Module 10: Time Independent Perturbation Theory

10.1 Consider a 4-fold degenerate state with orthonormal eigenfunctions \(u_1, u_2, u_3 \) and \(u_4 \). There is a perturbation \(H' \). It is given that \(H'_{12} = H'_{21} = -g \); \(g > 0 \) and all the other matrix elements are zero. Find the splitting and corresponding wavefunctions.

(a) \(g, -g, 0, 0 \)
(b) \(2g, g, 0, 0 \)
(c) \(g, g, 0, 0 \)
(d) \(g, 0, 0, 0 \)

[Answer (a)]

10.2 Consider a 4-fold degenerate state with orthonormal eigenfunctions \(u_1, u_2, u_3 \) and \(u_4 \). There is a perturbation \(H' \). It is given that \(H'_{12} = H'_{21} = -g \); \(g > 0 \), and all the other matrix elements are zero. Find the wave functions of the split levels.

(a) \(u_1, u_2, u_3 \) and \(u_4 \)
(b) \(\frac{u_1 - u_2}{\sqrt{2}}, \frac{u_1 + u_2}{\sqrt{2}}, u_3 \) and \(u_4 \)
(c) \(\frac{u_1 - 2u_2}{\sqrt{2}}, \frac{u_1 + 2u_2}{\sqrt{2}}, u_3 \) and \(u_4 \)
(d) \(\frac{u_1 - 3u_2}{\sqrt{2}}, \frac{u_1 + 3u_2}{\sqrt{2}}, u_3 \) and \(u_4 \)

[Answer (b)]

10.3 Consider a 4-fold degenerate state with orthonormal eigenfunctions \(u_1, u_2, u_3 \) and \(u_4 \). There is a perturbation \(H' \). It is given that \(H'_{11} = H'_{22} = 2g \), \(H'_{12} = H'_{21} = g \) and all the other matrix elements are zero. Find the splitting and corresponding wavefunctions.

(a) \(g, g, 0, 0 \)
(b) \(2g, g, 0, 0 \)
(c) \(3g, g, 0, 0 \)
(d) \(4g, g, 0, 0 \)

[Answer (c)]
10.4 Consider a 4-fold degenerate state with orthonormal eigenfunctions u_1, u_2, u_3 and u_4. There is a perturbation H'. It is given that $H'_{11} = H'_{22} = 2g$, $H'_{12} = H'_{21} = g$ and all the other matrix elements are zero. Find the wave functions of the split levels.

(a) u_1, u_2, u_3 and u_4
(b) $\frac{u_1 - u_2}{\sqrt{2}}, \frac{u_1 + u_2}{\sqrt{2}}, u_3$ and u_4
(c) $\frac{u_1 - 2u_2}{\sqrt{2}}, \frac{u_1 + 2u_2}{\sqrt{2}}, u_3$ and u_4
(d) $\frac{u_1 - 3u_2}{\sqrt{2}}, \frac{u_1 + 3u_2}{\sqrt{2}}, u_3$ and u_4

[Answer (b)]