If the number of elements belonging to a group G is finite, then the
group G is called a finite group, and otherwise, it is called an infinite group. The
number of distinct elements in a finite group G is called its order and is denoted by
|G|.

Let M be an arbitrary set, and let us consider the collection of all bijective map-
pings between M and itself. Such mappings are also called transformations of the
set M . In the introductory section of this book, we defined the operation of com-
position (that is, the sequential application) of arbitrary mappings of arbitrary sets
(p. xiv). It follows from the properties proved there that the collection of all trans-
formations of a set M together with the operation of composition forms a group,
where the inverse of each transformation f : M → M is given by the inverse map-
ping f −1 : M → M , while the identity is obviously given by the identity mapping
on the set M . Such groups are called transformation groups, and it is with these that
the majority of applications of groups are associated.

It is sometimes necessary to consider not all the transformations of a set, but to
limit our consideration to some subset. The situation that thus arises can be formu-
lated conveniently as follows:

Definition 13.3 A subset G′ ⊂ G of elements of a group G is called a subgroup of
G if the following conditions are satisfied:

(a) For every pair of elements g1, g2 ∈ G′, their product g1g2 is again in G′.
(b) G′ contains the identity element e.
(c) For every g ∈ G′, its inverse g−1 is again in G′.

It is obvious that a subgroup G′ is itself a group. Thus from the group of all
transformations, we obtain a set of examples (indeed, the majority of examples of
groups). Let us enumerate some that are met most frequently.

Example 13.4 The following sets are groups under the operation of composition of
mappings.

1. the set of nonsingular linear transformations of a vector space;
2. the set of orthogonal transformations of a Euclidean space;
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3. the set of proper orthogonal transformations of a Euclidean space;
4. the set of Lorentz transformations of a pseudo-Euclidean space;
5. the set of nonsingular affine transformations of an affine space;
6. the set of projective transformations of a projective space;
7. the set of motions of an affine Euclidean space;
8. the set of motions of a hyperbolic space.

All the groups enumerated above are groups of transformations (the set M is
obviously the underlying set of the given space). Let us note that in the case of
vector and affine spaces, there is the crucial requirement of the nonsingularity of the
linear or affine transformations that guarantees the bijectivity of each mapping and
thus the existence of an inverse element for each element of the group.2

However, not all naturally occurring groups are groups of transformations. For
example, with respect to the operation of addition, the set of all integers forms a
group, as do the sets of the rational, real, and complex numbers, and likewise, the
set of all vectors belonging to any arbitrary vector space.

Let us remark that the axioms of motion 1, 2, and 3 introduced in Sect. 12.2
can be expressed together as a single requirement, namely that the motions form a
group.

Example 13.5 Let us consider a finite set M consisting of n elements. A transfor-
mation f : M → M is called a permutation, and the group of all permutations of the
set M is called the symmetric group of degree n and is denoted by Sn. It is obvious
that the group Sn is finite.

We considered permutations earlier, in Sect. 2.6, in connection with the notions
of symmetric and antisymmetric functions, and we saw that for defining a permu-
tation f : M → M , one can introduce a numeration of the elements of the set M ,
that is, one can write the set in the form M = {a1, . . . , an} and designate the im-
ages f (a1), . . . , f (an) of all the elements a1, . . . , an. Namely, let f (a1) = aj1 , . . . ,
f (an) = ajn . Then a permutation is defined by the matrix

A =
(

1 2 · · · n

j1 j2 · · · jn

)
, (13.2)

where in the upper row are written in succession all the natural numbers from 1
to n, and in the lower row, under the number k stands the number jk such that
f (ak) = ajk

. Since a permutation f : M → M is a bijective mapping, it follows that
the lower row contains all the numbers from 1 to n, except that they are written in
some other order. In other words, (j1, . . . , jn) is some permutation of the numbers
(1, . . . , n).

2Unfortunately, there is a certain amount of disagreement over terminology, of which the reader
should be aware: above, we defined a transformation of a set as a bijective mapping into itself, while
at the same time, a linear (or affine) transformation of a vector (or affine) space is not by definition
necessarily bijective, and to have bijectivity here, it is necessary to specify that the transformations
be nonsingular.
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Writing a permutation in the form (13.2) allows us in particular to ascertain eas-
ily that |Sn| = n!. Let us prove this by induction on n. For n = 1, this is obvious: the
group S1 contains the single permutation that is the identity mapping on the set M

consisting of a single element. Let n > 1. Then by enumerating the elements of the
set M in every possible way, we obtain a bijection between Sn and the set of ma-
trices A of the form (13.2), whose first row contains the elements 1, . . . , n, and the
elements j1, . . . , jn of the second row take all possible values from 1 to n. Let A′ be
the matrix obtained from A by deleting its last column, containing the element jn.
Let us fix this element: jn = k. Then the elements j1, . . . , jn−1 of the matrix A′ as-
sume all possible values from the collection of the n − 1 numbers (1, . . . , k̆, . . . , n),
where the symbol ˘ , as before, denotes the omission of the corresponding element.
It is clear that the set of all possible matrices A′ is in bijective correspondence with
Sn−1, and by the induction hypothesis, the number of distinct matrices A′ is equal to
|Sn−1| = (n − 1)!. But since the element jn = k can be equal to any natural number
from 1 to n, the number of distinct matrices A is equal to n(n − 1)! = n!. This gives
us the equality |Sn| = n!.

Let us note that the numeration of the elements of the set M used for writing
down permutations plays the same role as the introduction of coordinates (that is, a
basis) in a vector space. Furthermore, the matrix (13.2) is analogous to the matrix
of a linear transformation of a space, which is defined only after the choice of a
basis and depends on that choice. However, for our further purposes, it will be more
convenient to use concepts that are not connected with such a choice of numeration
of elements.

We shall use the concept of transposition, which was introduced in Sect. 2.6
(p. 45). The definition given there can be formulated as follows. Let a and b be two
distinct elements of the set M . Then a transposition is a permutation of the set M

that interchanges the places of the elements a and b and leaves all other elements of
the set M fixed. Denoting such a transposition by τa,b , we can express this definition
by the relationships

τa,b(a) = b, τa,b(b) = a, τa,b(x) = x (13.3)

for all x �= a and x �= b.
In this notation, Theorem 2.23 from Sect. 2.6 can be formulated as follows: every

permutation g of a finite set is the product of a finite number of transpositions, that
is,

g = τa1,b1τa2,b2 · · · τak,bk
. (13.4)

As we saw in Sect. 2.6, in relationship (13.4), the number k and the choice of ele-
ments a1, b1, . . . , ak, bk for the given permutation g are not uniquely defined. This
means that for a given permutation g, the representation (13.4) is not unique. How-
ever, as was proved in Sect. 2.6 (Theorem 2.25), the parity of the number k of a
permutation g is uniquely determined. Permutations for which the number k in the
representation (13.4) is even are called even, and those for which the number k is
odd are called odd.
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Example 13.6 The collection of all even permutations of n elements forms a sub-
group of the symmetric group Sn (it obviously satisfies conditions (a), (b), (c) in
the definition of a subgroup). It is called the alternating group of degree n and is
denoted by An.

Definition 13.7 Let g be an element of G. Then for every natural number n, the el-
ement gn = g · · ·g (n-fold product) is defined. For a negative integer m, the element
gm is equal to (g−1)−m, and for zero, we have g0 = e.

It is easily verified that for arbitrary integers m and n, we have the relationship

gmgn = gm+n.

From this, it is clear that the collection of elements of the form gn, where n runs
over the set of integers, forms a subgroup. It is called the cyclic subgroup generated
by the element g and is denoted by {g}.

There are two cases that can occur:

(a) All the elements gn, as n runs through the set of integers, are distinct. In this
case, we say that g is an element of infinite order in the group G.

(b) For some integers m and n, m �= n, we have the equality gm = gn. Then, obvi-
ously, gm−n = e. This means that there exists a natural number k (for instance
|m−n|) such that gk = e. In this case, we say that g is an element of finite order
in the group G.

If g is an element of finite order, then the smallest natural number k such that
gk = e is called the order of the element g. If for some integer n, we have gn = e,
then the number n is an integer multiple of the order k of the element g. Indeed,
if such were not the case, then we could divide the number n by k with nonzero
remainder: n = qk + r , where 0 < r < k. From the equalities gn = e and gk = e, we
could conclude that gr = e, in contradiction to the definition of the order k. If in the
group G there exists an element g such that G = {g}, then the group G is called a
cyclic group. It is obvious that if G = {g} and the element g has finite order k, then
|G| = k. Indeed, in this case, e, g, g2, . . . , gk−1 are all the distinct elements of the
group G.

Now we shall move on to discuss mappings of groups (homomorphisms), which
play a role in group theory analogous to that of linear transformations of vector
spaces in linear algebra. Let G and G′ be any two groups, and let e ∈ G and e′ ∈ G′
be their identity elements.

Definition 13.8 A mapping f : G → G′ is called a homomorphism if for every pair
of elements g1 and g2 of the group G, we have the relationship

f (g1g2) = f (g1)f (g2), (13.5)

where it is obviously implied that on the left- and right-hand sides of equality (13.5),
the juxtaposition of elements indicates the multiplication operation in the respective
group (on the left, in G; on the right, in G′).
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From equality (13.5), it is easy to derive the simplest properties of homomor-
phisms:

1. f (e) = e′;
2. f (g−1) = (f (g))−1 for every g ∈ G;
3. f (gn) = (f (g))n for every g ∈ G and every integer n.

For the proof of the first property, let us set g1 = g2 = e in formula (13.5). Then
taking into account the equality e = ee, which is obvious from the definition of the
identity element, we obtain that

f (e) = f (ee) = f (e)f (e).

It remains only to multiply both sides of the relationship f (e) = f (e)f (e) by the
element (f (e))−1 of the group G′, after which we obtain the required equality e′ =
f (e). The second property follows at once from the first: setting in (13.5) g1 = g

and g2 = g−1, and taking into account the equality e = gg−1, we obtain

e′ = f (e) = f
(
gg−1) = f (g)f

(
g−1),

from which, by the definition of the inverse element, it follows that f (g−1) =
(f (g))−1. Finally, the third property is obtained for positive n by induction from
(13.5), and for negative n, it is also necessary to apply property 2.

Definition 13.9 A mapping f : G → G′ is called an isomorphism if it is a homo-
morphism that is also a bijection. Groups G and G′ are said to be isomorphic is
there exists an isomorphism f : G → G′. This is denoted as follows: G � G′.

Example 13.10 Assigning to each nonsingular linear transformation of a vector
space L of dimension n its matrix (in some fixed basis of the space L), we obtain an
isomorphism between the group of nonsingular linear transformations of this space
and the group of nonsingular square matrices of order n.

The notion of isomorphism plays the same role in group theory as the notion of
isomorphism plays in the theory of vector spaces, and the notion of homomorphism
plays the same role as the notion of arbitrary linear transformation (in vector spaces
of arbitrary dimension). The analogy between these concepts is revealed particularly
in the fact that the answer to the question whether a homomorphism f : G → G′ is
an isomorphism can be formulated in terms of its image and kernel, just as was the
case for linear mappings.

The image of a homomorphism f is the set f (G), that is, simply the image of
f as a mapping of sets G → G′. If follows from relationship (13.5) that f (G) is a
subgroup of G′. The kernel of a homomorphism f is the set of elements g ∈ G such
that f (g) = e′. It is likewise not difficult to conclude from (13.5) that the kernel is a
subgroup of G.

Using the notions of image and kernel, we may say that a homomorphism
f : G → G′ is an isomorphism if and only if its image consists of the entire group
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G′ and its kernel consists of only the identity element e ∈ G. The proof of this
assertion is based on relationship (13.5) and properties 1 and 2: if for two ele-
ments g1 and g2 of a group G, we have the equality f (g1) = f (g2), then through
right multiplying both sides by the element (f (g1))

−1 of the group G′, we obtain
e′ = f (g2)(f (g1))

−1 = f (g2g
−1
1 ), from which it follows that g2g

−1
1 = e, that is,

g1 = g2.
It is important, however, to note that the analogy between isomorphisms of

groups and isomorphisms of vector spaces does not extend all that far: most of the
theorems from Chap. 3 do not have suitable analogues for groups, even for finite
groups. For example, one of the most important results of Chap. 3 (Theorem 3.64)
states that all vector spaces of a given finite dimension are isomorphic to one an-
other. But there exist even finite groups of a given order that are not isomorphic; see
Example 13.24 on p. 484.

Another property of groups is related to whether the product of elements in a
group depends on the order in which they are multiplied. In the definition of a group,
no condition of this sort was imposed, and therefore, we may assume that in general,
g1g2 �= g2g1. Very frequently, such is the case. For example, nonsingular square
matrices of a given order n with the standard operation of matrix multiplication
form a group, and as the example presented in Sect. 2.9 on p. 64 shows, already for
n = 2, it is generally the case that AB �= BA.

Definition 13.11 If in a group G the equality g1g2 = g2g1 holds for every pair of
elements g1, g2 ∈ G, then G is called a commutative group or, more usually, an
abelian group.3

For example, the groups of integers, rational numbers, real numbers, and complex
numbers with the operation of addition are all abelian. Likewise, a vector space is
an abelian group with respect to the operation of vector addition. It is easy to see
that every cyclic group is abelian.

Let us present one result that holds for all finite groups but that is especially easy
to prove (and we shall use it frequently in the sequel) for abelian groups.

Lemma 13.12 For every finite abelian group G, the order of each of its elements
divides the order of the group.

Proof Let us denote by g1, g2, . . . , gn the complete set of elements of G (so we
obviously have n = |G|), and let us right multiply each of them by some element
g ∈ G. The elements thus obtained, g1g,g2g, . . . , gng, will again all be distinct.
Indeed, given the equality gig = gjg, right multiplying both sides by g−1 yields the
equality gi = gj . Since the group G contains n elements altogether, it follows that
the elements g1g,g2g, . . . , gng are the same as the elements g1, g2, . . . , gn, though
perhaps arranged in some other order:

g1g = gi1, g2g = gi2, . . . , gng = gin .

3Named in honor of the Norwegian mathematician Niels Henrik Abel (1802–1829).
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On multiplying these equalities, we obtain

(g1g)(g2g) · · · (gng) = gi1gi2 · · ·gin . (13.6)

Since the group G is abelian, we have

(g1g)(g2g) · · · (gng) = g1g2 · · ·gng
n,

and since gi1, gi2, . . . , gin are the same elements g1, g2, . . . , gn, then setting h =
g1g2 · · ·gn, we obtain from (13.6) the equality hgn = h. Left multiplying both sides
of the last equality by h−1, we obtain gn = e. As we saw above, it then follows that
the order of the element g divides the number n = |G|. �

Definition 13.13 Let H1,H2, . . . ,Hr be subgroups of G. The group G is called
the direct product of the subgroups H1,H2, . . . ,Hr if for all elements hi ∈ Hi and
hj ∈ Hj from distinct subgroups, we have the relationship hihj = hjhi , and every
element g ∈ G can be represented in the form

g = h1h2 · · ·hr, hi ∈ Hi, i = 1,2, . . . , r,

and for each element g ∈ G, such a representation is unique. The fact that the group
G is a direct product of subgroups H1,H2, . . . ,Hr is denoted by

G = H1 × H2 × · · · × Hr. (13.7)

In the case of abelian groups, a different terminology is usually used, related to
the majority of examples of interest. Namely, the operation defined on the group
is called addition instead of multiplication, and it is denoted not by g1g2, but by
g1 +g2. In keeping with this notation, the identity element is called the zero element
and is denoted by 0, and not by e. The inverse element is called the negative or
additive inverse and is denoted not by g−1, but by −g, and the exponential notation
gn is replaced by the multiplicative notation ng, which is defined similarly: ng =
g +· · ·+g (n-fold sum) if n > 0, by ng = (−g)+· · ·+ (−g) (n-fold sum) if n < 0,
and by ng = 0 if n = 0. The definition of homomorphism remains exactly the same
in this case, where it is required only to replace in formula (13.5) the symbol for the
group operation:

f (g1 + g2) = f (g1) + f (g2).

Properties 1–3 here take the following form:

1. f (0) = 0′;
2. f (−g) = −f (g) for all g ∈ G;
3. f (ng) = nf (g) for all g ∈ G and for every integer n.

This terminology agrees with the example of the set of integers and, in the termi-
nology we employed earlier, the example of vectors that form an abelian group with
respect to the operation of addition.
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In the case of abelian groups (with the operation of addition), instead of the
direct product of subgroups H1,H2, . . . ,Hr one speaks of their direct sum. Then
the definition of the direct sum reduces to the condition that every element g ∈ G

can be represented in the form

g = h1 + h2 + · · · + hr, hi ∈ Hi, i = 1,2, . . . , r,

and that for each element g ∈ G, the representation is unique. It is obvious that this
last requirement is equivalent to the requirement that the equality h1 + h2 + · · · +
hr = 0 be possible only if h1 = 0, h2 = 0, . . . , hr = 0. That a group G is the direct
sum of subgroups H1,H2, . . . ,Hr is denoted by

G = H1 ⊕ H2 ⊕ · · · ⊕ Hr. (13.8)

It is obvious that in both cases (13.7) and (13.8), the order of the group G is equal
to

|G| = |H1| · |H2| · · · |Hr |.
In perfect analogy to how things were done in Sect. 3.1 for vector spaces, we may

define the direct product (or direct sum) of groups that in general are not originally
the subgroups of any particular group and that even, perhaps, are of completely
different natures from one another.

Example 13.14 If we map every orthogonal transformation U of a Euclidean space
to its determinant |U|, which, as we know, is equal to +1 or −1, we obtain a ho-
momorphism of the group of orthogonal transformations into the symmetric group
S2 of order 2. If we map every Lorentz transformation U of a pseudo-Euclidean
space to the pair of numbers ε(U) = (|U|, ν(U)), defined in Sect. 7.8, we obtain a
homomorphism of the group of Lorentz transformations into the group S2 × S2.

Example 13.15 Let (V ,L) be an affine Euclidean space of dimension n and G the
group of its motions. Then the assertion of Theorem 8.37 can be formulated as the
equality G = Tn ×On, where Tn is the group of translations of the space V , and On

is the group of orthogonal transformations of the space L. Let us note that Tn � L,
where L is understood as a group under the operation of vector addition. Indeed, let
us define the mapping f : Tn → L that to each translation Ta by the vector a assigns
this vector a. Obviously, the mapping f is bijective, and by virtue of the property
TaTb = Ta+b , it is an isomorphism. Thus Theorem 8.37 can be formulated as the
relationship G � L × On.

13.2 Decomposition of Finite Abelian Groups

Later in this chapter we shall restrict our attention to the study of finite groups.
The highest goal in this area of group theory is to find a construction that gives a



476 13 Groups, Rings, and Modules

description of all finite groups. But such a goal is far from accessible; at least at
present, we are far from attaining it. However, for finite abelian groups, the answer
to this question turns out to be unexpectedly simple. Moreover, both the answer and
its proof are very similar to Theorem 5.12 on the decomposition of a vector space
as a direct sum of cyclic subspaces. For the proof, we shall require the following
lemmas.

Lemma 13.16 Let B be a subgroup of A, and a an element of the group A of
order k. If there exists a number m ∈N relatively prime to k such that ma ∈ B , then
a is an element of B .

Proof Since the numbers m and k are relatively prime, there exist integers r and s

such that kr + ms = 1. Multiplying ma by s and adding kra to the result (which is
equal to zero, since k is the order of the element a), we obtain a. But sma = s(ma)

belongs to the subgroup B . From this, it follows that a is also an element of B . �

Lemma 13.17 If A = {a} is a cyclic group of order n, and we set b = ma, where
m ∈ N is relatively prime to n, then the cyclic subgroup B = {b} generated by the
element b coincides with A.

Proof Since a ∈ A, we have by Lemma 13.12 that the order k of the element a

divides the order of the group A, which is equal to n, and the relative primality
of the numbers m and n implies the relative primality of the numbers k and m.
From Lemma 13.16, it follows that a ∈ B , which means that A ⊂ B , and since we
obviously have also B ⊂ A, we obtain the required equality B = A. �

Corollary 13.18 Under the assumptions of Lemma 13.17, every element c ∈ A can
be expressed in the form

c = md, d ∈ A,m ∈ Z. (13.9)

Indeed, if in the notation of Lemma 13.17, the group A is the group {b}, then the
element c has the form kb, and since b = ma, we obtain equality (13.9) in which
d = ka.

Definition 13.19 A subgroup B of a group A is said to be maximal if B �= A and B

is contained in no subgroup other than A.

It is obvious that there exist maximal subgroups in every finite group that consists
of more than just a single element. Indeed, beginning with the identity subgroup
(that is, the subgroup consisting of a single element), we can include it, if it is
not itself maximal, in some subgroup B1 different from A. If in B1 we have not
yet obtained a maximal subgroup, then we can include it in some subgroup B2
different from A. Continuing this process, we eventually can go no further, since
all the subgroups B1,B2, . . . are contained in the finite group A. The last subgroup
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obtained when we stop the process will be maximal. We remark that we do not assert
(nor is it true) that the maximal subgroup we have constructed is unique.

Lemma 13.20 For every maximal subgroup B of a finite abelian group A, there
exists an element a ∈ A not belonging to B such that the smallest number m ∈N for
which ma belongs to B is prime, and every element x ∈ A can be represented in the
form

x = ka + b, (13.10)

for k an integer, b ∈ B .

Later, we shall denote the prime number m that appears in Lemma 13.20 by p.

Proof of Lemma 13.20 Let us take as a any element of the group A not belonging
to the subgroup B . The collection of all elements of the form ka + b, where k is
an arbitrary integer and b an arbitrary element of B , obviously forms a subgroup
containing B (it is easy to see that B consists of elements x such that in the repre-
sentation x = ka + b, the number k is equal to 0). It is obvious that this subgroup
does not coincide with B , since it contains the element a (for k = 1 and b = 0), and
this means, in view of the maximality of the subgroup B , that it coincides with A.
From this follows the representation (13.10) for every element x in the group A.

It remains to prove that for some prime number p, the element pa belongs to B .
Since the element a is of finite order, we must have na = 0 for some n > 0. In
particular, na ∈ B . Let us take the smallest m ∈ N for which ma ∈ B and prove that
it is prime.

Suppose that such is not the case, and that p is a prime divisor of m. Then m =
pm1 for some integer m1 < m. Let us set a1 = m1a. As we have seen, the collection
of all elements of the form ka1 + b (for arbitrary integer k and b ∈ B) forms a
subgroup of the group A containing B . If the element a1 were contained in B ,
then that would contradict the choice of m as the smallest natural number such that
ma ∈ B . This means that a1 /∈ B , and in view of the maximality of the subgroup B ,
the subgroup that we constructed of elements of the form ka1 + b coincides with A.
In particular, it contains the element a, that is, a = ka1 + b for some k and b. From
this, it follows that pa = kpa1 +pb. But pa1 = pm1a = ma ∈ B , and since pb ∈ B ,
this means that pa ∈ B , which contradicts the minimality of m. This means that the
assumption that m has prime divisors less than m is false, and so m = p is a prime
number. �

Remark 13.21 We chose as a an arbitrary element of the group A not contained
in B . In particular, in place of a, we could as well choose any element a′ = a + b,
where b ∈ B . Indeed, from a = a′ − b and a′ ∈ B it would follow that we would
also have a ∈ B .

We can now state the fundamental theorem of abelian groups.
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Theorem 13.22 Every finite abelian group is the direct sum of cyclic subgroups
whose orders are equal to powers of prime numbers.

Thus, the theorem asserts that every finite abelian group A has the decomposition

A = A1 ⊕ · · · ⊕ Ar, (13.11)

where the subgroups Ai are cyclic, that is, Ai = {ai}, and their orders are powers of
prime numbers, that is, |Ai | = p

mi

i , where pi are prime numbers.

Proof of Theorem 13.22 Our proof is by induction on the order of the group A. For
the group of order 1, the theorem is obvious. Therefore, to prove the theorem for a
group A, we may assume that it has been proved for all subgroups B ⊂ A, B �= A,
since for an arbitrary subset B ⊂ A with B �= A, the number of elements of B is less
than |A|.

In particular, let B be a maximal subgroup of the group A. By the induction
hypothesis, the theorem is valid for this subgroup, and it therefore has the decom-
position

B = C1 ⊕ · · · ⊕ Cr, (13.12)

in which the Ci are cyclic subgroups each of which has order the power of a prime
number:

Ci = {ci}, p
mi

i ci = 0.

Lemma 13.20 holds for the subgroup B; let a ∈ A, a /∈ B , be the element provided
for in the formulation of this lemma. By hypothesis, every element x ∈ B can be
represented in the form

x = k1c1 + · · · + krcr .

In particular, this holds for the element b = pa (in the notation of Lemma 13.20):

pa = k1c1 + · · · + krcr .

Let us select the terms kici in this decomposition that can be written in the form
pdi , where di ∈ Ci . These are first of all, the terms kici for i such that pi �= p.
This follows from Corollary 13.18. Moreover, all elements of the form kici possess
this property if pi = p and ki is divisible by p. Let the chosen elements be kici ,
i = 1, . . . , s −1. Then for the remaining elements kici , i = s, . . . , r , we have pi = p

and ki is not divisible by p. Setting

kici = pdi, di ∈ Ci, i = 1, . . . , s − 1, d1 + · · · + ds−1 = d, (13.13)

we obtain

pa = pd + kscs + · · · + krcr .
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We can now use the freedom in the choice of the element a ∈ A, which was men-
tioned in Remark 13.21, and take instead of a, the element a′ = a − d , since d ∈ B

in view of formula (13.13). We then have

pa′ = kscs + · · · + krcr . (13.14)

There are now two possible cases.

Case 1. The number s − 1 is equal to r , and then equality (13.14) gives

pa′ = 0.

In this case, the group A decomposes as a direct sum of cyclic subgroups as follows:

A = C1 ⊕ · · · ⊕ Cr ⊕ Cr+1,

where Cr+1 = {a′} is a subgroup of order p.
Indeed, Lemma 13.20 asserts that every element x ∈ A can be represented in the

form ka′ + b, and since in view of (13.12), the element b can be represented in the
form

b = k1c1 + · · · + krcr ,

it follows that x has the form

x = k1c1 + · · · + krcr + ka′. (13.15)

This proves the first condition in the definition of a direct sum.
Let us prove the uniqueness of representation (13.15). For this, it suffices to prove

that the equality

k1c1 + · · · + krcr + ka′ = 0 (13.16)

is possible only for k1c1 = · · · = krcr = ka′ = 0. Let us rewrite (13.16) in the form

ka′ = −k1c1 − · · · − krcr . (13.17)

This means that the element ka′ belongs to B . If the number k were not divisible by
p, then k and p would be relatively prime, since the element a′ has order p, and by
Lemma 13.16, we would then obtain that a′ ∈ B . But this contradicts the choice of
the element a and the construction of the element a′. This means that p must divide
k, and since pa′ = 0, it follows that we also have ka′ = 0. Thus equality (13.17) is
reduced to k1c1 + · · · + krcr = 0, and from the fact that the group B is the direct
sum of subgroups C1, . . . ,Cr , we obtain that k1c1 = 0, . . . , krcr = 0.

Case 2. The number s − 1 is less than r . Let us set kscs = ds , . . . , krcr = dr , and
for i = 1, . . . , s − 1, let us set ci = di . By Lemma 13.17, the element di generates
the same cyclic subgroup Ci as ci . For i ≤ s − 1, this assertion is a tautology, and
for i > s − 1, it follows from the fact that the numbers ki are by assumption not
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divisible by p, and pmi ci = 0 for all i ≥ s. Equality (13.14) can then be rewritten as
follows:

pa′ = ds + · · · + dr . (13.18)

Let ms ≤ · · · ≤ mr . Let us denote by C′
r the cyclic group generated by the element

a′, that is, let us set C′
r = {a′}. Let us prove that the order of the element a′, and

therefore the order of the group C′
r , is equal to pmr+1:
∣∣C′

r

∣∣ = pmr+1. (13.19)

Indeed, in view of (13.18), we have

pmr+1a′ = pmr ds + · · · + pmr dr = 0,

since pmidi = 0, mi ≤ mr . On the other hand, in view of relationship (13.18), we
have

pmr a′ = pmr−1ds + · · · + pmr−1dr �= 0,

since pmr−1dr �= 0, and in view of (13.12), the sum of the elements pmr−1di ∈ Ci

cannot equal 0 if at least one term is not equal to 0. This proves (13.19).
Now let us prove that

A = C1 ⊕ · · · ⊕ Cr−1 ⊕ C′
r , (13.20)

that is, that every element x ∈ A can be uniquely represented in the form

x = y1 + · · · + yr−1 + y′
r , y1 ∈ C1, . . . , yr−1 ∈ Cr−1, y

′
r ∈ C′

r . (13.21)

First let us prove the possibility of representation (13.21). Since every element
x ∈ A can be represented in the form ka′ +b, b ∈ B , it suffices to prove that it is pos-
sible to represent separately a′ and an arbitrary element b ∈ B in the form (13.21).
This is obvious for an element a′, since it belongs to the cyclic group C′

r = {a′}. As
for elements of B , each b ∈ B can be represented in the form

b = k1d1 + · · · + krdr ,

according to formula (13.12) and in view of the fact that Ci = {di}. Therefore, it
suffices to prove that each of the elements di can be represented in the form (13.21).
For d1, . . . , dr−1, this is obvious, since

di ∈ Ci = {di}, i = 1, . . . , r − 1.

Finally, in view of (13.18), we have

dr = −ds − · · · − dr−1 + pa′,

and this is the representation of the element dr that we need.
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Let us now prove the uniqueness of representation (13.21). For this, it suffices to
prove that the equality

k1d1 + · · · + kr−1dr−1 + kra
′ = 0 (13.22)

is possible only for k1d1 = · · · = kra
′ = 0. Let us suppose that kr is relatively prime

to p. Then

kra
′ = −k1d1 − · · · − kr−1dr−1,

and in view of the fact that pmr+1a′ = 0, we obtain by Lemma 13.16 that a′ ∈ B .
But the element a ∈ A was chosen as an element not belonging to the subgroup B .
This means that the element a′ also does not belong to B .

Let us now consider the case in which the number kr is divisible by p. Let kr =
pl. Then

pla′ = −k1d1 − · · · − kr−1dr−1.

Let us replace pa′ on the left-hand side of this relationship by the expression ds +
· · · + dr on the basis of equality (13.18). On transferring all terms to the left-hand
side, we obtain

lds + · · · + ldr + k1d1 + · · · + kr−1dr−1 = 0.

From the fact that by hypothesis, the group B is the direct sum of groups C1, . . . ,Cr ,
it follows that in this equality, ldr = 0. Since the order of the element dr is equal
to pmr , this is possible only if pmr divides l, and this means that pmr+1 divides kr .
But we have seen that the order of the element a′ is equal to pmr+1, and this means
that kra

′ = 0. Then it follows from equality (13.22) that k1d1 + · · · + kr−1dr−1 = 0.
And since by the induction hypothesis, the group B is the direct sum of the groups
C1, . . . ,Cr , it follows that k1d1 = · · · = kr−1dr−1 = 0. This completes the proof of
the theorem. �

13.3 The Uniqueness of the Decomposition

The theorem on the uniqueness of the Jordan normal form has an analogue in the
theory of finite abelian groups.

Theorem 13.23 For different decompositions of the finite abelian group A into a
direct sum of cyclic subgroups whose orders are prime powers, whose existence is
established in Theorem 13.22,

A = A1 ⊕ · · · ⊕ Ar, |Ai | = p
mi

i , (13.23)

the orders p
mi

i of the cyclic subgroups Ai are unique. In other words, if

A = A′
1 ⊕ · · · ⊕ A′

s



482 13 Groups, Rings, and Modules

is another such decomposition, then s = r , and the subgroups A′
i can be reordered

in such a way that the equality |A′
i | = |Ai | is satisfied for all i = 1, . . . , r .

Proof We shall show how the orders of the cyclic subgroups in the decomposition
(13.23) are uniquely determined by the group A itself. For any natural number k, let
us denote by kA the collection of elements a of the group A that can be represented
in the form a = kb, where b is some element of this group. It is obvious that the
collection of elements kA forms a subgroup of the group A. Let us prove that the
orders |kA| of these subgroups (for various k) determine the orders of the cyclic
groups |Ai | in the decomposition (13.23).

Let us consider an arbitrary prime number p and analyze the case that k is a
power of a prime number p, that is, k = pi . Let us factor the order |piA| of the
group piA into a product of a power of p and numbers ni relatively prime to p:

∣∣piA
∣∣ = pri ni, (ni,p) = 1. (13.24)

On the other hand, for a prime number p, let us denote by li the number of subgroups
Ai of order pi appearing in the decomposition (13.23). We shall present an explicit
formula that expresses the numbers li in terms of ri . Since these latter numbers are
determined only by the group A, it follows that the numbers li also do not depend
on the decomposition (13.23) (in particular, they are equal to zero if and only if all
prime numbers pi for which |Ai | = p

mi

i differ from p).
First of all, let us calculate the order of the group A in another way. Let us note

that A = p0A, so that this is the case i = 0. The definition of the number li shows
that in the decomposition (13.23), we have l1 groups of order p, l2 groups of order
p2, . . . , and the remaining groups have orders relatively prime to p. Hence it follows
that

|A| = pl1p2l2 · · ·n0, (n0,p) = 1.

Let us set

|A| = pr0n0, (n0,p) = 1.

Then we can write the relationship above in the form

l1 + 2l2 + 3l3 + · · · = r0. (13.25)

Now let us consider the case that k = pi > 1, that is, the number i is greater
than 0. First of all, it is obvious that for every natural number k, it follows from
(13.23) that

kA = kA1 ⊕ kA2 ⊕ · · · ⊕ kAr .

It is obvious that all properties of a direct sum are satisfied.
Now, as in the case examined above, let us calculate the order of the group piA

in another way. It is obvious that |piA| = |piA1| · · · |piAr |. If for some j , we have
|Aj | = p

mj

j and pj �= p, then Lemma 13.17 shows that piAj = Aj , and we have
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|piAj | = |Aj | = p
mj

j , which is relatively prime to p. Thus in the decomposition

|piA| = |piA1| · · · |piAr |, all the factors |piAj |, where |Aj | = p
mj

j and pj �= p,
together give a number that is relatively prime to p, and in formula (13.24), they
make no contribution to the number ri . It remains to consider the case pj = p. Since
Aj is a cyclic group, it follows that Aj = {aj }. It is then clear that piAj = {piaj }.
Let us find the order of the element piaj . Since pmj aj = 0, we have pmj −i (piaj ) =
0 if i ≤ mj , and piaj = 0 if i = mj .

Let us prove that pmj −i is precisely the same as the order of the element piaj .
Let this order be equal to some number s. Then s must divide pmj −i , which means
that it is of the form pt . If t < mj − i, then the equality pt(piaj ) = 0 would show
that pt+iaj = 0, that is, that the element aj had order less than pmj . This means
that |piAj | = pmj −i for i ≤ mj . The fact that piAj = 0 for i ≥ mj (which means
that |piAj | = 1) is obvious.

We can now literally repeat the argument that we used earlier. We see that in the
decomposition

piA = piA1 ⊕ piA2 ⊕ · · · ⊕ piAr,

subgroups of order p occur when mj − i = 1, that is, mj = i +1, and this means that
in our adopted notation, they occur li+1 times. Likewise, the subgroups of order p2

occur when mj = i + 2, that is, li+2 times, and so on. Moreover, certain subgroups
will have order relatively prime to p. This means that

∣∣piA
∣∣ = pli+1p2li+2 · · ·ni, where (ni,p) = 1.

In other words, in accordance with our previous notation, we have

li+1 + 2li+2 + · · · = ri . (13.26)

In particular, formula (13.25) is obtained from (13.26) for i = 0.
If we now subtract from each formula (13.26) the following one, we obtain that

for all i = 1,2, . . . , we have the equalities

li + li+1 + · · · = ri−1 − ri .

Repeating the same process, we obtain

li = ri−1 − 2ri + ri+1.

These relationships prove Theorem 13.23. �

Theorems 13.22 and 13.23 make it easy to give the number of distinct (up to
isomorphism) finite abelian groups of a given order.

Example 13.24 Suppose, for example, that we would like to determine the number
of distinct abelian groups of order p3q2, where p and q are distinct prime numbers.
Theorem 13.22 shows that such a group can be represented in the form

A = C1 ⊕ · · · ⊕ Cs,
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where Ci are cyclic groups whose orders are prime powers. From this decomposi-
tion, it follows that

|A| = |C1| · · · |Cs |.
In other words, among the groups Ci , there is either one cyclic group of order p3, or
one of order p2 and one of order p, or three of order p. And likewise, there is one
of order q2 or two of order q . Combining all these possibilities (three for groups
of order pi and two for groups of order qj ), we obtain six variants. Theorem 13.23
guarantees that of the six groups thus obtained, none is isomorphic to any of the
others.

13.4 Finitely Generated Torsion Modules over a Euclidean Ring*

The proofs of the theorem on finite abelian groups and the theorem on Jordan nor-
mal form (just like the proofs of the corresponding uniqueness theorems) are so
obviously parallel to each other that they surely are special cases of some more
general theorems. This is indeed the case, and the main goal of this chapter is the
proof of these general theorems. For this, we shall need two abstract (that is, defined
axiomatically) notions.

Definition 13.25 A ring is a set R on which are defined two operations (that is, two
mappings R × R → R), one of which is called addition (for which an element that
is the image of two elements a ∈ R and b ∈ R is called their sum and is denoted by
a + b), and the second of which is multiplication (the element that is the image of
a ∈ R and b ∈ R is called their product and is denoted by ab). For these operations
of addition and multiplication, the following conditions must be satisfied:

(1) With respect to the operation of addition, the ring is an abelian group (the iden-
tity element is denoted by 0).

(2) For all a, b, c ∈ R, we have

a(b + c) = ab + ac, (b + c)a = ba + ca.

(3) For all a, b, c ∈ R, the associative property holds:

a(bc) = (ab)c.

In the sequel, we shall denote a ring by the letter R and assume that it has a
multiplicative identity, that is, that it contains an element, which we shall denote by
1, satisfying the condition

a · 1 = 1 · a = a for all a ∈ R.

In this chapter, we shall be considering only commutative rings, that is, it will be
assumed that

ab = ba for all a, b ∈ R.
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We have already encountered the most important special case of a ring, namely
an algebra, in connection with the construction of the exterior algebra of a vector
space, in Chap. 10. Let us recall that an algebra is a ring that is a vector space, where,
of course, consistency of the notions entering into these definitions is assumed. This
means that for every scalar α (in the field over which the vector space in question is
defined) and for all elements a, b of the ring R, we have the equality (αa)b = α(ab).
On the other hand, we are quite familiar with an example of a ring that is not an
algebra in any natural sense, namely the ring of integers Z with the usual arithmetic
operations of addition and multiplication.

Let us note a connection among the concepts we have introduced. If all nonzero
elements of a commutative ring form a group with respect to the operation of mul-
tiplication, then such a ring is called a field. We assume that the reader is familiar
with the simplest properties of fields and rings.

The concept that generalizes both the concept of vector space (over some field
K) with a linear transformation given on it and that of an abelian group is that of a
module.

Definition 13.26 An abelian group M (its operation is written as addition) is a
module M over a ring R if there is defined an additional operation of multiplication
of the elements of the ring R by elements of the module M that produces elements
of the module that have the following properties:

a(m + n) = am + an,

(a + b)m = am + bm,

(ab)m = a(bm),

1m = m,

for all elements a, b ∈ R and all elements m,n ∈ M .

For convenience, we shall denote the elements of the ring using ordinary letters
a, b, . . . , and elements of the module using boldface letters: m,n, . . . .

Example 13.27 An example of a module that we have encountered repeatedly is
that of a vector space over an arbitrary field K (here the ring R is the field K). On
the other hand, every abelian group G is a module over the ring of integers Z: the
operation defined on it of integral multiplication kg for k ∈ Z and g ∈ G obviously
possesses all the required properties.

Example 13.28 Let L be a vector space (real, complex, or over an arbitrary field K)
and let A : L → L be a fixed linear transformation. Then we may consider L as a
module over the ring R of polynomials in the single variable x (real, complex, or
over a field K), assuming, as we did earlier, for a polynomial f (x) ∈ R and vector
e ∈ L,

f (x)e = f (A)(e). (13.27)
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It is easily verified that all the properties appearing in the definition of a module are
satisfied.

Our immediate objective will be to find a restriction of the general notion of
module that covers vector spaces and abelian groups and then to prove theorems for
these that generalize Theorems 5.12 and 13.22.

These two examples—the ring of integers Z and the ring of polynomials in a
single complex variable (for simplicity, we shall restrict our attention to the special
case K = C, but many results are valid in the general case)—have many similar
properties, the most important of which is the uniqueness of the decomposition into
irreducible factors, that is, prime numbers in the case of the ring of integers, and
linear polynomials in the case of the ring of polynomials with complex coefficients.
Both of these properties, in turn, derive from a single property: the possibility of
division with remainder, which we shall introduce in the definition of certain rings
for which it is possible to generalize the reasoning from previous sections.

Definition 13.29 A ring R is called a Euclidean ring if

ab �= 0 for all a, b ∈ R,a �= 0 and b �= 0,

and for nonzero elements a of the ring, a function ϕ(a) is defined taking nonnegative
integer values and exhibiting the following properties:

(1) ϕ(ab) ≥ ϕ(a) for all elements a, b ∈ R, a �= 0, b �= 0.
(2) For all elements a, b ∈ R, where a �= 0, there exist q, r ∈ R such that

b = aq + r (13.28)

and either r = 0 or ϕ(r) < ϕ(a).

For the ring of integers, these properties are satisfied for ϕ(a) = |a|, while for
the ring of polynomials, they are satisfied for ϕ(a) equal to the degree of the poly-
nomial a.

Definition 13.30 An element a of a ring R is called a unit or reversible element if
there exists an element b ∈ R such that ab = 1. An element b is called a divisor of
the element a (one also says that a is divisible by b or that b divides a) if there exists
an element c such that a = bc.

Clearly the property of divisibility is unchanged under multiplication of a or b

by a unit. Two elements that differ by a unit are called associates. For example,
in the ring of integers, the units are +1 and −1, and associates are integers that
are either equal or differ by a sign. In the ring of polynomials, the units are the
constant polynomials other than the one that is identically zero, and associates are
polynomials that differ from each other by a constant nonzero multiple.

An element p of a ring is prime if it is not a unit and has no divisors other than
its associates and units.
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The theory of decomposition into prime factors in a Euclidean ring repeats ex-
actly what is known for the ring of integers.

If an element a is not prime, then it has a divisor b such that a = bc, with c not a
unit. This means that a is not a divisor of b, and there exists the representation b =
aq + r with ϕ(r) < ϕ(a). But r = b − aq = b(1 − cq), and therefore ϕ(r) ≥ ϕ(b),
that is, ϕ(b) ≤ ϕ(r) < ϕ(a), which means that ϕ(b) < ϕ(a). Applying the same
reasoning to b, we finally arrive at a prime divisor a, and we shall show that every
element can be represented as the product of primes. The same argument as used in
the case of integers or polynomials shows the uniqueness of this decomposition in
the following precise sense.

Theorem 13.31 If some element a in a Euclidean ring R has two factorizations
into prime factors,

a = p1 · · ·pr, a = q1 · · ·qs,

then r = s, and with a suitable numeration of the factors, pi and qi are associates
for all i.

As in the ring of integers, in every Euclidean ring, each element a �= 0 that is not
a unit can be written in the form

a = up
n1
1 · · ·pnr

r ,

where u is a unit, all the pi are prime elements with no two of them associates, and
ni are natural numbers. Such a representation is unique in a natural sense.

As in the ring of integers or of polynomials in one variable, representation (13.28)
for r �= 0 can be applied to elements b and r and repeated until we arrive at r = 0.
We will thus obtain a greatest common divisor (gcd) of the elements a and b, that
is, a common divisor such that every other common divisor is a divisor of it. The
greatest common divisor of a and b is denoted by d = (a, b) or d = gcd(a, b). This
process, as it is for integers, is called the Euclidean algorithm (whence the name
Euclidean ring). It follows from the Euclidean algorithm that a greatest common
divisor of elements a and b can be written in the form d = ax + by, where x and y

are some elements of the ring R.
Two elements a and b are said to be relatively prime if their only common di-

visors are units. Then we may consider that gcd(a, b) = 1, and as follows from the
Euclidean algorithm, there exist elements x, y ∈ R such that

ax + by = 1. (13.29)

Let us now recall that the theorem on Jordan normal form holds in the case
of finite-dimensional vector spaces, and that the fundamental theorem of abelian
groups holds for finite abelian groups. Let us now derive analogous finiteness con-
ditions for modules.
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Definition 13.32 A module M is said to be finitely generated if it contains a fi-
nite collection of elements m1, . . . ,mr , called generators, such that every element
m ∈ M can be expressed in the form

m = a1m1 + · · · + armr (13.30)

for some elements a1, . . . , ar of the ring R.

For a vector space considered as a module over a certain field, this is the def-
inition of finite dimensionality, and representation (13.30) is a representation of a
vector m in the form of a linear combination of vectors m1, . . . ,mr (let us note that
the system of vectors m1, . . . ,mr will in general not be a basis, since we did not
introduce the concept of linear independence). In the case of a finite abelian group,
we may generally take for m1, . . . ,mr , all the elements of the group.

Let us formulate one additional condition of the same type.

Definition 13.33 An element m of a module M over a ring R is said to be a torsion
element if there exists an element am �= 0 of the ring R such that

amm = 0,

where 0 is the null element of the module M , and the subscript in am is introduced
to show that this element depends on m. A module is called a torsion module if all
of its elements are torsion elements.

In a finitely generated torsion module, there is an element a �= 0 of the ring R

such that am = 0 for all elements m ∈ M . Indeed, it suffices to set a = am1 · · ·amr

for the elements m1, . . . ,mr in representation (13.30). If the ring R is Euclidean,
then we can conclude that a �= 0. For the case of a finite abelian group, we may take
a to be the order of the group.

Example 13.34 Let M be a module determined by a vector space L of dimension
n and by a linear transformation A according to formula (13.27). For an arbitrary
vector e ∈ L, let us consider the vectors

e, A(e), . . . , An(e).

Their number, n + 1, is greater than the dimension n of the space L, and therefore,
these vectors are linearly dependent, which means that there exists a polynomial
f (x), not identically zero, such that f (A)(e) = 0, that is, in our module M , the
element e is a torsion element.

But if, as we did in Example 13.27, we view a vector space as a module over
the field R or C, then not a single nonnull vector will be a torsion element of the
module.

Let M be a module over a ring R. A subgroup M ′ of the group M is called a
submodule if for all elements a ∈ R and m′ ∈ M ′, we have am′ ∈ M ′.
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Example 13.35 It is obvious that every subgroup of an abelian group viewed as a
module over the ring of integers is a submodule. Analogously, for a vector space
viewed as a module over a ring coinciding with a suitable field, every subspace is a
submodule. If M is a module defined by a vector space L and a linear transformation
A of L according to formula (13.27), then as is easily verified, every submodule of
M is a vector subspace that is invariant with respect to the transformation A.

If M ′ ⊂ M is a submodule, and m is any element of the module M , then it is
easily verified that the collection of all elements of the form am + m′, where a is
an arbitrary element of the ring R, and m′ is an arbitrary element of the submodule
M ′, is a submodule. We shall denote it by (m,M ′).

Since we are assuming that the ring R is Euclidean, it follows that for every
torsion element m ∈ M , there exists an element a ∈ R that exhibits the property
am = 0 and is such that ϕ(a) is the smallest value among all elements with this
property. Then every element c for which cm = 0 is divisible by a. Indeed, if such
were not the case, we would have the relationship

c = aq + r, ϕ(r) < ϕ(a),

and clearly rm = 0, which contradicts the definition of a. In particular, two such
elements a and a′ divide each other; that is, they are associates. The element a ∈ R

is called the order of the element m ∈ M . One must keep in mind that this expression
is not quite precise, since order is defined only up to associates.

Example 13.36 If, as in Example 13.28, a module is a vector space L viewed as a
module over the polynomial ring f (x) with the aid of formula (13.27), then every
element e ∈ L is a torsion element, and its order is the same as the minimal polyno-
mial of the vector e (see the definition on p. 146), and the indicated property (every
element c for which cm = 0 is divisible by the order of the element m) coincides
with Theorem 4.23.

Definition 13.37 A submodule M ′ of a module M is said to be cyclic if it contains
an element m′ such that all the elements of the module M ′ can be represented in the
form am′ with some a ∈ R. This is written M ′ = {m′}.

Definition 13.38 A module M is called the direct sum of its submodules M1, . . . ,

Mr if every element m ∈ M can be written as a sum

m = m1 + · · · + mr , mi ∈ Mi,

and such a representation is unique. It is obvious that to establish the uniqueness of
this decomposition, it suffices to prove that if m1 + · · · + mr = 0, mi ∈ Mi , then
mi = 0 for all i. This can be written as the equality

M = M1 ⊕ · · · ⊕ Mr.
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The fundamental theorem that we shall prove, which contains Theorem 5.12 on
the Jordan normal form and Theorem 13.22 on finite abelian groups as special cases,
is the following.

Theorem 13.39 Every finitely generated torsion module M over a Euclidean ring
R is the direct sum of cyclic submodules

M = C1 ⊕ · · · ⊕ Cr, Ci = {mi}, (13.31)

such that the order of each element mi is a power of a prime element of the ring R.

Example 13.40 If M is a finite abelian group viewed as a module over the ring
of integers, then this theorem reduces directly to the fundamental theorem of finite
abelian groups (Theorem 13.22).

Let the module M be determined by the finite-dimensional complex vector space
L and the linear transformation A of L according to formula (13.27). Then the Ci

are vector subspaces invariant with respect to A, and in each of these, there exists a
vector mi such that all the remaining vectors can be written in the form f (A)(mi ).
The prime elements in the ring of complex polynomials are the polynomials of the
form x − λ. By assumption, for each vector mi , there exist some λi and a natural
number ni such that

(A − λiE)ni (mi ) = 0.

If we take the smallest possible value ni , then as proved in Sect. 5.1, the vectors

mi , (A − λiE)(mi ), . . . , (A − λiE)ni−1(mi )

will form a basis of this subspace, that is, Ci is a cyclic subspace corresponding to
the principal vector mi . We obtain the fundamental theorem on Jordan form (Theo-
rem 5.12).

Let us recall that we proved Theorem 5.12 by induction on the dimension of the
space. More precisely, for a linear transformation A on the space L, we constructed
a subspace L′ invariant with respect to A of dimension 1 less and proved the theorem
for L on the assumption that it had been proved already for L′. In fact, this meant
that we constructed a sequence of nested subspaces

L = L0 ⊃ L1 ⊃ L2 ⊃ · · · ⊃ Ln ⊃ Ln+1 = (0), (13.32)

invariant with respect to A and such that dim Li+1 = dim Li − 1. Then we reduced
the proof of Theorem 5.12 for L to the proof of the theorem for L1, then for L2,
and so on. Now our first goal will be to construct in every finitely generated torsion
module a sequence of submodules analogous to the sequence of subspaces (13.32).

Lemma 13.41 In every finitely generated torsion module M over a Euclidean ring
R, there exists a sequence of submodules

M = M0 ⊃ M1 ⊃ M2 ⊃ · · · ⊃ Mn ⊃ Mn+1 = {0} (13.33)
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such that Mi �= Mi+1, Mi = (mi ,Mi+1), where mi are elements of the module M ,
and for each of these, there exists a prime element pi of the ring R such that pimi ∈
Mi+1.

Proof By the definition of a finitely generated module, there exists a finite number
of generators m1, . . . ,mr ∈ M such that the elements a1m1 +· · ·+armr exhaust all
the elements of the module M as a1, . . . , ar run through all elements of the ring R.
The collection of elements of the form akmk + · · · + armr , where ak, . . . , ar are all
possible elements of the ring R, obviously forms a submodule of the module M . Let
us denote it by Mk . It is obvious that Mk ⊃ Mk+1 and Mk = (mk,Mk+1). Without
loss of generality, we may assume that mk /∈ Mk+1, since otherwise, the element
mk can be excluded from among the generators. The constructed chain of submod-
ules Mk is still not the chain of submodules Mi that figures in Lemma 13.16. We
obtain that chain from the chain of submodules Mk by putting several intermediate
submodules between the modules Mk and Mk+1.

Since mk ∈ M is a torsion element, there exists an element a ∈ R for which
amk = 0 and in particular, amk ∈ Mk+1. Let a be an element of the ring R for
which amk ∈ Mk+1 and ϕ(a) assumes the smallest value among elements with this
property. If the element a is prime, then we set pi = a, and then it is unnecessary to
place a submodule between Mk and Mk+1. But if a is not prime, then let p1 be one
of its prime divisors and a = p1b. Let us set mk,1 = bmk and Mk,1 = (mk,1,Mk+1).
Then clearly, p1mk,1 ∈ Mk,1 and bmk ∈ Mk,1. As we have seen, ϕ(b) < ϕ(a) (strict
inequality). Therefore, repeating this process a finite number of times, we will place
a finite number of submodules (13.33) with the required properties between Mk and
Mk+1. �

Remark 13.42 It is possible to show that the length of every chain of the form
(13.33) satisfying the conditions of Lemma 13.16 is the same number n. Moreover,
every chain of submodules

M = M0 ⊃ M1 ⊃ M2 ⊃ · · · ⊃ Mm

in which Mi �= Mi+1 has length m ≤ n, and this holds with much milder restrictions
on the ring R and module M than we have assumed in this chapter. What is of
essence here is only that between any two neighboring submodules Mi and Mi+1,
there does not exist an “intermediate” submodule M ′

i different from Mi and Mi+1

such that Mi ⊃ M ′
i ⊃ Mi+1.

For example, let us consider an n-dimensional vector space L over a field K as
a module over the ring R = K. Let a1, . . . ,an be some basis. Then the subspaces
Li = 〈ai , . . . ,an〉, i = 1, . . . , n, have the indicated property. Using this, we could
give a definition of the dimension of a vector space without appealing to the notion
of linear dependence. Thus the length n of all chains of the form (13.33) satisfying
the conditions of Lemma 13.16 is the “correct” generalization of dimension of a
space to finitely generated torsion modules.
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The following lemma is analogous to the one we used in the proof of Theo-
rems 5.12 and 13.22.

Lemma 13.43 If the order of an element m of a module M is the power of a prime
element, pnm = 0, and an element x of the cyclic submodule {m} is not divisible by
p (that is, not representable in the form x = py, where y ∈ M), then {m} = {x}.

Proof It is obvious that {x} ⊂ {m}. Thus it remains to show that {m} ⊂ {x}, and
for this, it suffices to ascertain that m ∈ {x}. By assumption, x = am, where a is
some element of the ring R. If a is divisible by p, then clearly, x is also divisible
by p. Indeed, if a = pb with some b ∈ R, then from the equality x = am, we obtain
x = py, where y = bm, contradicting the assumption that x is not divisible by p.

This means that a and p are relatively prime, and consequently, in view of the
uniqueness of the decomposition into prime elements of the ring R, a is also rela-
tively prime to pn. Then on the basis of the Euclidean algorithm, we can find ele-
ments u and v in R such that au + pnv = 1. Multiplying both sides of this equality
by m, we obtain that m = ux, which means that m ∈ {x}. �

Lemma 13.44 Let M1 be a submodule of the module M over a Euclidean ring
R such that M = (m,M1) and M �= M1. Then if for some a,p ∈ R, we have the
inclusions am ∈ M1 and pm ∈ M1, where the element p is prime, then a is divisible
by p.

Proof Let us assume that a is not divisible by p. Since the element p is prime,
we have (a,p) = 1, and from the Euclidean algorithm in the ring R, it follows that
there exist two elements u,v ∈ R for which au + pv = 1. Multiplying both sides
of this equality by m, taking into account the inclusions am ∈ M1 and pm ∈ M1,
we obtain that m ∈ M1. By definition, (m,M1) consists of elements bm+m′ for all
possible b ∈ R and m′ ∈ M1. Therefore, M = (m,M1) = M1, which contradicts the
assumption of the lemma. �

Proof of Theorem 13.39 The proof is an almost verbatim repetition of the proof
of Theorems 5.12 and 13.22. We may use induction on the length n of the chain
(13.33), that is, we may assume the theorem to be true for the module M1. Let

M1 = C1 ⊕ · · · ⊕ Cr, (13.34)

where Ci = {ci} are cyclic submodules, and the order of each element ci is the
power of a prime element. By Lemma 13.16, M = (m,M1) and pm ∈ M1, where p

is a prime element. Then based on the decomposition (13.34), we have

pm = z1 + · · · + zr , zi ∈ Ci. (13.35)

We shall select those elements zi that are divisible by p. By a change in numeration,
we may assume that these are the first s − 1 terms. Let us set zi = pz′

i for i =
1, . . . , s − 1. We must now consider two cases.
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Case 1: The number s − 1 is equal to r . Then pm = pm′, where m′ = z′
1 +· · ·+ z′

r .
Let us set m − m′ = m. It is obvious that pm = 0. We shall prove that the module
M can be written in the form

M = {m} ⊕ C1 ⊕ · · · ⊕ Cr.

Indeed, by assumption, every element x ∈ M can be represented in the form x =
am + y, where a ∈ R and y ∈ M1, which means also in the form x = am + y′,
where y′ = am′ + y ∈ M1.

Let us prove that for two such representations

x = am + y, x = a′m + y′, (13.36)

we have the equalities am = a′m and y = y′. From this it will follow that

M = {m} ⊕ M1 = {m} ⊕ C1 ⊕ · · · ⊕ Cr,

which in our case, is relationship (13.31).
We obtain from equalities (13.36) that am = y, where a = a − a′, y = y′ − y,

and by assumption, y ∈ M1. By Lemma 13.16, there exists a prime element p of the
ring R such that pm ∈ M1, and this means that pm ∈ M1. By Lemma 13.20, from
the inclusions am ∈ M1 and pm ∈ M1, it follows that the element a is divisible
by p, that is, a = bp for some b ∈ R. From this, we obviously obtain that am =
b(pm) = 0. Consequently, am = a′m and y = y′.

Case 2: The number s − 1 is less than r . If an element ci has order p
ni

i and pi is
not an associate of p, then p

ni

i is not divisible by p, and therefore, every element of
the module Ci = {ci} is divisible p, by Lemma 13.17. Therefore, among the chosen
s −1 submodules Ci are all those such that the order of the element ci is p

ni

i , and pi

is not an associate of p. Since the order of an element is in general defined only up
to replacing it by an associate, we may consider that in the remaining submodules
Cs = {cs}, . . . , Cr = {cr}, the order of the element ci is a power of p.

By construction, in the decomposition (13.35), we have zi = pz′
i , z′

i ∈ Ci , for all
i = 1, . . . , s −1. Setting z′

1 +· · ·+z′
s−1 = z′ and m−z′ = m, we obtain the equality

pm = zs + · · · + zr . (13.37)

Since the order of the element ci for i = s, . . . , r is a power of p, the order of an
arbitrary element zi in the decomposition (13.37) is also a power of p. Let us denote
it by pni . Obviously, we may choose the numeration of the terms in formula (13.37)
in such a way that the numbers ni do not decrease: 1 ≤ ns ≤ ns+1 ≤ · · · ≤ nr . Let us
prove that the order of the element m is equal to pnr+1 and that we have the equality

M = {m} ⊕ C1 ⊕ · · · ⊕ Cs−1 ⊕ · · · ⊕ Cr−1,

that is, in the decomposition, all submodules Ci occur other than Cr . With this,
relationship (13.31) will be proved in the second case as well; that is, the proof of
Theorem 13.39 will be complete.
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Multiplying both sides of equality (13.37) by pnr and using the fact that pnr zi =
0 for all i = s, . . . , r , we obtain that pnr+1m = 0. If the order a of an element m
is not an associate of pnr+1, then it divides it, and is equal, up to an associate, to
pk for some k < nr + 1. Multiplying relationship (13.37) by pk−1 and using the
fact that the submodules C1, . . . ,Cr form a direct sum, we obtain that pk−1zi = 0
for all i = s, . . . , r . In particular, pk−1zr = 0, and this contradicts the assumption
k < nr + 1 and that the order of the element zr is equal to pnr . Thus the order of the
element m is equal to pnr+1.

Let us note that by construction, in the decomposition (13.37), the element zr is
not divisible by p.

From what we have proved, on the basis of Lemma 13.17, it follows that {zr} =
{cr} = Cr . From this it follows that every element m ∈ M can be represented as a
sum of elements of the modules

{m},C1, . . . ,Cs−1, . . . ,Cr−1. (13.38)

Indeed, an analogous assertion holds for the modules

{m},C1, . . . ,Cs−1, . . . ,Cr , (13.39)

since by our construction, m = m − z′ and z′ = z′
1 + · · · + z′

s−1, where z′
i ∈ Ci .

Consequently, m = m + z′
1 + · · ·+ z′

s−1, which means that every element m ∈ M is
a sum of elements of the modules (13.39).

We now must verify that every element of the submodule Cr can be represented
as a sum of elements of the submodules (13.38). Since Cr = {zr}, it suffices to verify
this for a single element zr . But relationship (13.37) gives us precisely the required
representation:

zr = pm − zs − · · · − zr−1.

It remains to verify the second condition entering into the definition of a direct sum:
that such a representation is unique. To this end, it suffices to prove that in the
relationship

am + f 1 + · · · + f s−1 + · · · + f r−1 = 0, f i ∈ Ci, (13.40)

all the terms must equal 0.
Indeed, from relationship (13.40), taking into account (13.34), it follows that

am ∈ M1. But by the construction of the element m, we then also have am ∈ M1.
By Lemma 13.20, from the inclusions am ∈ M1 and pm ∈ M1, we have that the
element a is divisible by p, that is, a = bp for some b ∈ R. Furthermore, we know
that

pm = zs + · · · + zr ,

and moreover, the order of the element zr is pnr , while the order of the element m is
pnr+1. On substituting all these relationships into decomposition (13.40), we obtain

b(zs + · · · + zr ) + f 1 + · · · + f s−1 + · · · + f r−1 = 0.
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Then it follows from formula (13.34) that bzr = 0, and since the order of the element
zr is equal to pnr , we have that pnr divides b. This means that the element a is
divisible by pnr+1, and am = 0. But then from equality (13.40), it follows that
f 1 + · · · + f r−1 = 0. Using again the induction hypothesis (13.34), we obtain that
f 1 = 0, . . . , f r−1 = 0. This completes the proof of Theorem 13.39. �

For Theorem 13.39, we have the same uniqueness theorem as in the case of
Theorem 5.12 and Theorem 13.22. Namely, if

M = C1 ⊕ · · · ⊕ Cr, Ci = {mi}, M = D1 ⊕ · · · ⊕ Ds, Dj = {nj }
are two decompositions of finitely generated torsion modules M in which the orders
of elements mi and nj are prime powers, that is, p

ri
i mi = 0 and q

sj
j nj = 0, where

pi and qj are prime elements, then with a suitable numeration of the terms Ci and
Dj , elements pi and qi are associates, and ri = si . However, a natural proof of this
theorem would require some new concepts, and we shall not pursue this here.



Chapter 14
Elements of Representation Theory

Representation theory is one of the most “applied” branches of algebra. It has many
applications in various branches of mathematics and mathematical physics. In this
chapter, we shall be concerned with the problem of finding all finite-dimensional
representations of finite groups. But there is an analogous theory that has been devel-
oped for certain types of infinite groups, which is important in many other branches
of mathematics.

14.1 Basic Concepts of Representation Theory

Let us recall some definitions from the previous chapter that will play a key role
here.

A homomorphism of a group G into a group G′ is a mapping f : G → G′ such
that for every pair of elements g1, g2 ∈ G, we have the relationship

f (g1g2) = f (g1)f (g2).

An isomorphism of a group G onto a group G′ is a bijective homomorphism f :
G → G′. Groups G and G′ are said to be isomorphic if there exists an isomorphism
f : G → G′ between them. This is denoted by G � G′.

Definition 14.1 A representation of a group G is a homomorphism of G into the
group of nonsingular linear transformations of a vector space L. The space L is called
the space of the representation or the representation space, and its dimension, that
is, dim L, is the dimension of the representation.

Thus in order to specify a representation of a group G, it is necessary to associate
with each element g ∈ G a nonsingular linear transformation Ag : L → L such that
for g1, g2 ∈ G, the condition

Ag1g2 = Ag1Ag2 (14.1)
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is satisfied. Since the group of nonsingular linear transformations of an n-
dimensional vector space is isomorphic to the group of nonsingular square matrices
of order n, to give a representation, it suffices to associate with each element g ∈ G

a nonsingular square matrix Ag such that (14.1) is satisfied.
It follows at once from (14.1) that for a representation Ag and any number of

elements g1, . . . , gk of the group G, we have the relationship

Ag1···gk
= Ag1 · · ·Agk

. (14.2)

Moreover, it is obvious that if e is the identity element of G, then

Ae = E , (14.3)

where E is the identity linear transformation of the space L. And if g−1 is the inverse
of the element g, then

Ag−1 = A−1
g , (14.4)

that is, Ag−1 is the transformation that is the inverse of Ag .

Example 14.2 Let G = GLn be the group of nonsingular square matrices of order n.
For each matrix g ∈ GLn, let us set

Ag = |g|.
Since |g| is a number, which by assumption is different from zero, we have a one-
dimensional representation. It is obvious that for every integer n, the equality

Bg = |g|n

will also define a one-dimensional representation.

Example 14.3 Let G = Sn be the symmetric group of degree n, that is, the group of
permutations of an n-element set M , and let L be a vector space of dimension n, in
which we have chosen a basis e1, . . . , en. For the representation

g =
(

1 2 · · · n

j1 j2 · · · jn

)
,

let us define Ag as the linear transformation such that

Ag(e1) = ej1, Ag(e2) = ej2, . . . , Ag(en) = ejn .

Then we obtain an n-dimensional representation of the group Sn.
To avoid having to use a specific numeration of the elements of the set M , let

us associate with the element a ∈ M , the basis vector ea . Then the representation
described above is given by the formula

Ag(ea) = eb if g(a) = b,

for every transformation g : M → M .
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Example 14.4 Let G = S3 be the symmetric group of degree 3, and let L be a two-
dimensional space with basis e1, e2. Let us define a vector e3 by e3 = −(e1 + e2).
For the representation

g =
(

1 2 3
j1 j2 j3

)
,

let us define Ag as the transformation such that

Ag(e1) = ej1, Ag(e2) = ej2 .

It is easily verified that in this way, we obtain a two-dimensional representation of
the symmetric group S3.

Example 14.5 Let G = GL2 be the group of nonsingular matrices of order 2, and
let L be the space of polynomials in the two variables x and y whose total degree in
both variables does not exceed n. For a nonsingular matrix

g =
(

a b

c d

)
,

let us define Ag as the linear transformation of the space L taking polynomials
f (x, y) to f (ax + by, cx + dy), that is,

Ag

(
f (x, y)

) = f (ax + by, cx + dy).

It is easy to verify that relationship (14.1) is satisfied in this case, that is, we have
a representation of the group of nonsingular matrices of order 2. Its dimension is
equal to the dimension of the space of polynomials in x and y whose dimension (in
both variables combined) does not exceed n; that is, as is easily seen, it is equal to
(n + 1)(n + 2)/2.

Example 14.6 For any group and an n-dimensional space L, the representation de-
fined by the formula Ag = E , where E is the identity transformation on the space L,
is called the n-dimensional identity representation.

In the definition of a representation, the space L can also be infinite-dimensional.
In this case, the representation is also said to be infinite-dimensional. For example,
defining a representation just as in Example 14.5, but taking for L the space of all
continuous functions, we obtain an infinite-dimensional representation. In the se-
quel, we shall consider only finite-dimensional representations, and we shall always
consider the space L to be complex.

Example 14.7 Representations of the symmetric group Sn are of interest in many
problems. All such representations are known, but we shall describe here only the
one-dimensional representations of the group Sn. In this case, a nonsingular linear
transformation Ag is given by a matrix of order 1, that is, a single complex number
(which, of course, is nonzero). We thereby arrive at a function on the group taking
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numeric values. Let us denote this function by ϕ(g). Then by definition, it must
satisfy the conditions ϕ(g) �= 0 and

ϕ(gh) = ϕ(g)ϕ(h) (14.5)

for all elements g and h in the group Sn.
It is easy to find all possible values ϕ(τ) if τ is a transposition. Namely, setting

g = h = τ and using the facts that τ 2 = e (the identity transformation) and that
obviously, ϕ(e) = 1, we obtain from relationship (14.5) the equality ϕ(τ)2 = 1, from
which follows ϕ(τ) = ±1. It is theoretically possible that for some transpositions,
ϕ(τ) = 1, while for others, ϕ(τ) = −1. However, in reality, such is not the case, and
one of the equalities ϕ(τ) = 1 and ϕ(τ) = −1 holds for all transpositions τ , with
the choice of sign depending only on the one-dimensional representation ϕ. Let us
prove this.

Let τ = τa,b and τ ′ = τc,d be two transpositions, where a, b, c, d are elements of
the set M (see formula (13.3)). Obviously, there exists a permutation g of the set M

such that g(c) = a and g(d) = b. Then as is easily verified, based on the definition
of a transposition, we have the equality g−1τa,bg = τc,d , that is, τ ′ = g−1τg. In
view of relationships (14.2), (14.4), and (14.5), we obtain from the last equality that

ϕ
(
τ ′) = ϕ(g)−1ϕ(τ)ϕ(g) = ϕ(τ),

which proves our assertion for all transpositions τ and τ ′. We shall now make use
of the fact that every element g of the group Sn is the product of a finite number
of transpositions; see formula (13.4). Taking the aforesaid into account, it follows
from this that

ϕ(g) = ϕ(τa1,b1)ϕ(τa2,b2) · · ·ϕ(τak,bk
) = ϕ(τ)k, (14.6)

where ϕ(τ) = +1 or −1.
Thus there are two possible cases. The first case is that for all transpositions

τ ∈ Sn, the number ϕ(τ) is equal to 1. In view of formula (14.6), for every transpo-
sition g ∈ Sn, we have ϕ(g) = 1, that is, the function ϕ on Sn is identically equal to
1, and therefore, it gives the one-dimensional identity representation of the group Sn.
The second case is that for all transpositions τ ∈ Sn, we have ϕ(τ) = −1. Then, in
view of formula (14.6), for a transposition g ∈ Sn, we have ϕ(g) = (−1)k , where k

corresponds to the parity of the transposition g. In other words, ϕ(g) = 1 if the trans-
position g is even, and ϕ(g) = −1 if the transposition g is odd. From relationship
(13.4), it follows at once that such a function ϕ indeed determines a one-dimensional
representation of the group Sn, which we denote by ε(g).

Thus we have obtained the following result: the symmetric group Sn has exactly
two one-dimensional representations: the identity and ε(g).

One-dimensional representations of the group Sn and related groups (such as the
alternating group An) play a large role in a variety of questions in algebra. For ex-
ample, one of the best-known results in algebra is the derivation of formulas for
the solution of equations of degrees 3 and 4. For a long time, mathematicians were
thwarted in their attempts to find analogous formulas for equations of degree 5 and
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higher. Finally, it was proved that such an attempt was futile, that is, that there exists
no formula that expresses the roots of a polynomial equation of degree 5 or greater
in terms of its coefficients using the usual arithmetic operations and the extraction
of roots of arbitrary degree. A key point in the proof of this assertion was the estab-
lishment of the fact that the alternating group An for n ≥ 5 has no one-dimensional
representation other than the identity. For n = 3 and 4, such representations of the
group An exist, and that is what explains the existence of formulas for the solution
of equations of those degrees.

Now let us establish what representations we shall consider to be identical.

Definition 14.8 Two representations g 	→ Ag and g 	→ A′
g of the same group G

with spaces L and L′ of the same dimension are said to be equivalent if there exists
an isomorphism C : L′ → L of the vector spaces L′ and L such that

A′
g = C−1AgC (14.7)

for every element g ∈ G.

Let e′
1, . . . , e

′
n be a basis of the space L′ and let e1 = C(e′

1), . . . , en = C(e′
n) be

the corresponding basis of the space L, since the linear transformation C : L′ → L
is an isomorphism. Comparing relationship (14.7) with the change-of-matrix for-
mula (3.43), we see that this definition means that the matrix of the transformation
A′

g with basis e′
1, . . . , e

′
n coincides with the matrix of the transformation Ag with

basis e1, . . . , en. Thus the representations Ag and A′
g are equivalent if and only if

one can choose bases in the spaces L and L′ such that for each element g ∈ G, the
transformations Ag : L → L and A′

g : L′ → L′ have identical matrices.
Let g 	→ Ag be a representation of the group G, and let L be its representation

space. A subspace M ⊂ L is said to be invariant with respect to the representation Ag

if it is invariant with respect to all linear transformations Ag : L → L for all g ∈ G.
Let us denote by Bg the restriction of Ag to the subspace M. It is obvious that Bg

is a representation of the group G with representation space M. The representation
Bg is said to be the representation induced by the representation Ag with invariant
subspace M. This is also expressed by saying that the representation Bg is contained
in the representation Ag .

Example 14.9 Let us consider the n-dimensional representation of the group Sn

described in Example 14.3. As is easily verified, the collection of all vectors of the
form

∑
a∈M αaea , where αa is an arbitrary scalar satisfying

∑
a∈M αa = 0, forms

a subspace L′ ⊂ L of dimension n − 1, invariant with respect to this representation.
The representation thus induced in L′ is an (n − 1)-dimensional representation of
the group Sn. In the case n = 3, it is equivalent to the representation of the group S3
described in Example 14.4.

Example 14.10 In Example 14.5, let us denote by Mk (k = 0, . . . , n) the subspace
consisting of polynomials of degree at most k in the variables x and y. Each of Mk

is an invariant subspace of every Ml with index l ≥ k.
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Definition 14.11 A representation is said to be reducible if its representation space
L has an invariant subspace different from (0) and from all of L. Otherwise, it is said
to be irreducible.

Examples 14.3 and 14.5 give reducible representations. Clearly, the n-dimen-
sional identity representation is reducible if n > 1: every subspace of the represen-
tation space is invariant. Every one-dimensional representation is irreducible.

Let us prove that the representation in Example 14.4 is irreducible. Indeed, any
invariant subspace different from (0) and L must be one-dimensional. Let u be a
basis vector of such a subspace. The condition of invariance means that

Ag(u) = λgu

for every g ∈ S3, where λg is some scalar depending on the element g, that is, u

is a common eigenvector for all transformations Ag . It is easy to verify that this is
impossible: the eigenvectors of the transformation Ag1 with g1 = ( 1 2 3

2 1 3

)
have the

form α(e1 +e2) and β(e1 −e2), and the eigenvectors of the transformation Ag2 with
g2 = ( 1 2 3

3 2 1

)
have the form γ e2 and δ(2e1 + e2), and these clearly cannot coincide.

Definition 14.12 A representation Ag is said to be the direct sum of the r represen-
tations

A(1)
g , . . . ,A(r)

g

if its representation space L is the direct sum of the r invariant subspaces

L = L1 ⊕ · · · ⊕ Lr , (14.8)

and Ag induces in every Li a representation equivalent to A(i)
g , i = 1, . . . , r .

Example 14.13 The n-dimensional identity representation is the direct sum of n

one-dimensional identity representations. To convince oneself of this, it suffices to
decompose the space of this representation in some way into a direct sum of one-
dimensional subspaces.

Example 14.14 In the situation of Example 14.9, let us denote by L1 an invariant
subspace L′ of dimension n − 1, and let us denote by L2 the one-dimensional sub-
space spanned by the vector

∑
a∈M ea . Clearly, L2 is also an invariant subspace

of this representation, and we have the decomposition L = L1 ⊕ L2. In particular,
the representation introduced in Example 14.3, for n = 3, is the direct sum of the
representation of Example 14.4 and the one-dimensional identity representation.

It can happen that the representation space L has an invariant subspace L1, yet it
is impossible to find a complementary invariant subspace L2 such that L = L1 ⊕ L2.
In other words, the representation is reducible, but it is not the direct sum of two
other representations.

Example 14.15 Let G = {g} be an infinite cyclic group, and let L be a two-
dimensional space with basis e1, e2. Let us denote by An the transformation having
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in this basis the matrix
( 1 0

n 1

)
. It is obvious that AnAm = An+m. From this, it fol-

lows that on setting Agn = An, we obtain a representation of the group G. The line
L1 = 〈e2〉 is an invariant subspace: An(e2) = e2. However, there are no other invari-
ant subspaces. Thus, for instance, the transformation A1 has no eigenvectors other
than e2. Therefore, our representation is reducible, but it is not a direct sum.

Let us note that in Example 14.15, the group G was infinite. It turns out that for
finite groups, such a phenomenon cannot occur. Namely, in the following section,
it will be proved that if a representation Ag of a finite group is reducible, that is,
the vector space L of this representation contains an invariant subspace L1, then
L is the direct sum of L1 and another invariant subspace L2. Hence it follows that
every representation of a finite group is the direct sum of irreducible representations.
As regards irreducible representations, it will be proved in Sect. 14.3 that (up to
equivalence) there is only of finite number of them.

From this point on, to the end of this book, we shall always assume that a group
G is finite, with the sole exception of Example 14.36.

14.2 Representations of Finite Groups

The proof of the fundamental property of representations of finite groups formulated
at the end of the preceding section uses several properties of complex vector spaces.

Let us consider a representation of a finite group G. Let L be its representation
space. Let us define on L some Hermitian form ϕ(x,y) for which the correspond-
ing quadratic-Hermitian form ψ(x) = ϕ(x,x) is positive definite, and thus it takes
positive values for all x �= 0. For example, if L = C

n, then for vectors x and y with
coordinates (x1, . . . , xn) and (y1, . . . , yn), let us set

ϕ(x,y) =
n∑

i=1

xiyi .

In the sequel, we shall denote ϕ(x,y) by (x,y) and call it a scalar product in the
space L. The concepts and simple results that we proved in Chap. 7 for Euclidean
spaces can be transferred to this case verbatim. Let us list those of them that we are
now going to use:

1. The orthogonal complement of a subspace L′ ⊂ L is the collection of all vec-
tors y ∈ L for which (x,y) = 0 for all x ∈ L′. The orthogonal complement of
a subspace L′ is itself a subspace of L and is denoted by (L′)⊥. We have the
decomposition L = L′ ⊕ (L′)⊥.

2. A unitary transformation (the analogue of orthogonal transformation for the case
of a complex space) is a linear transformation U : L → L such that for all vectors
x,y ∈ L, we have the relationship

(
U(x),U(y)

) = (x,y).
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3. The complex analogue of Theorem 7.24 is this: if a subspace L′ ⊂ L is invariant
with respect to a unitary transformation U, then its orthogonal complement (L′)⊥
is also invariant with respect to U.

Definition 14.16 A representation Ug of a group G is said to be unitarizable if it
is possible to introduce a scalar product on its representation space L such that all
transformations Ug become unitary.

The property of a representation being unitarizable obviously remains true under
a change to an equivalent representation.

Indeed, let g 	→ Ug be a unitarizable representation of some group G with space
L and Hermitian form ϕ(x,y). Let us consider an arbitrary isomorphism C : L′ → L.
As we know, it determines an equivalent representation g 	→ U′

g of the same group
with space L′. Let us show that the representation g 	→ U′

g is also unitarizable. As
the scalar product in L′ let us choose the form defined by the relationship

ψ(u,v) = ϕ
(
C(u),C(v)

)
(14.9)

for vectors u,v ∈ L′. It is obvious that ψ(u,v) is a Hermitian form on L′ and that
ψ(u,u) > 0 for every nonnull vector u ∈ L′. Let us verify that the scalar product
ψ(u,v) indeed establishes the unitarizability of the representation g 	→ U′

g . Substi-
tuting the vectors U′

g(u) and U′
g(v) into equality (14.9), taking into account (14.7)

and the unitarizability of the representation g 	→ Ug , we obtain the relationship

ψ
(
U′

g(u),U′
g(v)

) = ψ
(
C−1UgC(u),C−1UgC(v)

)

= ϕ
(
UgC(u),UgC(v)

) = ϕ
(
C(u),C(v)

) = ψ(u,v),

which means that the representation g 	→ U′
g is unitarizable.

Lemma 14.17 If a space L of a unitarizable representation Ug of a group G con-
tains an invariant subspace L′, then it also contains a second invariant subspace L′′
such that L = L′ ⊕ L′′.

Proof Let us take as L′′ the orthogonal complement (L′)⊥. Then the space L′′ is
invariant with respect to all transformations Ug , and we have the decomposition
L = L′ ⊕ L′′. �

The application of this lemma to representations of finite groups is based on the
following fundamental fact.

Theorem 14.18 Every representation Ag of a finite group G is unitarizable.

Proof Let us introduce a scalar product on the representation space L in such a way
that all linear transformations Ag become unitary. For this, let us take an arbitrary
scalar product [x,y] in the space L, defined by an arbitrary Hermitian form ϕ(x,y),
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such that the associated quadratic form ϕ(x,x) is positive definite: ϕ(x,x) > 0 for
every x �= 0. Let us now set

(x,y) =
∑

g∈G

[
Ag(x),Ag(y)

]
, (14.10)

where the sum is taken over all elements g of the group G. We shall prove that
(x,y) is also a scalar product and that with respect to it, all transformations Ag are
unitary.

The required properties of a scalar product for (x,y) derive from the analogous
properties of [x,y] and from the fact that Ag is a linear transformation:

1. (y,x) =
∑

g∈G

[
Ag(y),Ag(x)

] =
∑

g∈G

[
Ag(x),Ag(y)

] = (x,y),

2. (λx,y) =
∑

g∈G

[
Ag(λx),Ag(y)

] =
∑

g∈G

λ
[
Ag(x),Ag(y)

] = λ(x,y),

3. (x1 + x2,y) =
∑

g∈G

[
Ag(x1 + x2),Ag(y)

]

=
∑

g∈G

[
Ag(x1) + Ag(x2),Ag(y)

] = (x1,y) + (x2,y),

4. (x,x) =
∑

g∈G

[
Ag(x),Ag(x)

]
> 0, if x �= 0.

For the proof of the last property, it is necessary to observe that in this sum, all
terms [Ag(x),Ag(x)] are positive. This follows from the analogous property of the
scalar product [x,y], that is, from the fact that [x,x] > 0 for all x �= 0. Since the
linear transformation Ag : L → L is nonsingular, it takes every nonnull vector x to a
nonnull vector Ag(x).

Let us now verify that with respect to the scalar product (x,y), every transfor-
mation Ah, h ∈ G, is unitary. In view of (14.10), we have

(
Ah(x),Ah(y)

) =
∑

g∈G

[
Ag

(
Ah(x)

)
,Ag

(
Ah(y)

)]

=
∑

g∈G

[
AgAh(x),AgAh(y)

]
. (14.11)

Let us set gh = u. In view of property (14.1), we have AgAh = Agh = Au. There-
fore, we may rewrite equality (14.11) in the form

(
Ah(x),Ah(y)

) =
∑

u=gh

[
Au(x),Au(y)

]
. (14.12)

Let us now observe that as g runs through all elements of the group G while h

is fixed, the element u = gh also runs through all elements of the group G. This
follows from the fact that for every element u ∈ G, the element g = uh−1 satisfies
the relationship gh = u, and that for distinct g1 and g2, we thereby obtain distinct
elements u1 and u2.
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Thus in equality (14.12), the element u runs through the entire group G, and we
can rewrite this equality in the form

(
Ah(x),Ah(y)

) =
∑

g∈G

[
Ag(x),Ag(y)

]
,

whence in view of definition (14.10), it follows that (Ah(x),Ah(y)) = (x,y), that
is, the transformation Ah is unitary with respect to the scalar product (x,y). �

Corollary 14.19 If the space L of a representation of a finite group contains an
invariant subspace L′, then it contains another invariant subspace L′′ such that L =
L′ ⊕ L′′.

This follows directly from Lemma 14.17 and from Theorem 14.18.

Corollary 14.20 Every representation of a finite group is a direct sum of irreducible
representations.

Proof If the space L of our representation Ag does not have an invariant subspace
different from (0) and all of L, then this representation itself is irreducible, and our
assertion is true (although trivially so). But if the space L has an invariant subspace
L′, then by Corollary 14.19, there exists an invariant subspace L′′ such that L =
L′ ⊕ L′′.

Let us apply the same argument to each of the spaces L′ and L′′. Continuing this
process, we will eventually come to a halt, since the dimensions of the obtained
subspaces are continually decreasing. As a result, we arrive at such a decomposi-
tion (14.8) with some number r ≥ 2 such that the invariant subspaces Li contain
no invariant subspaces other than (0) and all of Li . This means precisely that the
representations A(1)

g , . . . ,A(r)
g induced in the subspaces L1, . . . ,Lr by our represen-

tation Ag are irreducible, and the representation Ag decomposes as a direct sum

A(1)
g , . . . ,A(r)

g . �

Theorem 14.21 If a representation Ag decomposes into a direct sum of irreducible

representations A(1)
g , . . . ,A(r)

g , then every irreducible representation Bg contained

in Ag is equivalent to one of the A(i)
g .

Proof Let L = L1 ⊕ · · · ⊕ Lr be a decomposition of the space L of the represen-
tation Ag into a direct sum of invariant subspaces such that Ag induces in Li the

representation A(i)
g , and let M be the invariant subspace L in which Ag induces the

representation Bg .
Then in particular, for every vector x ∈ M, we have the decomposition

x = x1 + · · · + xr , xi ∈ Li . (14.13)

It determines a linear transformation Pi : M → Li that is the projection of the sub-
space M onto Li parallel to L1 ⊕ · · · ⊕ Li−1 ⊕ Li+1 ⊕ · · · ⊕ Lr ; see Example 3.51 on
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p. 103. In other words, the transformations Pi : M → Li are defined by the condi-
tions

Pi (x) = xi , i = 1, . . . , r. (14.14)

The proof of the theorem is based on the relationships

AgPi (x) = PiAg(x), i = 1, . . . , r, (14.15)

which are valid for every vector x ∈ M. For the proof of relationships (14.15), let us
apply the transformation Ag to both sides of equality (14.13). We then obtain

Ag(x) = Ag(x1) + · · · + Ag(xr ). (14.16)

Since Ag(x) ∈ M and Ag(xi ) ∈ Li , i = 1, . . . , r , it follows that relationship (14.16)
is decomposition (14.13) for the vector Ag(x), whence follows equality (14.15).

From the irreducibility of the representations A(1)
g , . . . ,A(r)

g and Bg , it follows
that the projection Pi defined by formula (14.14) is either identically zero or an
isomorphism of the spaces M and Li . Indeed, let the vector x ∈ M be contained in
the kernel of the transformation Pi , that is, Pi (x) = 0. Then clearly, AgPi (x) =
0, and in view of relationship (14.15), we obtain that PiAg(x) = 0, that is, the
vector Ag(x) is also contained in the kernel of Pi . From the irreducibility of the

representations A(i)
g , it now follows that the kernel either is equal to (0) or coincides

with the entire space M (in the latter case, the projection Pi will obviously be the null
transformation). In exactly the same way, from equality (14.15), it follows that the
image of the transformation Pi either equals (0) or coincides with the subspace Li .

However, there is certainly at least one such index i among the numbers 1, . . . , r

for which the transformation Pi is not identically zero. For this, we must take an
arbitrary nonnull vector x ∈ M one of whose components xi in the decomposition
(14.13) is not equal to zero, and therefore, Pi (x) �= 0. Taking into account the pre-
vious arguments, this shows that the corresponding transformation Pi is an isomor-
phism of the vector spaces M and Li , and relationship (14.15) shows the equivalence
of the corresponding representations Bg and A(i)

g . �

Corollary 14.22 In a given representation are contained only finitely many
distinct—in the sense of equivalence—irreducible representations.

Indeed, all irreducible representations contained in the given one are equivalent
to one of those encountered in an arbitrary decomposition of this representation as
a direct sum of irreducible representations.

Remark 14.23 From Theorem 14.21 there follows a certain property of uniqueness
of the decompositions of a representation into irreducible representations. Namely,
however we decompose a representation, we shall encounter in the decomposition
the same (up to equivalence) irreducible representations. Indeed, let us select a cer-
tain decomposition of our representation into irreducible representations. An irre-
ducible representation encountered in any other decomposition appears in our rep-
resentation, which means that by Theorem 14.21, it is equivalent to one of the terms
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of the chosen decomposition. A stronger property of uniqueness consists in the fact
that if in one decomposition there appear k terms equivalent to a given irreducible
representation, then the same number of such terms will appear as well in every
other decomposition. We shall not require this assertion in the sequel, and we shall
therefore not prove it.

14.3 Irreducible Representations

In this section, we shall prove that a finite group has only a finite number of distinct
(up to equivalence) irreducible representations. We shall accomplish this as follows:
We shall construct one particularly important representation called a regular rep-
resentation, for which we then shall prove that every irreducible representation is
contained within it. The finiteness of the number of such representations will then
result from Corollary 14.22. The space of a regular representation consists of all
possible functions on the group. This is a special case of the general notion of the
space of functions on an arbitrary set (see Example 3.36, p. 94).

For an arbitrary finite group G, let us consider the vector space M(G) of functions
on this group. Since the group G is finite, the space M(G) has finite dimension:
dim M(G) = |G|.

Definition 14.24 The regular representation of a group G is the representation Rg

whose representation space is the space M(G) of functions on the group G, and in
which the element g ∈ G is associated with the linear transformation Rg that takes
the function f (h) ∈ M(G) to the function ϕ(h) = f (hg):

(
Rg(f )

)
(h) = f (hg). (14.17)

Formula (14.17) means that the result of applying the linear transformation Rg

to the function f is a “translated” function f , in the sense that the value Rg(f ) on
the element h ∈ G is equal to f (hg). We shall omit the obvious verification of the
fact that the transformation of the space M(G) thus obtained is linear. Let us verify
that Rg is a representation, that is, that it satisfies the requirements (14.1).

Let us set Rg1g2(f ) = ϕ. By formula (14.17), we have

ϕ(h) = f (hg1g2).

Let Rg2(f ) = ψ . Then

ψ(u) = f (ug2).

Finally, if Rg1Rg2(f ) = ϕ1, then ϕ1 = Rg1(ψ) and ϕ1(u) = ψ(ug1). Substituting
u = hg1 into the previous formula, we obtain that ϕ1(u) = ψ(ug1) = f (ug1g2) for
every element u ∈ G. This means that ϕ = ϕ1 and Rg1g2 = Rg1Rg2 .

Example 14.25 Let G be a group of order two, consisting of elements e and g,
where g2 = e. A particular instance of this group is S2, the symmetric group of
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degree 2. The space M(G) is two-dimensional, and every function f ∈ M(G) is
defined by two numbers, α = f (e) and β = f (g), that is, it can be identified with
the vector (α,β). As with any representation, Re is the identity transformation. Let
us determine what Rg is. By formula (14.17), we have

(
Rg(f )

)
(e) = f (g) = β,

(
Rg(f )

)
(g) = f

(
g2) = f (e) = α.

This means that the linear transformation Rg takes the vector (α,β) to the vector
(β,α), that is, it represents a reflection with respect to the line α = β .

Theorem 14.26 Every irreducible representation of a finite group G is contained
in its regular representation Rg .

Proof Let Ag be an irreducible representation with space L. Let us denote by l an
arbitrary nonnull linear function on the space L and let us associate with each vector
x ∈ L the function f (h) = l(Ah(x)) ∈ M(G) obtained when the vector x is fixed
and the element h runs through all possible values of the group G. It is obvious that
in this way, we obtain a linear transformation C : L → M′ defined by the relationship

C(x) = l
(
Ah(x)

)
, (14.18)

where M′ is some subspace of the vector space M(G). Here by construction, C(L) =
M′, that is, M′ is the image of the transformation C.

We shall prove the following properties:

(1) For all elements g ∈ G and vectors x ∈ L, we have the relationship

(CAg)(x) = (RgC)(x). (14.19)

(2) The subspace M′ is invariant with respect to the representation Rg .
(3) The transformation C is an isomorphism of the spaces L and M′.

Comparing formulas (14.19) and (14.7), taking into account the remaining two
properties, we conclude that the irreducible representation Ag is equivalent to the
representation induced by the regular representation Rg in the invariant subspace
M′ ⊂ M(G). By virtue of the definitions given above, this means that Ag is contained
in Rg , as asserted in the statement of the theorem.

Proof of property (1). Let us set C(x) = f ∈ M(G). Then by definition, f (h) =
l(Ah(x)) for every element h ∈ G. Applying formula (14.17), we obtain the rela-
tionship

(RgC)(x) = Rg(f ) = ϕ, (14.20)

where ϕ is the function on the group G defined by the relationship ϕ(h) =
l(Ahg(x)).

On the other hand, substituting the vector Ag(x) for x in formula (14.18), we
obtain the equality

C
(
Ag(x)

) = (CAg)(x) = ϕ1(h), (14.21)
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where the function ϕ1(h) is defined by the relationship

ϕ1(h) = l
(
AhAg(x)

) = l
(
Ahg(x)

)
,

and clearly, it coincides with ϕ(h). Taking into account that ϕ(h) = ϕ1(h), we see
that equalities (14.20) and (14.21) yield that (CAg)(x) = (RgC)(x).

Proof of property (2). We must prove that for every element g ∈ G, the image of the
linear transformation Rg(M′) is contained in M′. Let f ∈ M′, that is, by the definition
of the image, f = C(x) for some x ∈ L. Then taking into account formula (14.19)
proved above, we have the equality

Rg(f ) = (RgC)(x) = (CAg)(x) = C(y),

where the vector y = Ag(x) is in L, and by our construction, this means that
Rg(f ) ∈ M′. This proves the required inclusion Rg(M′) ⊂ M′.

Proof of property (3). Since by construction, the space M′ is the image of the trans-
formation C : L → M′, it remains only to show that the transformation C is bijective,
that is, that its kernel is equal to (0). This means that we must prove that the equality
x = 0 follows from the equality C(x) = 0′ (where 0′ denotes the function identically
equal to zero on the group G). Let us denote the kernel of the transformation C by
L′. As we know, it is a subspace of L. Let us show that L′ is invariant with respect to
the representation Ag .

Indeed, let us suppose that C(x) = 0′ for some vector x ∈ L, and let us set
y = Ag(x). On applying the transformation C to the vector y, taking into account
formula (14.19), we obtain

C(y) = (
CAg(x)

) = (RgC)(x) = Rg

(
C(x)

) = Rg

(
0′) = 0′.

But from the irreducibility of the representation Ag , it now follows that either L′ = L
or L′ = (0). The former would mean that l(Ah(x)) = 0 for all h ∈ G and x ∈ L. But
then even for h = e, we would have the equality l(Ae(x)) = l(E(x)) = l(x) = 0 for
all x ∈ L, which is impossible, since in the definition of the transformation C, the
function l was chosen to be not identically zero. This means that the subspace L′ is
equal to (0), which is what was to be proved. �

Corollary 14.27 A finite group has only a finite number of distinct (up to equiva-
lence) irreducible representations.

Example 14.28 Let Ag be the one-dimensional identity representation of the
group G. Then the space L is one-dimensional. Let e be a basis of L. Let us de-
fine the function l by the condition l(αe) = α. Formula (14.18) gives for the vector
x = αe, the value

C(αe) = f, where f (h) = l
(
Ah(αe)

) = l(αe) = α.

Thus to the vector αe is associated the function f , which takes for all h ∈ G the
same value α. Obviously, such constant functions indeed form an invariant subspace
with respect to the regular representation, and the representation induced in it is the
identity, as asserted by Theorem 14.26.
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14.4 Representations of Abelian Groups

Let us first of all recall that we are assuming throughout that the space L of a repre-
sentation is complex.

Theorem 14.29 An irreducible representation of an abelian group is one-dimen-
sional.

Proof Let g be a fixed element of the group G. Its associated linear transformation
Ag : L → L has at least one eigenvalue λ. Let M ⊂ L be the eigensubspace corre-
sponding to the eigenvalue λ, that is, the collection of all vectors x ∈ L such that

Ag(x) = λx. (14.22)

By construction, M �= (0). We shall now prove that M is an invariant subspace of our
representation. It will then follow from the irreducibility of the representation that
M = L, and then equality (14.22) will hold for every vector x ∈ L. In other words,
Ag = λE , and the matrix of the transformation Ag is equal to λE. A matrix of this
type is called a scalar matrix. This reasoning holds for every g ∈ G; we have only
to note that the eigenvalue λ in formula (14.22) depends on the element g, and the
remainder of the argument does not depend on it. Thus we may conclude that the
matrices of all transformations Ag are scalar matrices, and if dim L > 1, then every
subspace of the space L is invariant. Consequently, if a representation is irreducible,
it is one-dimensional.

It remains to prove the invariance of the subspace M. It is here that we shall
specifically use the commutativity of the group G. Let x ∈ M, h ∈ G. We shall
prove that Ah(x) ∈ M. Indeed, if Ah(x) = y, then

Ag(y) = Ag

(
Ah(x)

) = Agh(x) = Ahg(x) = Ah

(
Ag(x)

) = Ah(λx)

= λAh(x) = λy,

that is, the vector y belongs to M. �

In view of Theorem 14.29, every irreducible representation of an abelian group
can be represented in the form Ag = χ(g), where χ(g) is a number. Condition
(14.1) can then be written in the following form:

χ(g1g2) = χ(g1)χ(g2). (14.23)

Definition 14.30 A function χ(g) on an abelian group G taking complex values
and satisfying relationship (14.23) is called a character.

By Theorem 14.29, every irreducible representation of a finite abelian group is
a character χ(g). On the other hand, it follows from Theorem 14.26 that this rep-
resentation is contained in the regular representation. In other words, in the space
M(G) of functions on the group G, there exists an invariant subspace M′ in which
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the regular representation induces a representation equivalent to ours. Since our rep-
resentation is one-dimensional, the subspace M′ is also one-dimensional. Let some
function f ∈ M(G) be a basis in M′. Then since the representation induced by the
regular representation in M′ has matrix χ(g), and Rg(f )(h) = f (hg), we must have
the relationship

f (hg) = χ(g)f (h).

Let us set h = e in this equality and let us also set f (e) = α. We obtain that f (g) =
αχ(g), that is, we may take as a basis of the subspace M′ the character χ itself
(indeed, it is a function on G, and this means that χ ∈ M(G)). As we have seen,
we then have M(G) = M′ ⊕ M′′, where M′′ is also an invariant subspace. Applying
analogous arguments to M′′ and to all invariant subspaces of dimension greater than
1 that we obtain along the way, we finally arrive at a decomposition of the subspace
M(G) as a direct sum of one-dimensional invariant subspaces. We have thereby
proved the following result.

Theorem 14.31 The space M(G) of functions on a finite abelian group G can be
decomposed as a direct sum of one-dimensional subspaces that are invariant with
respect to the regular representation. In each such subspace, one can take as a basis
vector some character χ(g). Then the matrix of the representation that is induced
in this subspace coincides with this same character χ(g).

It is obvious that we thereby establish a bijective relationship between the char-
acters of the group G and one-dimensional invariant subspaces of the space M(G)

of functions on this group. Indeed, two distinct characters χ1 and χ2 cannot be basis
vectors of one and the same representation: that would mean that

χ1(g) = αχ2(g) for all g ∈ G.

Setting here g = e, we obtain α = 1, since χ1 and χ2 are homomorphisms of the
group G into C, and therefore, χ1(e) = χ2(e) = 1.

Since by Corollary 14.19, a regular representation can be decomposed into a
direct sum of irreducible representations, we obtain the following results for every
finite abelian group G.

Corollary 14.32 The characters form a basis of the space M(G) of functions on the
group G.

This assertion can be reformulated as follows.

Corollary 14.33 The number of distinct characters of a group G is equal to its
order.

This follows from Corollary 14.32 and the fact that the dimension of the space
M(G) is equal to the order of the group G.
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Corollary 14.34 Every function on the group G is a linear combination of charac-
ters.

Example 14.35 Let G = {g} be a cyclic group of finite order n, gn = e. Let us
denote by ξ0, . . . , ξn−1 the distinct nth roots of 1, and let us set

χi

(
gk

) = ξk
i , k = 0,1, . . . , n − 1.

It is easily verified that χi is a character of the group G and that the characters χi

corresponding to ξi , the distinct nth roots of 1, are themselves distinct. Since their
number is equal to |G|, they must be all the characters of the group G. By Corol-
lary 14.32, they form a basis of the space M(G). In other words, in an n-dimensional
space, the vectors 1, ξi, . . . , ξ

n−1
i corresponding to the nth roots of 1 form a basis.

This can also be verified directly by calculating the determinant consisting of the
coordinates of these vectors as a Vandermonde determinant (p. 41).

Example 14.36 Let us denote by S the group of rotations of the circle in the plane.
The elements of the group S correspond to points of the circle: if we associate with
a real number ϕ the point of the circle with argument ϕ, then with any one point
of the circle will be associated numbers that differ from one another by an integer
multiple of 2π . Therefore, this group S is frequently called the circle group.

After choosing a certain integer m, let us associate with the point t of the circle S

having argument ϕ the number cosmϕ + i sinmϕ, where i is the imaginary unit. It
is obvious that adding an integer multiple of 2π to ϕ does not change this number,
which means that it is uniquely defined by the point t ∈ S. Let us set

χm(t) = cosmϕ + i sinmϕ, m = 0,±1,±2, . . . . (14.24)

It is not difficult to verify that the function χm(t) is a character of the group S. For
an infinite group such as S, it is natural to introduce into the definition of a character
in addition to the requirement (14.23), the requirement that the function χm(t) be
continuous. The reason for such a requirement for the group S is as follows: it
is necessary that the real and complex parts of the functions χm(t) be continuous
functions.

It is possible to prove that the characters χm(t) defined by formula (14.24) are
continuous and that they comprise all the continuous characters of the circle. This
explains to a large degree the role of the trigonometric functions cosmϕ and sinmϕ

in mathematics: they are the real and imaginary parts of the continuous characters
of the circle.

Corollary 14.34 asserts that every function on a finite abelian group can be rep-
resented as a linear combination of characters. In the case of an infinite group such
as S, some analytic restrictions, which we shall not specify here, are naturally im-
posed on such a function. We shall only mention the significance of functions on
the group S. Such a function f (t) can be represented as a function F(ϕ) of the
argument ϕ of the point t ∈ S. It must not, however, depend on the choice of the ar-
gument ϕ of the point t , that is, it must not change on the addition to ϕ of an integer
multiple of 2π . In other words, F(ϕ) must be a periodic function with period 2π .
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The analogue of Corollary 14.34 for the group S asserts that such a function can be
represented as a linear combination (in the given case, infinite) of functions χm(ϕ),
m = 0,±1,±2, . . . . In other words, this is a theorem about the fact that a periodic
function (with certain analytic restrictions) can be decomposed into a Fourier series.



Historical Note

Here we shall present a brief chronology of the appearance of the concepts discussed
in this book. The development of mathematical ideas generally proceeds in such a
way that some concepts gradually emerge from others. Therefore, it is generally
impossible to fix accurately the appearance of some particular idea. We shall only
point out the important milestones and, it goes without saying, shall do so only
roughly. In particular, we shall limit our view to Western European mathematics.

The principal stimulus was, of course, the creation of analytic geometry by Fer-
mat and Descartes in the seventeenth century. This made it possible to specify points
(on the line, in the plane, and in three-dimensional space) using numbers (one, two,
or three), to specify curves and surfaces by equations, and to classify them accord-
ing to the algebraic nature of their equations. In this regard, linear transformations
were used frequently, especially by Euler, in the eighteenth century.

Determinants (particularly as a symbolic apparatus for finding solutions of sys-
tems of n linear equations in n unknowns) were considered by Leibniz in the sev-
enteenth century (even if only in a private letter) and in detail by Gabriel Cramer
in the eighteenth. It is of interest that they were constructed on the basis of the rule
of “general expansion” of the determinant, that is, on the basis of the most complex
(among those that we considered in Chap. 2) way of defining them. This definition
was discovered “empirically,” that is, conjectured on the basis of the formulas for
the solution of systems of linear equations in two and three unknowns. The broadest
use of determinants occurred in the nineteenth century, especially in the work of
Cauchy and Jacobi.

The concept of “multidimensionality,” that is, the passage from one, two, and
three coordinates to an arbitrary number, was stimulated by the development of
mechanics, where one considered systems with an arbitrary number of degrees of
freedom. The idea of extending geometric intuition and concepts to this case was
developed systematically by Cayley and Grassmann in the nineteenth century. At
the same time, it became clear that one must study quadrics in spaces of arbitrary
dimension (Jacobi and Sylvester in the nineteenth century). In fact, this question had
already been considered by Euler.
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The study of concepts defined by a set of abstract axioms (groups, rings, algebras,
fields) began as early as the nineteenth century in the work of Hamilton and Cayley,
but it reached its full flowering in the twentieth century, chiefly in the schools of
Emmy Noether and Emil Artin.

The concept of a projective space was first investigated by Desargues and Pascal
in the seventeenth century, but systematic work in this direction began only in the
nineteenth century, beginning with the work of Poncelet.

The axiomatic definition of vector spaces and Euclidean spaces as given in this
book broke finally with the primacy of coordinates. It was first rigorously formulated
almost simultaneously by Hermann Weyl and John von Neumann. Both came to
this from work on questions in physics. Then two versions of quantum mechanics
were created: the “wave mechanics” of Schrödinger and the “matrix mechanics” of
Heisenberg. It was necessary to work out that in some sense, they were “one and the
same.”

Both mathematicians developed an axiomatic theory of Euclidean spaces and
vector spaces and showed that quantum-mechanical theories are connected with
two isomorphic spaces. However, the difference between those theories and what
we presented in this book lies in the fact that they worked with infinite-dimensional
spaces. In any case, for finite-dimensional spaces, there appeared an invariant (that
is, independent of the choice of coordinates) theory that by now has become univer-
sally accepted.

The introduction of the axiomatic approach in geometry was discussed in suffi-
cient detail in Chap. 11, devoted to the hyperbolic geometry of Lobachevsky. Such
studies began at the end of the nineteenth century, but their definitive influence in
mathematics dates from the beginning of the twentieth century. The central figure
here was Hilbert. For example, he contributed to the application of geometric intu-
ition to many problems in analysis.
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A
Affine ratio

of three points, 298
Affine subset (of a projective space), 323
Affinely equivalent subsets, 307
Algebra, 370

exterior, 372
graded, 372

Angle
between planes, 237
between two lines or a line and a plane, 235
between vectors, 215

Annihilator, 124
Associativity, xv, 63, 371, 467
Axioms of plane geometry, 445

parallel lines (in Euclidean and hyperbolic
geometry), 448

B
Ball, 222
Bases

oriented, 155
with the same orientation, 277

Basis
of a vector space, 89

dual, 123
orthonormal (in a Euclidean space), 218
orthonormal (in a pseudo-Euclidean

space), 266, 268
orthonormal (with respect to a bilinear

form), 401
of an algebra, 371

Blocks of a matrix, 65

C
Canonical equations (of a quadric), 422
Canonical form (of a quadratic form), 201

Center
of a flag, 301, 442
of a set, 419

Central symmetry (of an affine space), 419
Character, 511

of the circle (continuous), 513
Characteristic polynomial, 139
Circle (group of rotations), 513
Cofactor, 40, 379
Combination

linear, 87
Commutativity, 473, 484
Commuting matrices, 64
Compactness, 341
Complexification, 151
Composition

of linear transformations, 106
of mappings, xiv

Cone
in an affine space, 421, 429
light (isotropic), 269

Conic, 392, 430
Constant terms, 1
Convergence, xviii, 179, 339
Coordinates

of a point, 291
heterogeneous, 323

of a vector, 90
Plücker (of a space), 351
points

homogeneous, 320
Cramer’s rule, 43
Curvature

Gaussian, 265
normal, 263
principal, 264

Cylinder, 303
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D
Deformation (continuous), xx, 158, 343
Degree of a polynomial, 15, 127
Delta function, 94, 359
Determinant, 25, 29

explicit formula, 53
Gram, 217
of a linear transformation, 112
of a square matrix, 30
Vandermonde, 41

Diagonal (of a matrix), 2, 178
Differential, 131, 293
Dimension

of a projective space, 320
of a representation, 497
of a vector space, 88
of an affine space, 291
of an algebra, 371

Direct sum
of representations, 502
of subgroups, 475
of submodules, 489
of subspaces, 84

Distance between points, 309
Distributive property, 64, 107, 370
Divisor

greatest common (gcd), 487
(of an element of a ring), 486

Duality principle, 125, 392

E
Echelon form (systems of linear equations), 13
Eigensubspace, 138
Eigenvalue, 137
Eigenvector, 137
Element

identity, 370
inverse (right, left), 467
negative, 474
prime (of a ring), 486
torsion (in a module), 488
unit (in a ring), 486
zero, 474

Elementary row operations (on matrices), 7
Elements

associates (in a ring), 486
homogeneous (in a graded algebra), 373
relatively prime (in a ring), 487

Ellipse, 430
Ellipsoid, 428
Endomorphism, 102
Equivalence relation, xii
Equivalent representations, 501
Euclidean algorithm (in a ring), 487

Exterior power
mth exterior power (of a vector space), 360

F
Fiber of a projection, 303
Field, 485

of characteristic different from 2, 83, 196
Flag, 101, 301, 441, 447
Form, 127

bilinear, 192
antisymmetric, symmetric, 193
nonsingular, 195

Hermitian, 210
quadratic, 191

first, second (of a hypersurface), 262
positive, negative definite, 205

sesquilinear, 210
Formula

Cauchy–Binet, 377
change of basis

for the matrix of a bilinear form, 195
change of coordinates of a vector, 109
Euler, 264
expansion of the determinant along a

column, 40
for a change of matrix of a linear

transformation, 111
Frame of reference, 291

orthonormal, 310
Free mobility (of an affine Euclidean space),

317
Function, xiii

antisymmetric, 46
exponential of a matrix, 181
linear, 2
multilinear, 51, 358
quadratic Hermitian, 211
semilinear, 209
sesquilinear, 210
symmetric, 44

G
Gaussian elimination, 6
Geometry

absolute, 448
elliptic, 464
projective, 319
spherical, 462

Grade (of a principal vector), 162
Grassmannian, 356
Group, 467

abelian, 473
alternating of degree n, 471
commutative, 473
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Group (cont.)
cyclic, 471
symmetric of degree n, 469
transformation, 468

H
Half-space, 99, 436
Hexagon

circumscribed about a conic, 393
inscribed in a conic, 392

Homeomorphism, xviii
Homomorphism (of groups), 471
Horizon, 324
Hyperbola, 430
Hyperboloid of one sheet, 398
Hyperplane, 89, 294, 322, 435

tangent, 261, 327, 386
Hypersurface, 386

I
Identity

Cauchy–Binet, 68
Euler’s, 130

Image
of a homomorphism, 472
of a linear transformation, 115
of a mapping, xiii
of an arbitrary mapping, xiii

Incidence (points and lines), 319
Index of inertia, 205, 266
Inner product

of vectors, 213, 435
Interpolation, 15
Inversion, 49
Isometry, xxi
Isomorphism

of affine spaces, 303
of Euclidean spaces, 223
of groups, 472
of vector spaces, 112

J
Jordan

block, 169
normal form, 169

K
Kernel

of a homomorphism, 472
of a linear transformation, 115

L
Law of inertia, 205
Length of a vector, 215

Limit (of a sequence), xviii, 339
Linear

combination, 57
part (of an affine transformation), 301
substitution of variables, 62

M
Mapping, xiii

dual, xv
extension, xiii
identity, xiii, 102
perspective, 338

Matrices
commuting, 64
equivalent, 203
similar, 135

Matrix, 2
additive inverse, 60
adjugate, 73
antisymmetric, 54
block, 65
block-diagonal, 65, 137
continuously deformable, 158
diagonal, 74
echelon form, 13
Hermitian, 210
identity, 34
inverse, 72
nonsingular, 37
null, 60
of a bilinear form, 192
of a linear transformation, 105
orthogonal, 225
singular, 37
square, 2
symmetric, 54
system of linear equations, 2
transition, 109
transpose, 53

Metric, xvii, 309
Minor, 31

associates, 69
leading principal, 206

Möbius strip, 346
Module (over a ring), 485

finitely generated, 488
Motion

in the axioms of plane geometry, 445
of a hyperbolic space, 437
of an affine Euclidean space, 310

Multiplication table (in an algebra), 371
m-vector, 360

decomposable, 367
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N
Newton sum, 209
Null vector, 81

O
Operations

in a group, 474
in a ring, 484
in an algebra, 370

Operator, 102
first-order differential, 129

Order
of a group, 468
of an element of a group, 471
of an element of a module, 489

Orientation
of a Euclidean space, 230
of a pseudo-Euclidean space, 277
of a vector space, 155

Orthogonal complement, 198, 218, 503
Orthonormal system of vectors, 218

P
Pair of half-spaces, 300
Parabola, 430
Parallel subspaces (in an affine space), 295
Parallelepiped (spanned by vectors), 219
Path (in a metric space), xx
Path-connected component, xx
Permutation, 45, 469

even, 48
Plücker relations, 354
Point

at infinity, 319, 324
critical, 253
fixed, 305
lying between two other points, 298, 445,

450
of a projective space, 320
of an affine space, 289
of hyperbolic space, 434
singular

of a hypersurface, 387
of a projective algebraic variety, 327

Points
independent, 297, 331

Poles (of the light cone), 271
Polynomial, 15, 127, 293

annihilator, 146, 147
characteristic, 139
homogeneous, 127
in a linear transformation, 141
matrix, 69
minimal, 146

Preimage, xiii
Principal of duality, 326
Product

direct
of subgroups, 474

of a matrix by a number, 60
of elements

of a group, 467
of an algebra, 370

of matrices, 61
of sets, xvi
of vectors

exterior, 360, 368
Projection, 103, 302

orthogonal, 216, 219
Projective

cover, 325
line, 320
plane, 320

Projectivization, 320

Q
Quadric, 385, 414

nonsingular, 386, 429
Quadrics

affinely equivalent, 418
metrically equivalent, 425

R
Radical (of a bilinear form), 198
Rank

of a bilinear form, 195
of a linear transformation, 118
of a matrix, 55

Ratio
of four points (cross, anharmonic), 337

Rectilinear generatrices (of a hyperboloid),
398

Reflection (of a Euclidean space), 229
Representation, 497

identity, 499
induced, 501
infinite-dimensional, 499
irreducible, reducible, 502
regular, 508
unitarizable, 504

Representation space, 497
Representations

equivalent, 501
Restriction (of a mapping), xiii
Ring, 484

commutative, 484
Euclidean, 486
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Rotation of a Euclidean space about an axis,
229

S
Segment, 299, 446
Semiaxes (of an ellipsoid), 254, 428
Set, xi

centrally symmetric (in an affine space),
419

convex (in an affine space), 299
Sets

homeomorphic, xviii
Solution of a system of linear equations, 4
Space

affine, 289
affine Euclidean, 309
dual, 121
Euclidean, 213
hyperbolic, 434
metric, xvii
Minkowski, 86, 268
m-vectors, 360
of a representation, 497
of linear functions, 121
of vectors of an affine space, 291
projective, 320

dual, 325
pseudo-Euclidean, 268
second dual, 123
tangent, 261, 327, 386
vector, 81

Sphere, 222
Stereographic projection, 343
Subgroup, 468

cyclic, 471
maximal, 476

Submodule, 488
cyclic, 489

Subspace
cyclic, 162
degenerate (of a pseudo-Euclidean space),

266
invariant

(with respect to a linear
transformation), 135

(with respect to a representation), 501
isotropic, 395
linear span of vectors, 87
nondegenerate (of a pseudo-Euclidean

space), 266
of a hyperbolic space, 435
of a projective space, 322

dual, 326
of a vector space, 83

of an affine space, 294
solutions of a system of equations, 84

Subspaces
directed pair, 101

Sum
of matrices, 61
of subspaces, 84

direct, 84
Superalgebra, 373
Sylvester’s criterion, 206
System of linear equations, 1

associated, 11
consistent, 5
definite, indefinite, 5
equivalent, 7
homogeneous, 10
inconsistent, 5
(row) echelon form, 13
uniquely determined, 5
upper triangular form, 14

T
Theorem

Bolzano–Weierstrass, 247
Brianchon’s, 393
Cayley–Hamilton, 147
Courant–Fischer, 253
Euler’s, 316
Helmholtz–Lie, 443
Laplace’s, 379
Pascal’s, 392
Rouché–Capelli, 56

Torus, 414
Transformation

affine, 301
linear, 306
proper, improper, 307
singular, nonsingular, 304

antisymmetric, symmetric, 203, 245
block-diagonalizable, 152
diagonalizable, 139
dual, 125
linear, 102
Lorentz, 276
nonsingular, singular, 135
null, 106
of a vector space into itself, 133
orthogonal, 224, 401
projective, 328
proper, improper, 276, 402
singular, nonsingular, 111
unitary, 255, 503

Translation (of an affine space), 292
Transpose
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of a matrix, 53
Transposition, 45
Triangle, 446
Triangle inequality (Cauchy–Schwarz), 310

in hyperbolic geometry, 458
in spherical geometry, 463

U
Universality (of the exterior product), 365
Unknowns

free, 13
principal, 13

V
Variety

Grassmann, 356
projective algebraic, 322

dual, 327
irreducible, 409

Vector, 79, 81
principal, 161

Vectors
decomposable, 361
eigen-, 137
lightlike (isotropic), 269
linearly dependent, 87
linearly independent, 87
orthogonal, 198, 217
spacelike, 268
timelike, 269

Volume of a parallelepiped
oriented, 221
unoriented, 220
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